Intended for SUNY Oswego, New York Power Authority

Document type **Plan**

Date December 2023 (Final)

Clean Energy Master Plan Consolidated Report

Clean Energy Master Plan Consolidated Report

Project name Campus Energy Master Plan Project no. 1950100323 Recipient SUNY Oswego, NYPA Document type Consolidated Report Version 1.1 Date December 2023 (Final Report) Prepared by Joe DiSanto, John Flørning, Rob Neimeier Checked by Michael Kingsley, Rob Neimeier Approved by Tim Erwin, Rob Neimeier

Ramboll 94 New Karner Road Suite 106 Albany, NY 12203 USA

T 518-724-7272 F 315-463-7554 https://ramboll.com

Acknowledgements

The following individuals are acknowledged for their participation in the development of the SUNY Oswego Clean Energy Master Plan:

SUNY Oswego

Allen Bradberry Mitch Fields Jon Mills David Pippin Kate Spector

New York Power Authority

Danish Shakil

<u>Ramboll</u>

Federico Bava Tricia D'Agostino Joe DiSanto John Flørning Sebastian Wulff Holtegaard Sophie Huther Mai Khuc Mike Kingsley Mark McGuire Rob Neimeier Kendra Valerius

Subconsultants

Trophy Point Construction Services & Consulting

Contents

Acronyms	and Abbreviations	5
Executive 9	Summary	7
1.	Purpose, Drivers and Approach	18
1.1	Purpose	18
1.2	Drivers	18
1.3	Approach	19
2.	Campus Overview	20
2.1	Description	20
2.2	Energy infrastructure	20
2.3	Modernization plans	21
3.	Preliminary Energy Analysis	22
3.1	PEA methodology	22
3.2	Campus information	23
3.3	Portfolio energy performance	26
3.4	Building level current energy performance (benchmarking)	29
3.5	Central heating plant	35
4.	Campus Energy Assessment	36
4.1	Energy audit methodology	36
4.2	Energy Audit Results	39
5.	Energy Master Planning	43
5.1	Campus energy demand	43
5.2	Campus energy supply	51
5.3	Overall design considerations	53
5.4	Technology screening – energy generation	63
5.5	Hydraulic modeling	81
5.6	Conceptual scenario selection and initial screening	83
5.7	Final screening and selection	87
5.8	Campus electrical capacity assessment	111
5.9	Renewable electricity generation	111
5.10	Conclusions	114
6.	Phasing and Implementation	116
6.1	Phasing and sequencing	116
6.2	Funding source and incentive program potential	120
7.	Key Takeaways and Recommended Next Steps	122
7.1	Key takeaways from the Clean Energy Master Planning Process	122
7.2	Recommended next steps	123

List of Tables

Table 1. EEM Summary	8
Table 2. Evaluated scenarios	10
Table 3. Building modification budgetary cost estimate for 130°F supply	
temperature	13
Table 4. Low-carbon electrification phasing strategy	14
Table 5. Key takeaways from the clean energy master planning process	15
Table 6. SUNY Oswego – energy profile summary	23
Table 7. Building information – main campus	23
Table 8. Building Information - off campus	25
Table 9. Baseline annual average utility prices	26
Table 10. Emission factors	26
Table 11. Heating value	26
Table 12. Overall KPI comparison	27
Table 13. Building energy consumption comparison to CBECS peer	
benchmark – main campus	29
Table 14. Building energy consumption comparison to CBECS peer	
benchmark – other buildings	33
Table 15. Level 1 walk-through survey	36
Table 16. Energy unit costs used in EEM assessments	39
Table 17. Summary of energy efficiency measures (EEMs)	40
Table 18. Baseline Demand by building for space heating (SH), domestic	
hot water (DHW) and cooling	44
Table 19. Energy conservation and growth estimates	47
Table 20. Future energy demand by building	47
Table 21. Building modifications budgetary cost estimate for 130°F	
supply temperature	60
Table 22. Technology screening process, fossil-based technologies	64
Table 23. Technology screening process, renewable sources	65
Table 24. Electrification technologies	66
Table 25. Cluster versus centralized cost comparison	74
Table 26. Final scenarios for the techno-economic assessment	88
Table 27. Borefield sizing comparison	91
Table 28. 2% Average (central rate) social cost of carbon	94
Table 29. Assumed equipment technical lifetime	96
Table 30. Shadow price of carbon compared to BaU	109
Table 31. Renewable potential at hidden fields	113
Table 32. Low-carbon electrification phasing strategy	119
Table 33. Key takeaways from the clean energy master planning process	122
List of Figures	

Figure 1. Baseload and peak load illustration	9
Figure 2. CO_2e emissions and project NPV for the different scenarios	11
Figure 3. Estimated electrical capacity per scenario	12
Figure 4. Scenario cost estimates	13
Figure 5. Projected GHG emissions trend (Scenario 2a)	16
Figure 6. Clean energy master planning key steps	19

Figure 7. EUI comparison	27
Figure 8. Energy use by fuel type	28
Figure 9. End use energy	28
Figure 10. Cost by fuel source	29
Figure 11. Emissions by fuel source	29
Figure 12. Building level energy use by fuel, including benchmark	
comparison	34
Figure 13. Building EUI by fuel, including benchmark comparison	34
Figure 14. Central heating plant natural gas use	35
Figure 15. Steam flow versus outdoor air dry-bulb temperature	35
Figure 16. Monthly electric demand and energy use	43
Figure 17. Baseline heat demand (SH+ DHW)	46
Figure 18. Future heat demand (SH+ DHW)	50
Figure 19. Future cooling demand	50
Figure 20. Heating system type (percent of GSF) by current space	
heating technology	51
Figure 21. Domestic hot water type (percent of GSF)	52
Figure 22. Main campus cooling system type (percent of GSF)	53
Figure 23. Diversity factor for space heating	54
Figure 24. Baseload and peaking illustration	55
Figure 25. Example outdoor air temperature reset schedule	58
Figure 26. Typical ETS installation (source: Danfoss)	62
Figure 27. Oswego westside wastewater treatment facility location	68
Figure 28. Oswego westside WWTP data	68
Figure 29. Extractable heat from WWTP and potential heat output from	۱
HP	69
Figure 30. Wastewater heat pump production	70
Figure 31. Lake Ontario water temperature (obtained from Upstate	
Freshwater Institute)	71
Figure 32. Electric substations	72
Figure 33. Transformer Heat Recovery	72
Figure 34. Heating and cooling clusters	73
Figure 35. Cost comparison to connect clusters	74
Figure 36. Principle of a tank thermal energy storage	76
Figure 37. Connection of a TTES – heat storage	77
Figure 38. Connection of a TTES – cooling storage	78
Figure 39. 4-pipe system	79
Figure 40. 2-Pipe system	80
Figure 41. Centralized 2-pipe distribution network	82
Figure 42. Cluster 2-pipe distribution network	82
Figure 43. ASHP pro/con chart	85
Figure 44. GSHP pro/con chart	86
Figure 45. Potential and existing borefield locations on campus	87
Figure 46. Heat load curve	91
Figure 47. Overall nourly electricity price used for the centralized	
production units	93
Figure 48. EnergyPRO model for the campus (centralized system only)	98

Figure 49. Hour-by-hour production schedule of the different production	
units over one year in Scenario 5b for both heating (upper diagram) and	
cooling (lower diagram)	101
Figure 50. State of charge of the thermal energy storage during the	
heating and cooling season	102
Figure 51. Operation of the central chiller in summer in connection to	
the available storage capacity and the electricity price	103
Figure 52. Annual heating production	104
Figure 53. Annual cooling production	105
Figure 54. Annual fuel/electricity consumption to meet heating and	
cooling demand	105
Figure 55. CAPEX for the scenarios	107
Figure 56. Economic overview of the different scenarios: NPV of the	
overall system cost over the project lifetime	108
Figure 57. CO_2e emissions and project NPV for the different scenarios	109
Figure 58. Estimated electrical capacity per scenario	111
Figure 59. Potential location for wind turbines at the Hidden Fields	112
Figure 60. Campus phasing plan	117
Figure 61. Potential borefield for Cluster W	118
Figure 62. Projected GHG emissions trend (Scenario 4a)	123

List of Appendices

- Appendix A Preliminary Energy-Use Analysis (PEA)
- Appendix B Building Assessment Reports
- Appendix C EEM Supporting Documents
- Appendix D Building Upgrades Budgetary Cost Estimate
- Appendix E Hydraulic Modeling
- Appendix F EnergyPro Techno-Economic Analysis
- Appendix G Trophy Point Cost Estimates

Acronyms and Abbreviations

ACEEE	American Council for an Energy Efficient Economy
ACET	Agricultural and Clean Energy Technology Center
ASHP	air-source heat pump
ASHRAE	American Society of Heating, Refrigerating and Air-Conditioning Engineers
ATES	aquifer thermal energy storage
BA	building assessment
BAS	building automation system
BAU	business-as-usual
BH	borehole
BTES	borehole thermal energy storage
CAPEX	capital expenditures
CBECS	Commercial Buildings Energy Consumption Survey
CEC	Clean Energy Center
CEMP	Clean Energy Master Plan
CHP	central heating plant
CHW	chilled water
CLCPA	New York State Climate Leadership and Community Protection Act
СМ	critical maintenance
CO ₂ e	carbon dioxide equivalent
CTs	current transformers
DER	deep energy retrofit
DH&C	district heating & cooling
DHW	domestic hot water
EEMs	energy efficiency measures
EMIS	energy management information systems
EO 22	Executive Order 22
ETS	energy transfer station
EUI	energy use intensity
FDD	fault detection and diagnosis
GHG	greenhouse gas
GSF	gross square feet
GSHP	ground-source heat pump
HRC	heat recovery chiller
HVAC	heating, ventilation, and air conditioning
KPIs	key performance indicators
LBNL	Lawrence Berkeley National Laboratory
LHD	linear heat density
LTW	low temperature water
MTW	medium temperature water
MW	megawatt
MWhr	megawatt hour
NYSDEC	New York State Department of Environmental Conservation
NZC	net zero carbon
0&M	operations & maintenance
OGS	NYS Office of General Services

OPEX	operating expenses
PIP	phasing & implementation plan
PEA	Preliminary Energy-Use Analysis
Psig	pounds per square inch gauge
RTEM	real time energy management
SH	space heating
SOW	scope of work
SPB	simple payback
TBtu	trillion British thermal units
ТМ	temperature modulation
TMY	typical meteorological year
TRM	New York State Technical Resource Manual
TTES	tank thermal energy storage
WOA	work order assignment
WSHP	water-source heat pump
WWTP	wastewater treatment plant

Executive Summary

Purpose and Drivers

State University of New York College at Oswego (SUNY Oswego) is subject to mandates, energy and carbon reduction targets, and directives that include the New York State Climate Leadership and Community Protection Act (CLCPA), Executive Order 22, BuildSmart 2025, and State University Construction Fund (SUCF Directive 1B-2). These drivers have associated energy and greenhouse gas (GHG) emissions reduction goals, including key milestone dates, as further summarized in Section 1.2.

A Clean Energy Master Plan (CEMP) was developed to create a vision for low carbon and renewable technologies and operational strategies to reduce fossil fuel use/dependency, increase electrification of utility operations, and maintain resiliency and reliability. This CEMP provides a roadmap for near-term actions and a decision-making framework for the long-term vision to achieve NYS energy efficiency and GHG reduction, mandates and set a path for carbon neutrality by 2050.

Approach

A key focus strategy was identifying a pragmatic and cost-effective approach to achieving the long-term goals of electrification-based energy production technologies while also bridging the short-term needs of critical capital improvements that would ultimately support the long-term campus goals.

Campus Energy Assessment

Building energy assessments were performed by Ramboll. Walk-through surveys were performed on buildings exceeding 5,000 GSF at the campus. This effort focused on assessing existing conditions and evaluating current energy consumption profiles following methodologies outlined in ASHRAE's *Procedures for Commercial Building Energy Audits, Second Edition*; summaries were prepared of existing conditions, energy efficiency opportunities, and recommendations for critical maintenance. Energy efficiency measures (EEMs) that were identified and developed include lighting, lighting controls, building automation system control upgrades, variable frequency drive applications, and pool dehumidification.

As shown in Table 1, annual energy cost savings were estimated at about \$473,000 (16% of annual campus energy cost); project cost was estimated at approximately \$8.8M, with a 19-year simple payback. Numerous capital-intensive projects for equipment and systems that are at or beyond their useful life increase the simple payback period of the entire package of measures. However, these projects can be justified from an infrastructure renewal perspective. For the equipment that is already due for replacement, it could be argued to only include the EEM incremental cost for a high efficiency replacement, rather than the full replacement cost; that was not done here, but it would lower the simple payback considerably.

These measures are estimated to save the campus a total of 66,653 MMBtu /year, accounting for about 46% of the 146,332 MMBtu BuildSmart 2025 reduction target. Annual emission savings are estimated to save the campus over 3,200 MT CO_2e per year, or about 12% of the 1990 campus GHG emissions (26,328 MT CO_2e). Measures from this study can be combined in addition to any

measures already entered in the BuildSmart 2025 project database, as well as any major renovations that will have at least 30% design documents by December 31, 2025.

Table 1. EEM Summary

	Annual Energy Savings (MMBtu/year)	Annual Energy Cost Savings (\$/yr)	Estimated Capital Cost	Simple Payback Period (years)	Annual GHG Reduction (MTCO2e)
Total	66,653	\$473,260	\$8,836,129	18.7	3,242
Total with IRR >= 7%	42,158	\$293,920	\$997,873	3.4	2,058

Baseload, Peaking, and Backup Strategy

Ramboll recommends a clear strategy for establishing heating and cooling technologies that will support baseload, peaking, and backup (emergency) operations. The rationale for serving the annual load with both baseload and peaking technologies is that the peak load occurs in limited hours annually, and it is less cost-efficient to size the relatively expensive baseload technology to meet the peak load when it can effectively meet the majority of the annual load when it is sized much smaller than the peak.

Establishing how much a baseload technology should cover of the total annual heat demand is an optimization exercise. However, as a rule of thumb, if the baseload covers 50% to 60% of the peak heating load, then it will cover approximately 80% to 95% of the annual heating load. This is illustrated in Figure 1 below for the SUNY Oswego heat load. Distinguishing between baseload and peak load will be more cost-efficient and could allow financial resources to be allocated to other projects that economically and environmentally would make better sense. Here are some aspects for planning purposes:

- If baseload is electric based, then backup of the heating system should be another fuel; for instance, a gas (or oil) boiler
- Peaking technology could be electric, fossil fuel, or renewable fuel based, but should consider cost optimization, resiliency, and redundancy aspects
- Backup technology should be highly reliable and have lower installation costs
- Backup fuel supply should be reliable and available
- Backup technology should be well known to the operational staff

Figure 1. Baseload and peak load illustration

Technology Screening

Technology screening was conducted to identify suitable technologies and storage options for the future production of heating/cooling that support campus alignment with the carbon reduction goals of the CLCPA. Technologies evaluated considered centralized and cluster solutions. The process was conducted through a series of meetings where Ramboll presented descriptions of fossil fuel, renewable, and electrification technologies and their ability to produce baseload and peak load production.

Scenario Planning

Scenario Planning was performed to develop a suite of scenarios to assess centralized and cluster energy supply scenarios. The scenarios were developed through a combination of quantitative and qualitative screening and considered these aspects:

- Heating and cooling demands for each building on campus
- Production of domestic hot water in winter and summer months
- Best suited technologies and energy systems
- Grouping buildings into geographic clusters

The number of scenarios was established through discussing different variations during the project meetings. The combinations of network configuration, heating and cooling technologies, and storage components that were evaluated are noted below and shown in Table 2.

- Technologies (GSHP, wastewater heat pumps, cascade heat pumps) as centralized technologies
- Fully centralized network versus cluster networks
- Production of domestic hot water (centralized and/or local)

• Geothermal borefield availability and locations

Table 2. LValuated	scenarios				
Scenario	BaU	Sc. 2 a), b)	Sc. 4 a), b)	Sc. 5 b)	Sc. 6 a), b)
Demand	Current	Future	Future	Future	Future
Network configuration	Current system	Cluster 2 pipe	Fully centralized 2 Pipe	Fully centralized 2 pipe	Fully centralized 2 pipe
Baseload technology	N-gas	Ground Source HP	Ground Source HP	Wastewater HP Ground Source HP	Air Source HP in cascade with Water-to-water HP Ground Source HP
Peaking Technology	N-gas	a) N-gas, b) Electric	a) N-gas, b) Electric	a) N-gas, b) Electric	a) N-gas, b) Electric
Summer, DHW	Local gas / central	Local electric	Local electric	Local electric	Local electric
Winter, DHW	Local gas / central	Centralized	Centralized	Centralized	Centralized
Space cooling	Local	GSHP Chiller	GSHP Chiller	GSHP Chiller	GSHP Chiller
Backup heat	N-gas boiler	Boiler: N-gas	Boiler: N-gas	Boiler: N-gas	Boiler: N-gas
Thermal energy storage	No	Yes	Yes	Yes	Yes
Balancing of BTES	NA	Heat injection from cooling + Dry coolers	Heat injection from cooling + Dry coolers	Heat injection from cooling + Wastewater	Heat injection from cooling + ASHP

Table 2. Evaluated scenarios

Techno-Economic Analysis

Techno-economic analysis was completed to identify the most cost-efficient mix of technologies to supply the future heating and cooling needs.

Figure 2 below shows the carbon dioxide equivalent (CO₂e) GHG emissions for the different scenarios together with the project overall Net Present Value (NPV) (including capital expenditures (CAPEX), operating expenditures (OPEX), and residual value). The total NPV is shown for each of the scenarios by a yellow dot (without including a social cost of carbon for CO₂e emissions) and a green triangle (including a social cost of carbon, as referenced in New York State Department of Environmental Conservation (NYSDEC) guidance).

Overall NPV of the business-as-usual (BaU) scenario shows very high CO_2e emissions compared to the decarbonization scenarios, and the BaU NPV is proportionately affected when applying the social cost of carbon. The alternative scenarios with natural gas peaking show some increase in NPV when adding the social cost of carbon as well. The NPV of the social cost of carbon component depends on:

- The amount of natural gas used in the scenario
- Progressive decarbonization of the electrical grid to align with the EO22 mandate of 100% renewable sources for electricity by 2030 for NYS Agencies (ahead of the CLCPA goal of a 100% carbon free electric grid by 2040)

Figure 2. CO₂e emissions and project NPV for the different scenarios

Campus Electrical Capacity Assessment

Electrification of the campus will result in increased electric energy use for heating purposes, as well as an increase in the peak electrical demand. The existing peak electrical demands typically occur in August or September. With the shift to electrical heating sources, the electrical peak will occur in the winter months.

Figure 3 summarizes the peak electrical demand impact of each scenario. The existing campus Substation #1, which serves the campus buildings north of Route 104, has two 6,250 kVA transformers. During existing summer peak demand periods, both transformers are required, and at about 76% loaded. This means there is no redundancy in the existing substation during existing peak demand periods. In all scenarios, the substation would need to be upgraded to maintain the desired capacity margin. Building electrical modifications would also be required for the cluster scenario (2a & 2b). The existing Substation #2, which serves the buildings south of Rout 104, has a 25 kVA and a 2,000 kVA transformer. No upgrades would be required for the natural gas peaking scenarios, but the substation would be upgraded with a 3,125 kVA transformer for electric peaking scenarios.

Figure 3. Estimated electrical capacity per scenario

Cost Estimate

Cost estimating was performed by Trophy Point Construction Services & Consulting (Trophy Point). Figure 4 provides a summary of the CAPEX cost estimates, by component, for the BaU and the scenario variants, including building level installations, distribution system, and centralized system components.

The cost estimates include raw labor and material, in addition to the markups listed below:

- General Conditions 15%
- Overhead & Profit 10%
- Design Contingency¹ 20%
- Bid Contingency 5%
- Phasing 10%

¹ Design contingency is related to the progress of the project. In early stages before details have been defined, the contingency is higher and typically decreases as the project progresses.

Scenarios using a gas boiler for peaking purposes (Scenarios 2a, 4a and 6a) have less capital investment needs than scenarios using an electric boiler for peaking purposes (Scenarios 2b, 4b and 6b). Utilizing wastewater as a heat source (Scenario 5b) can be compared directly to the centralized GSHP with electric peaking variant (Scenario 4b). A reduced borefield size and elimination of dry coolers for balancing results in a lower CAPEX for Scenario 5b.

Figure 4. Scenario cost estimates

Table 3 presents the cost of modifications to existing buildings that would be required to accept much lower design hot water supply temperature (130°F). The cost estimation basis was Trophy Point cost data for similar work in building types, adjusted for location. Note these modifications are not <u>required</u> in order to implement the decarbonization scenarios; building modification costs that would be <u>required</u> are already in the scenario cost estimates. The costs in Table 3 are for deeper HVAC retrofits or replacements that would allow the buildings to operate at much lower hot water supply temperatures. Lower design supply temperatures improve heat pump efficiency; however, the cost to replace HVAC coils or systems as an early replacement activity should be weighed against the heat pump efficiency gains. The substantial cost of HVAC modifications likely indicate they should not be done as early replacement; only as the systems are due for replacement.

Table 3.	Building	modification	budgetary	cost	estimate f	or :	130°F	supply	temperature
----------	----------	--------------	-----------	------	------------	------	-------	--------	-------------

Modification	Cost
HVAC Renovation	\$121.0M
Coil Replacement for 130°F Building HW Supply	\$45.4M
Total	\$166.4M

Phasing and Implementation

Table 4 provides a summary of the phasing strategy and associated key actions towards decarbonization and electrification of campus heating and cooling. It is noted that these actions are based on a centralized scenario approach. When a final scenario has been selected for advancement, phasing and sequencing would be developed specific to the scenario.

Table 4. Low-carbon electrification phasing strategy

Cluster C and W	Cluster E	Cluster N and S
(2025-2040)	(2035-2045)	(2040-2050)
 Remove Clusters C and W from the steam network Develop new Energy Center at Lee Hall and potential smaller centers in the western part of campus Establish borefields Ground source heat pumps Dry coolers Utilize central heating plant natural gas steam boilers as backup Potential ASHP Thermal energy storage tank Develop LTW network and connect to Energy Center Substation #1 electrical improvements Potential end of life building renovations/upgrades Targeted energy efficiency measures for entire campus 	 Establish LTW network and connect to main LTW network Some building renovations/upgrades/hot water coil replacement Increase centralized energy center capacity to handle additional load of Cluster E 	 Establish LTW network and connect Cluster N to main LTW network Increase centralized energy center capacity to handle additional load of Cluster N Develop energy center for cluster S Establish borefields Ground source heat pumps Dry coolers Potential ASHP Thermal energy storage tank Substation #2 electrical improvements Some building renovations/upgrades/ hot water coil replacement

Key Takeaways

Table 5 provides a summary of important topics and associated aspects that surfaced during the planning process. These inform the complexities and challenges that will need to be considered and managed as part of the campus energy transition. These aspects intersect to influence and

balance carbon reduction, energy efficiency, flexibility, resiliency, and redundancy in a pragmatic and cost-effective manner.

Electrical Demand Impact	Natural Gas Peaking Benefits	Building Improvements	Infrastructure Scenarios	Emission Reduction
In all scenarios, the Substation #1 would need to be upgraded	Flexibility Redundancy for emergency	Address steam use in buildings Can buildings	Piping material decisions – temperature and pressure	85% reduction is achievable without 100% electrification
Substation #2 would need to be upgraded in full- electrification	Bridging fuel-while electric utility infrastructure catches up	at lower supply temperatures? (coil replacements or load reductions)	Centralized vs cluster Property space	
Significant emergency/stand- by power	Manages capital spend	Renovation approval and timing	needs for geothermal	
requirements, without nonelectric-based backup	Future NYS plans of NG to renewable natural gas (RNG) and hydrogen	Add cooling to non-cooled buildings/spaces		
High CAPEX with relatively small carbon emissions reduction to electrify peak load in addition to baseload	Reuse of existing infrastructure and backup power assets	Hazardous materials impact		
Connection of renewables from Hidden Fields to campus electric feeder loop has limitations				

Table 5. Key takeaways from the clean energy master planning process

Figure 5 illustrates the forecasted GHG emissions (CO_2e) trend for the campus. 1990 GHG data was taken from the campus' 2012 Climate Action Plan (CAP). Scenario 4a was selected for illustrative purposes.FThe red line represents the forecasted emissions after energy efficiency and beneficial electrification is implemented. This trend shows that even when natural gas is used for peaking purposes, the campus can achieve greater than 85% reduction and would meet the CLCPA reduction goal.

Scope 1 & 2 Greenhouse Gas Emissions

Figure 5. Projected GHG emissions trend (Scenario 2a)

Recommended Next Steps

Ramboll has identified the following recommend next steps to help the campus prioritize enabling projects that can influence future systems designs and demonstrate progress towards campus goals.

- 1. Implement EEMs that will be cost effective within the time periods that buildings would benefit from the measure
- 2. Existing geothermal test bore studies previously conducted at the campus can be utilized to inform future borefield design
- 3. Establish detailed strategy to convert from steam to low temperature hot water, including distribution network piping and impact to specific buildings currently using steam directly
- 4. Establish a building strategy
 - a. Install building level thermal submetering
 - i. Most of the campus buildings have electric meters, but some may need to be calibrated or replaced
 - ii. Install building-level steam meters
 - iii. Submetering is required by BuildSmart 2025 for buildings greater than 25,000 GSF Buildings shall be submetered for all fuels and other energy sources including, but not limited to, electricity, natural gas, steam, chilled water, and oil
 - iv. Clamp-on ultrasonic thermal submetering could be cost-efficient option to explore

- b. Monitor building level hot water data and explore lower building supply temperatures on the district loop during the heating season refer to Section 5.3.3.2.
- c. Steam building conversion
 - i. Direct uses need a transition plan
- 5. Monitor market developments and advancements in heat pump technology and US market availability
- 6. Some of the preceding recommendations should be completed to help the campus select a preferred scenario, or variation thereof, prior to beginning preliminary design.

1. Purpose, Drivers and Approach

1.1 Purpose

State University of New York College at Oswego (SUNY Oswego) is subject to New York State (NYS) mandates and SUNY administration directives for aggressive energy and carbon reduction targets, most notably the New York State Climate Leadership and Community Protection Act (CLCPA, also known as the Climate Law). The purpose of this project is to develop a Clean Energy Master Plan (CEMP) that aligns with the mandates and directives.

The intent of the CEMP is to create a vision for low carbon and renewable technologies and operational strategies to reduce fossil fuel use/dependency, increase electrification of utility operations, and maintain resiliency and reliability. This CEMP provides a roadmap for near-term actions and a decision-making framework for the long-term vision to achieve NYS energy efficiency and GHG reduction goals and set a path for carbon neutrality by 2050.

1.2 Drivers

A high-level summary of the mandates, energy and carbon reduction targets, and directives that SUNY Oswego is addressing includes the following:

New York State Mandate	Goals/Targets
The Climate Leadership and Community Protection Act (CLCPA)	 Reduce statewide GHG emissions 40% by 2030 and 85% by 2050 (1990 baseline) 70% renewable energy grid by 2030 100% carbon free electricity by 2040
Executive Order 22 (EO 22)	 By 2030, 100% of electricity use from renewable sources; see Clean Energy Standard "Eligible Systems" Beginning Jan 1, 2024, new permitted construction shall avoid infrastructure, building systems, or equipment that can be used to combust fossil fuels
BuildSmart 2025 (ties to New Efficiency New York and CLCPA)	 Reduce energy consumption by 11 trillion British thermal units (TBtu) by State Agencies by 2025 4.4 TBtu reduction assigned to SUNY System 146,332 MMBtu reduction goal assigned to SUNY Oswego Energy Master Plan every 5 years if annual utility bill is over \$300,000 ASHRAE Level 2 audits for state-owned buildings over 5,000 gross square feet (GSF)

SUNY and SUCF Directives/Drivers	Goals/Targets
SUCF Directive 1B-2	 Commitment to clean energy Net zero carbon (NZC) new buildings Deep energy retrofits on existing buildings Energy use intensity (EUI) targets Replacement building systems and equipment must be electrically powered Onsite combustion of fossil fuels and biofuels is prohibited in new buildings and deep energy retrofits, except for emergency back-up power, emergency heat, and other special cases

1.3 Approach

A key focus strategy was identifying a pragmatic and cost-effective approach to achieving the long-term goals of beneficial electrification while also bridging the short-term needs of critical capital improvements that would ultimately support the long-term campus goals. The key steps to develop the CEMP are illustrated in Figure 6. Completing these steps allowed for critical discussion around strategic focus areas including energy efficiency, resiliency, renewable energy, stewardship, and engagement.

Figure 6. Clean energy master planning key steps

2. Campus Overview

2.1 Description

The SUNY Oswego main campus stretches over 700 acres on the shores of Lake Ontario in Oswego, New York. The campus includes many buildings, athletics fields, service roads and parking facilities.

A high-level summary of buildings and their heating and cooling aspects, as well as unique characteristics of the campus include the following:

- 70 structures 3.5M GSF
- 54 buildings heated 3.4M GSF
- 33 Centralized steam
- All buildings have steam to hot water heat exchangers
 - 21 Decentralized (geothermal, natural gas)
 - 38 buildings cooled 2.3M GSF
 - 4 buildings (300k GSF) on the south side of campus are separated from the main campus by State Route 104

2.2 Energy infrastructure

Central Heating Plant

The majority of campus buildings are currently supplied with heat from the central heating plant (CHP) located in Lee Hall. The CHP is steam-based, providing steam to the campus buildings for space heating and domestic hot water heating. All buildings are furnished with hydronic heating systems that generate hot water from the steam distribution system through heat exchangers.

The CHP operates primarily on natural gas with No. 2 fuel oil as backup. Portions of the steam line shut down from approximately May 15th through October 1st, islanding buildings that normally generate DHW with steam. During the months the steam lines are dormant, DHW is produced locally for those buildings that otherwise receive steam from the CHP. Thus, the production of DHW in winter months and summer months are treated separately.

Electrical

SUNY Oswego receives electrical power from National Grid (through the SUNY Energy Buying Group) for the main campus accounting, which accounts for close to 90% of the annual electricity used at the campus. In addition, the campus has smaller emergency standby generators, many on natural gas.

Metering

Electric: Most building on campus have electric meters. The metering provides access to usage data at the building level for conditioned buildings. However, the meter readings were unreliable, or data did not exist for much of the buildings. Existing meters should be reviewed for accuracy and connections re-established; this assists with improved operational and scheduling efficiencies, as well as can help highlight the savings potential for energy efficiency measures (EEMs).

Natural gas: There are currently 14 natural gas meters on campus and 1 at the Fallbrook Recreation Center. Where feasible, additional sub-metering could assist with operational clarity leading to potential savings.

Steam: None of the buildings on campus have steam meters. Where feasible, additional submetering could assist with operational clarity leading to potential savings.

2.3 Modernization plans

Based on discussions with the campus and the 2013-2023 Facility Master Plan (FMP), the proposed renovation projects include:

- Complete Building Renovations
- Hewitt Hall (under renovation at the time of this study)
- Mahar Hall
- Penfield Library
- Lanigan Hall
- Seneca Hall (cooling to be added)
- Onondaga Hall (cooling to be added)
- Cayuga Hall (cooling to be added)
- Oneida Hall (cooling to be added)
- Adaptive Reuse
- Lonnis/Moreland/Mackin converted to academic buildings (with the addition of cooling)
- Littlepage Dining Hall converted to a student activities building
- Partial Renovation
- Laker Hall to add cooling to offices

3. Preliminary Energy Analysis

3.1 PEA methodology

Ramboll completed a Preliminary Energy-Use Analysis (PEA) of all buildings at the SUNY Oswego campus to establish current performance and energy savings potential. The PEA was done at two levels: a combined campus level and individual building level. Where available, building-level electric and natural gas meter data as well as campus level electric and natural gas utility billing summaries were provided for the three-year period of January 2018-December 2020. The baseline period for the PEA is three calendar years, with "Year 1" being January 1st, 2018 through December 31st, 2018, "Year 2" being January 1st, 2019 through December 31st, 2019, and "Year 3" being January 1st, 2020 through December 31st, 2020.

As part of the PEA, comparisons were made to peer benchmark buildings as defined in the 2012 Commercial Buildings Energy Consumption Survey (CBECS) database. Benchmark total energy use and end-use allocations for each building were identified based on data from the CBECS database. The percentage of floor area assigned to each CBECS category for each building was based on data provided by the campus and observations from the ASHRAE Level 1 walk-through survey. The energy use benchmark comparison for each building is based on a composite weighted average of the appropriate CBECS peer building types based on the corresponding space type floor area percentages.

Energy data was also disaggregated to estimate the energy allocated to major end uses including lighting, space heating, space cooling, fans, pumps, plug loads, domestic water heating, process equipment, cooking, and refrigeration. The end-use disaggregation is based on end-use data from the CBECS database for similar building types. Future energy use will also be estimated based on planned renovations and changes in building stock.

The fuels (energy inputs) consumed by the campus are electricity and natural gas. Electricity steam, winter DHW, and natural gas are consumed at the individual buildings. The energy use intensity (EUI) for the campus was calculated from utility data obtained through EnergyCAP.

The annual input energy of each fuel source was weather normalized. Regression models were developed from the utility data and actual weather for normalization to typical year weather conditions. Energy use data from Year 3 was excluded in regression calculations to avoid influences of COVID-19 on energy use. The future energy use scenario considers anticipated energy efficiency improvements and changes in building stock (renovations, additions, new buildings, and demolitions).

This section provides an overview of the energy analysis and benchmarking that was completed for the PEA. Table 6 summarizes key results of this PEA for SUNY Oswego over the time periods analyzed.

Year	Total Energy Consumption (MMBTU)	Peak Elec. Demand (kW)	Total Energy Cost (USD)	Total GHG Emissions (MT CO2e)
1990 ¹	-	-	-	26,328
FY2014-15 ²	421,849	7,614	\$4,057,612	21,861
2018	405,288	8,086	\$3,273,689	18,980
2019	400,647	7,155	\$2,866,648	18,470
2020	364,651	6,854	\$2,279,796	16,857
Weather Normalized ³	408,231	7,620	\$2,932,377	19,002

Table 6. SUNY Oswego – energy profile summary

Notes:

- 1. 1990 GHG Baseline data from the 2012 Climate Action Plan (CAP)
- 2. State Fiscal Year FY2014-15 data is presented for comparison but was not part of this PEA. FY2014-15 is the baseline year for BuildSmart 2025.
- 3. Weather normalized data excluded data from 2020 in the regression to avoid influences of COVID-19 on energy use

3.2 Campus information

Table 7 lists each building located on the main campus and Table 8 lists other buildings used by SUNY Oswego that are geographically separate from the main campus. These tables indicate the CBECS building type and size of each building as well as its electric, heating and cooling sources.

Table 7. Building	information -	main campus
-------------------	---------------	-------------

Building	Building Type	GSF	Electric Source	Heating Source	Cooling Source
0001 - SHELDON HALL	100% College/university	119,211	2	6	Chiller
0002 - J C PARK HALL	100% College/university	66,979	1	6	Chiller
0003 - CAMPUS CENTER	100% College/university	185,524	1	6	Chiller
003A - I POUCHER HALL	100% College/university	40,080	1	6	Chiller
003B - REC & CONVOCATION CTR	100% College/university	115,421	1	6	Chiller
003C - CC STORAGE BLDG	100% Self-storage	310	1	N/A	N/A
0004 - M V LEE HALL	100% College/university	65,000	1	6	N/A
004A - CENTRAL HEATING PLANT	100% College/university	21,980	1	6	N/A
0005 - SHADY SHORE	100% Single-Family Detached	8,754	1	5	Heat Pump
0005A - PRESIDENT GARAGE	100% Self-storage	576	1	N/A	N/A
0006 - J LANIGAN HALL	100% College/university	88,200	1	6	Chiller
0007 - J TYLER HALL	100% College/university	115,430	1	6	Chiller
0008 - RICHARD S SHINEMAN CENTER	50% College/university 50% Laboratory	235,860	1, 3	6	Chiller
0009 - WILBER HALL	100% College/university	108,933	1	6	Chiller
0010 - MARY WALKER HEALTH CENTER	100% College/university	33,260	1	6	VRV
0011 - COMMISSARY BLDG	100% College/university	30,836	1	5	N/A
0012 - MAINTENANCE BLDG	100% College/university	20,664	1	5	N/A
0013 - M E MAHAR HALL	100% College/university	91,530	1	6	Chiller
0014 - RICH HALL	100% College/university	53,742	1	6	Chiller
0015 - MACKIN HALL	100% Dormitory/ fraternity/sorority	41,984	1	6	N/A

Building	Building Type	GSF	Electric Source	Heating Source	Cooling Source
015A - MORELAND HALL	100% Dormitory/ fraternity/sorority	29,400	1	6	N/A
015B - LONIS HALL	100% Dormitory/ fraternity/sorority	32,285	1	6	N/A
0016 - OBSERVATORY	100% College/university	460	1	N/A	N/A
0017 - J PENFIELD LIB	100% College/university	192,298	1	6	Chiller
0019 - LAKER HALL	100% College/university	196,608	1	5	N/A
0020 - GAR-20	100% College/university	14,850	1	5	RTU
0021 - ROMNEY FIELD HOUSE	100% Recreation	55,000	2	5	N/A
0022 - KING HALL	100% College/university	7,200	2	5	N/A
0026 - CULKIN HALL	100% College/university	63,591	1	6	Chiller
0028 - SEWAGE PUMP STATION	100% College/university	1,881	1	N/A	N/A
0028A - SEWAGE PUMP STATION - SENECA	100% College/university	211	1	N/A	N/A
0028B - SEWAGE PUMP STATION - BLG 12	100% College/university	224	1	N/A	N/A
0029 - HEWITT HALL	100% College/university	135,010	1	6	Chiller
0031 - PATHFINDER DH	100% Restaurant/cafeteria	33,827	1	4	Chiller
0032 - SENECA HALL	100% Dormitory/ fraternity/sorority	152,548	1	7	N/A
0033 - CAYUGA HALL	100% Dormitory/ fraternity/sorority	105,072	1	7	N/A
0034 - ONONDAGA HALL	100% Dormitory/ fraternity/sorority	152,548	1	6	N/A
0035 - LITTLEPAGE DH	100% Restaurant/cafeteria	33,827	1	6	Chiller
0036 - ONEIDA HALL	100% Dormitory/ fraternity/sorority	105,000	1	6	N/A
0037A - TOWNHOUSE A	100% Dormitory/ fraternity/sorority	10,260	1	5	Chiller
0037B - TOWNHOUSE B	100% Dormitory/ fraternity/sorority	8,082	1	5	Chiller
0037C - TOWNHOUSE C	100% Dormitory/ fraternity/sorority	12,599	1	5	Chiller
0037D - TOWNHOUSE D	100% Dormitory/ fraternity/sorority	12,599	1	5	Chiller
0037E - TOWNHOUSE E	100% Dormitory/ fraternity/sorority	15,880	1	5	Chiller
0037F - TOWNHOUSE F	100% Dormitory/	18,295	1	5	Chiller
0037G - TOWNHOUSE G	100% Dormitory/	8,082	1	5	Chiller
0037H - TOWNHOUSE H	100% Dormitory/	10,260	1	5	Chiller
0037I - TOWNHOUSE I	100% Dormitory/	12,599	1	5	Chiller
0037J - TOWNHOUSE J	100% Dormitory/ fraternity/sorority	12,599	1	5	Chiller
0037K - TOWNHOUSE K	100% Dormitory/ fraternity/sorority	16,729	1	5	Chiller
0037L - TOWNHOUSE L	100% Dormitory/ fraternity/sorority	12,567	1	5	Chiller
0041 - JOHNSON HALL	100% Dormitory/ fraternity/sorority	79,097	1	6	Chiller
0042 - LAKESIDE DH	100% Restaurant/cafeteria	27,870	1	6	Chiller
0043 - RIGGS HALL	100% Dormitory/ fraternity/sorority	58,201	1	6	Chiller
0044 - WATERBURY HALL	100% Dormitory/ fraternity/sorority	57,464	1	6	N/A
0045 - SCALES HALL	100% Dormitory/ fraternity/sorority	57,464	1	6	N/A

Building	Building Type	GSF	Electric Source	Heating Source	Cooling Source
0046 - HART HALL	100% Dormitory/ fraternity/sorority	114,365	1	6	N/A
0047 - COOPER DH	100% Restaurant/cafeteria	33,546	1	6	Chiller
0048 - FUNNELLE HALL	100% Dormitory/ fraternity/sorority	114,365	1	6	N/A
0049 - PUBLIC RESTROOM	100% Other service	160	1	N/A	N/A
0051 - FM RADIO TRANSMISSION FAC	100% Other service	440	2	N/A	N/A
0061 - MAINTENANCE STORAGE	100% Self-storage	100	1	N/A	N/A
0082 - PRESS BOX	100% College/university	495	1	N/A	N/A
0104 - SECURITY PARKING OFFICE	100% Office	2,297	2	5	RTU
0106 - VOLATILE STO	100% Self-storage	400	1	N/A	N/A
0107 - 1 ROOM SCHOOL HSE	100% Office	550	1	6	N/A
0108 - POWER STATION 1	100% Other service	216	1	N/A	N/A
0109 - POWER STATION 1A	100% Other service	175	1	N/A	N/A
0110 - POWER STATION 2	100% Other service	177	1	N/A	N/A
Total	SUNY Oswego Main Campus	3,454,048	-	-	-

Table 8. Building Information - off campus

Building	Building Type	GSF	Electric Source	Heating Source	Cooling Source
0023A - RICE CREEK FIELD STATION	100% College/university	7,500	2, 3	VRF	VRF
0024A - BIO FIELD GARAGE	100% Self-storage	960	2, 3	N/A	N/A
0081 - RICE CREEK OBSERVATORY	100% College/university	550	2, 3	N/A	N/A
0083 - RICE CREEK PAVILION	100% College/university	893	2, 3	N/A	N/A
FALLBROOK REC CENTER	100% College/university	17,167		5	Heat Pump
0071 - POLE BARN (FALLBROOK)	100% Other service	17,369		N/A	N/A
Total	SUNY Oswego Off Campus	44,439			

Notes:

- 1. Electric service from main campus electric service
- 2. Electric service provided by National Grid utility meter
- 3. Portion of electricity provided by photovoltaic system
- 4. Natural gas supplied to the building from main campus natural gas service
- 5. Natural gas supplied to the building by National Grid utility meter
- 6. Steam supplied from Central Heating Plant
- 7. Steam supplied from Pathfinder Dining Hall boiler

3.2.1 Utility prices

SUNY Oswego's electricity for the main campus is delivered by National Grid and supplied by the SUNY Energy Buying Group. The National Grid main electric meter accounts for 90% of the electricity used by campus annually. The remaining 10% is from smaller National Grid electric meters on the main campus and buildings off campus.

Natural gas is delivered by National Grid and supplied by NRG Energy, Inc. There are approximately 14 natural gas service accounts in addition to the main gas account for the central heating plant.

Table 9 shows the baseline utility rates by major component. Electric and natural gas fixed monthly costs as well as electric reactive power charges are included in the delivery charges.

Table 9. Baseline annual average utility prices

Fuel	Supply	Delivery	Demand	Total
Electricity ¹	\$0.035/kWh	\$0.009/kWh	\$3.903/kW	\$0.051/kWh
Natural Gas ²	\$0.263/Therm	\$0.112/Therm		\$0.375/Therm
CHP Natural Gas ³	\$0.269/Therm	\$0.084/Therm		\$0.353/Therm

Notes:

- 1. Based on 36-month cost data for all electric accounts
- 2. Based on 36-month cost data for all natural gas accounts except the Central Heating Plant account
- 3. Based on 36-month cost data for the main campus gas account (Central Heating Plant account)

3.2.2 CO₂ emissions

The CO_2 equivalent (CO_2e) emission factors from all campus fuels are shown in Table 10. The factors were provided by SUNY System Administration.

Table 10. Emission factors

CO ₂ e Emissions	2022	2030	2040
Electricity ¹	0.00009573 MT/kWh	0 MT/kWh	0 MT/kWh
Natural Gas ²	0.005311 MT/Therm	0.005311 MT/Therm	0.005311 MT/Therm

Notes:

- 1. Electric emissions are based off eGrid 2020 values for NYUP subregion. 2022 value is interpolated assuming zeroemission purchased electricity in 2030, per EO22
- 2. EPA Emissions Factors for GHG Inventories https://www.epa.gov/.../documents/emission-factors_apr2021.pdf

3.2.3 Heating values

The heating value for electricity and fossil fuels used on campus is presented in Table 11.

Table 11. Heating value

Fuel	Heating Value	Units
Electricity	3,412	Btu/kWh
Natural Gas	100,000	Btu/Therms

3.3 Portfolio energy performance

A campus level PEA was developed based on utility data. Key performance indicators (KPIs), such as annual EUI (kBtu/SF), energy cost intensity (ECI; \$/SF), and peak demand intensity (W/SF), are presented in Table 12 along with the Weather Normalized Baseline, and the Weighted Average CBECS Benchmark. Fiscal year 2014-2015 (FY14/15), the baseline year for BuildSmart 2025, is presented for comparison.

Data Set	Site EUI (kBtu/SF)	ECI (\$/SF)	Peak Demand Intensity (W/SF)
FY14/15 ¹	120.6	\$1.16	2.18
2018	115.8	\$0.94	2.31
2019	114.5	\$0.82	2.04
2020	104.2	\$0.65	1.96
Weather Normalized Baseline	116.6	\$0.84	2.18
CBECS Weighted Benchmark	100.0	\$0.95	

Table 12. Overall KPI comparison

Notes:

1. EUI calculated using data from EnergyCap for FY14/15.

Figure 7 shows a year-to-year comparison of EUI by fuel source along with the weather normalized baseline and Weighted CBECS Benchmark. FY14/15 is presented for comparison. The FY14/15 breakout by fuel type was estimated using data from EnergyCap.

Figure 8 through Figure 11 present weather normalized energy use, cost, and emissions by fuel type for all buildings in the SUNY Oswego portfolio. Figure 8 shows about 69% of the campus energy use is from fossil fuels, and the remaining 31% is from electricity. Of the fossil fuel use, about 92% is for space heating and water heating, with the remaining 8% for cooking, as shown in Figure 9. Of the electric use, about 24% falls under the CBECS "miscellaneous" category, which includes televisions, personal computers, security systems, data center servers, laboratory equipment, and other end uses not accounted for.

Figure 10 and Figure 11 illustrate that while electricity is the largest contributor to campus utility costs, natural gas has the highest energy use and also accounts for about 77% of the emissions. Beneficial electrification will provide significant energy savings and emission reduction but may increase the overall utility costs, depending on the efficiency of the electrification technology.

Appendix A includes more detailed information and monthly profiles for each fuel source. Data include monthly energy and cost for each year as well as an average of the years and a weathernormalized year. Additional KPIs and monthly energy use, demand, and cost were charted and analyzed for each fuel source. Data are also depicted in bar charts along with end use allocation estimates.

3.4 Building level current energy performance (benchmarking)

Table 13and Table 14 present the results of the PEA and benchmarking analysis for individual buildings on the main campus and other buildings, respectively. Building EUIs presented are weather normalized and calculated based on available meter data.

Building	CBECS Building Type	GSF	EUIª (kBtu/SF)	CBECS EUI (kBtu/SF)	Notes
0001 - SHELDON HALL	30% College/university 50% Office 20% Recreation	119,211	92.1	96.4	1
0002 - J C PARK HALL	60% College/university 40% Office	66,979	132.9	112.0	2
0003 - CAMPUS CENTER	30% College/university 30% Office 15% Recreation 25% Restaurant/cafeteria	185,524	184.4	150.3	2
003A - I POUCHER HALL	75% College/university 25% Office	40,080	147.9	118.5	2
003B - REC & CONVOCATION CTR	100% College/university	115,421	173.9	127.5	2
003C - CC STORAGE BLDG	100% Self-storage	310	2.8	3.8	2

Table 13. Building energy consumption comparison to CBECS peer benchmark – main campus

Building	CBECS Building Type	GSF	EUIª (kBtu/SF)	CBECS EUI (kBtu/SF)	Notes
0004 - M V LEE HALL	10% Office 90% Recreation	65,000	83.2	67.5	2
004A - CENTRAL HEATING PLANT	5% Office 95% Other service	21,980	55.3	47.1	2
0005 - SHADY SHORE	100% Single-Family Detached	8,754	60.9	42.9	2
0005A - PRESIDENT GARAGE	100% Self-storage	576	2.8	3.8	2
0006 - J LANIGAN HALL	80% College/university 10% Office 5% Restaurant/cafeteria 5% Other service	88,200	164.1	129.4	2
0007 - J TYLER HALL	50% College/university 10% Office 10% Recreation 30% Other service	115,430	121.0	94.6	2
0008 - RICHARD S SHINEMAN CENTER	30% College/university 20% Office 5% Restaurant/cafeteria 30% Laboratory 15% Other service	235,860	112.1	146.8	2
0009 - WILBER HALL	40% College/university 40% Office 20% Other service	108,933	110.5	95.5	2
0010 - MARY WALKER HEALTH CENTER	5% College/university 40% Office 15% Self-storage 40% Other service	33,260	65.5	60.9	2
0011 - COMMISSARY BLDG	10% Office 40% Self-storage 50% Restaurant/cafeteria	30,836	172.8	157.8	2
0012 - MAINTENANCE BLDG	30% Office 10% Self-storage 60% Other service	20,664	40.4	52.3	2
0013 - M E MAHAR HALL	50% College/university 40% Office 10% Other service	91,530	120.4	103.8	2
0014 - RICH HALL	55% College/university 40% Office 5% Restaurant/cafeteria	53,742	141.9	120.5	2
0015 - MACKIN HALL	30% College/university 5% Dormitory/fraternity/sorority 15% Office 25% Self-storage 25% Restaurant/cafeteria	41,984	171.2	129.1	2
015A - MORELAND HALL	90% Dormitory/fraternity/sorority 10% Self-storage	29,400	103.3	80.9	2
015B - LONIS HALL	95% Dormitory/fraternity/sorority 5% Self-storage	32,285	108.4	85.0	2
0016 - OBSERVATORY	100% College/university	460	40.7	56.6	2

Building	CBECS Building Type	GSF	EUIª (kBtu/SF)	CBECS EUI (kBtu/SF)	Notes
0017 - J PENFIELD LIB	10% College/university 10% Office 15% Self-storage 5% Restaurant/cafeteria 60% Library	192,298	94.5	87.0	2
0019 - LAKER HALL	5% Office 90% Recreation 5% Self-storage	196,608	87.8	63.9	2
0020 - GAR-20	20% Office 50% Self-storage 30% Other service	14,850	76.1	35.6	2
0021 - ROMNEY FIELD HOUSE	95% Recreation 5% Self-storage	55,000	229.9	63.2	1
0022 - KING HALL	90% Office 10% Self-storage	7,200	67.6	73.7	1
0026 - CULKIN HALL	95% Office 5% Self-storage	63,591	33.5	82.2	2
0028 - SEWAGE PUMP STATION	100% Other service	1,881	20.0	27.8	2
0028A - SEWAGE PUMP STATION - SENECA	100% Other service	211	20.0	27.8	2
0028B - SEWAGE PUMP STATION - BLG 12	100% Other service	224	20.0	27.8	2
0029 - HEWITT HALL	35% College/university 40% Office 5% Recreation 20% Other service	135,010	106.9	92.7	2
0031 - PATHFINDER DH	30% Office 20% Self-storage 50% Restaurant/cafeteria	33,827	223.9	177.1	2
0032 - SENECA HALL	95% Dormitory/fraternity/sorority 5% Self-storage	152,548	101.1	85.0	2
0033 - CAYUGA HALL	95% Dormitory/fraternity/sorority 5% Self-storage	105,072	102.4	85.0	2
0034 - ONONDAGA HALL	95% Dormitory/fraternity/sorority 5% Self-storage	152,548	103.9	85.0	2
0035 - LITTLEPAGE DH	5% Other service 5% Office 35% Recreation 10% Self-storage 45% Restaurant/cafeteria	33,827	198.6	167.6	2
0036 - ONEIDA HALL	90% Dormitory/fraternity/sorority 10% Self-storage	105,000	99.0	80.9	2
0037A - TOWNHOUSE A	100% Dormitory/fraternity/sorority	10,260	65.1	90.7	2
0037B - TOWNHOUSE B	95% Dormitory/fraternity/sorority 5% Self-storage	8,082	63.8	86.6	2

Building	CBECS Building Type	GSF	EUIª (kBtu/SF)	CBECS EUI (kBtu/SF)	Notes
0037C - TOWNHOUSE C	100% Dormitory/fraternity/sorority	12,599	65.1	90.7	2
0037D - TOWNHOUSE D	100% Dormitory/fraternity/sorority	12,599	65.1	90.7	2
0037E - TOWNHOUSE E	100% Dormitory/fraternity/sorority	15,880	65.1	90.7	2
0037F - TOWNHOUSE F	75% Dormitory/fraternity/sorority 5% Office 20% Library	18,295	64.9	88.7	2
0037G - TOWNHOUSE G	95% Dormitory/fraternity/sorority 5% Self-storage	8,082	71.3	86.6	2
0037H - TOWNHOUSE H	100% Dormitory/fraternity/sorority	10,260	72.6	90.7	2
0037I - TOWNHOUSE I	100% Dormitory/fraternity/sorority	12,599	72.4	90.7	2
0037J - TOWNHOUSE J	100% Dormitory/fraternity/sorority	12,599	72.6	90.7	2
0037K - TOWNHOUSE K	100% Dormitory/fraternity/sorority	16,729	72.4	90.7	2
0037L - TOWNHOUSE L	100% Dormitory/fraternity/sorority	12,567	72.6	90.7	2
0041 - JOHNSON HALL	95% Dormitory/fraternity/sorority 5% Self-storage	79,097	103.1	86.6	2
0042 - LAKESIDE DH	20% Office 30% Self-storage 50% Restaurant/cafeteria	27,870	216.1	169.3	2
0043 - RIGGS HALL	100% Dormitory/fraternity/sorority	58,201	109.4	90.7	2
0044 - WATERBURY HALL	100% Dormitory/fraternity/sorority	57,464	107.4	89.0	2
0045 - SCALES HALL	100% Dormitory/fraternity/sorority	57,464	107.4	89.0	2
0046 - HART HALL	100% Dormitory/fraternity/sorority	114,365	120.8	89.0	2
0047 - COOPER DH	25% Recreation 25% Self-storage 50% Restaurant/cafeteria	33,546	219.3	168.4	2
0048 - FUNNELLE HALL	95% Dormitory/fraternity/sorority 5% Office	114,365	119.5	88.6	2
0049 - PUBLIC RESTROOM	100% Other service	160	20.0	27.8	2
0051 - FM RADIO TRANSMISSION FAC	100% Other service	440	2,167.8	27.8	2
0061 - MAINTENANCE STORAGE	100% Self-storage	100	2.8	3.8	2
0082 - PRESS BOX	100% Other service	495	20.0	27.8	2

Building	CBECS Building Type	GSF	EUIª (kBtu/SF)	CBECS EUI (kBtu/SF)	Notes
0104 - SECURITY PARKING OFFICE	100% Office	2,297	165.1	86.0	1
0106 - VOLATILE STO	100% Self-storage	400	2.8	3.8	2
0107 - 1 ROOM SCHOOL HSE	100% College/university	550	40.3	62.0	2
0108 - POWER STATION 1	100% Other service	216	20.0	27.8	2
0109 - POWER STATION 1A	100% Other service	175	20.0	27.8	2
0110 - POWER STATION 2	100% Other service	177	20.0	27.8	2

Table 14. Building energy consumption comparison to CBECS peer benchmark – other buildings

Building	CBECS Building Type	GSF	EUIª (kBtu/SF)	CBECS EUI (kBtu/SF)	Notes
0023A - RICE CREEK FIELD STATION	60% College/university 15% Office 20% Laboratory 5% Self-storage	7,500	132.8	136.9	2
0024A - BIO FIELD GARAGE	100% Self-storage	960	3.4	3.8	2
0081 - RICE CREEK OBSERVATORY	100% College/university	550	49.5	56.6	2
0083 - RICE CREEK PAVILION	100% College/university	893	49.5	56.6	2
FALLBROOK REC CENTER	15% College/university 10% Office 50% Recreation 25% Library	17,167	28.5	45.2	1
0071 - POLE BARN (FALLBROOK)	100% Recreation	17,369	18.0	25.0	2

^aWeather normalized EUI

Notes:

1. EUI calculated based on utility meter data

2. EUI estimated

Figure 12 and Figure 13 show the estimated annual total energy use and EUI, respectively, for each building by input fuel. The black line represents the relevant benchmark for each building.

Figure 12. Building level energy use by fuel, including benchmark comparison

Figure 13. Building EUI by fuel, including benchmark comparison

3.5 Central heating plant

Natural gas is used at the central heating plant to generate steam. Figure 14 shows monthly natural gas use and steam generation at the plant. The efficiency of steam generation at the plant averages about 67%.

Figure 14. Central heating plant natural gas use

Daily steam flow was plotted against heating and cooling degree days and presented in Figure 15. The data shows that the steam production decreases linearly in relation to increasing outdoor air temperature until about 55°F to 60°F. above this inflection point, the steam production is constant, which represents the baseload for any summer domestic hot water loads, building reheat loads, and losses in the steam lines.

Figure 15. Steam flow versus outdoor air dry-bulb temperature

4. Campus Energy Assessment

4.1 Energy audit methodology

A comprehensive energy assessment was performed so that SUNY Oswego could better ascertain the current state of energy-related matters at the campus, and to identify energy efficiency measures (EEMs) that could be implemented.

4.1.1 Building walk-through survey and gap analysis

An ASHRAE Level 1 walk-through survey was performed at the campus. This effort focused on assessing existing conditions and evaluating current energy consumption profiles following methodologies outlined in ASHRAE's *Procedures for Commercial Building Energy Audits, Second Edition*.

The field survey of the buildings listed in Table 15 was conducted from January 12 through February 24, 2022. After meeting with facility staff to review building systems and operations, walk-throughs of mechanical rooms were conducted to assess the physical condition of the systems present. A representative sampling of occupied spaces was also surveyed and observations regarding the condition of building envelope components, electrical plug loads, and other energy systems were recorded. Interior and exterior lighting systems were surveyed to observe general lighting fixture types, lighting levels, and control systems present. Survey observations and general building conditions encountered by the audit team were documented in a Building Assessment (BA) report, which is provided in Appendix B. Based on the on-site walkthrough, potential opportunities for reducing energy consumption were identified to support GHG and energy reduction goals. The BA includes a listing of potential energy saving opportunities in the subject building. Additionally, a matrix was developed listing the potential EEMs identified for each building, which is also provided in Appendix B.

In addition to walking through the buildings, interviews were conducted with facilities and maintenance staff to identify potential opportunities and deficiencies that might not be revealed through a physical survey. Facility staff provided their observations and perspective on the operation of the building and its energy systems, which enhanced the understanding of special problems, planned improvements, and maintenance issues and/or practices that impact energy usage.

Building	Primary Use	Year Constructed	Building Area (GSF)
0001 SHELDON HALL	ACADEMIC	1912	119,211
0002 J C PARK HALL	ACADEMIC	1933	66,979
0003 CAMPUS CENTER	ACADEMIC	1963	185,524
0004 M V LEE HALL	ACADEMIC	1958	65,000
0005 SHADY SHORE	RESIDENTIAL	1909	8,754
0006 J LANIGAN HALL	ACADEMIC	1967	88,200
0007 J TYLER HALL	ACADEMIC	1968	115,430
0008 RICHARD S SHINEMAN CENTER	LABORATORY	2013	235,860

Table 15. Level 1 walk-through survey

Building	Primary Use	Year Constructed	Building Area (GSF)
0009 WILBER HALL	ACADEMIC	1964	108,933
0010 MARY WALKER HEALTH CENTER	ADMINISTRATION	1965	33,260
0011 COMMISSARY BLDG	ADMINISTRATION	1966	30,836
0012 MAINTENANCE BLDG	MAINTENANCE	1965	20,664
0013 M E MAHAR HALL	ACADEMIC	1966	91,530
0014 RICH HALL	ACADEMIC	1961	53,742
0015 MACKIN HALL	RESIDENTIAL	1951	41,984
0017 J PENFIELD LIB	ACADEMIC	1968	192,298
0019 LAKER HALL	ACADEMIC	1968	196,608
0020 GAR-20	MAINTENANCE	1971	14,850
0021 ROMNEY FIELD HSE	ACADEMIC	1962	55,000
0022 KING HALL	ADMINISTRATION	1935	7,200
0023A RICE CREEK FIELD STATION	ACADEMIC	2013	7,500
0026 CULKIN HALL	ADMINISTRATION	1967	63,591
0031 PATHFINDER DH	DINING HALL	1967	33,827
0032 SENECA HALL	RESIDENTIAL	1967	152,548
0033 CAYUGA HALL	RESIDENTIAL	1967	105,072
0034 ONONDAGA HALL	RESIDENTIAL	1968	152,548
0035 LITTLEPAGE DH	DINING HALL	-	33,827
0036 ONEIDA HALL	RESIDENTIAL	1970	105,000
0037A TOWNHOUSE A	RESIDENTIAL	2010	10,260
0037F TOWNHOUSE F	RESIDENTIAL	2010	18,295
0037H TOWNHOUSE H	RESIDENTIAL	2010	10,260
003A I POUCHER HALL	ACADEMIC	1963	40,080
003B REC & CONVOCATION CTR	ACADEMIC	2006	115,421
0041 JOHNSON HALL	RESIDENTIAL	1958	79,097
0042 LAKESIDE DH	DINING HALL	1959	27,870
0043 RIGGS HALL	RESIDENTIAL	1960	58,201
0044 WATERBURY HALL	RESIDENTIAL	1960	57,464
0045 SCALES HALL	RESIDENTIAL	1961	57,464
0046 HART HALL	RESIDENTIAL	1963	114,365
0047 COOPER DH	DINING HALL	1967	33,546
0048 FUNNELLE HALL	RESIDENTIAL	1965	114,365
004A LEE HALL (HEATING PLANT)	MAINTENANCE	1958	21,980
015A MORELAND HALL	RESIDENTIAL	1951	29,400
015B LONIS HALL	RESIDENTIAL	1951	32,285

4.1.2 Targeted Audits

Targeted audit efforts focused on building upon the results and findings from the Level 1 walkthroughs and EEM matrix. SUNY Oswego and Ramboll identified the following measures for focus during the targeted audit survey, which was conducted from October 25 through October 27, 2022:

- Interior Lighting and Controls
 - MCC interior spine pedestrian pathway
 - Large lecture halls
- Exterior lighting of parking lots and roadways
- Retro-commissioning (RCx)
 - Campus Center
 - Rich
 - Tyler
 - Riggs
 - The Village
 - Waterbury
 - Scales
 - Johnson
- Building automation system (BAS) Control measures
 - HVAC scheduling
 - Occupancy based HVAC controls
 - Pump differential pressure reset controls
 - Multizone VAV static pressure reset controls
 - Demand controlled ventilation
- Kitchen demand controlled ventilation
- Laboratory demand controlled ventilation
- Variable frequency drive (VFD) applications
 - Hot water and chilled water pump VFD
 - Constant volume single zone AHU to single zone VAV retrofit
- Natatorium mechanical dehumidification systems

4.1.3 Energy Savings Estimates

Potential energy savings for each measure were estimated, and high-level capital costs for implementation developed. Energy savings were estimated using a variety of methods, including analysis of existing weather-dependent energy use patterns and Ramboll's proprietary custom measure calculators.

Projects selected for implementation may require a more detailed evaluation that would address the impact of peak demand savings and seasonal or time of day variations in utility cost structures. Savings estimates generally do not account for the interaction of different EEMs which may have a positive or negative impact on actual energy savings.

The utility unit costs developed during the PEA, Table 9, are based on average annual energy rates for electricity and fossil fuels that include blended commodity, delivery, demand charges, taxes, and other fees, represented in 2019 dollars. The values shown in Table 16 were used to estimate energy cost savings, simple payback, and savings to investment ratio (SIR) for each

EEM analyzed. The utility rates were escalated to 2022 dollars based on historical consumer price index (CPI) published by the United States Bureau of Labor Statistics².

Fuel	Total in 2019 dollars	Total in 2022 dollars
Electricity	\$0.051/kWh	\$0.059/kWh
Natural Gas	\$0.353/Therm	\$0.404/Therm

Table 16. Energy unit costs used in EEM assessments

4.1.4 Energy Measure Cost Estimates

Material and labor cost data for the measures were derived from a variety of sources, including R.S. Means Company, Inc., Ramboll's in-house construction cost database, and various published papers and reports as referenced herein. In some instances, budgetary cost estimates were solicited directly from equipment suppliers. Cost estimates were normalized on a square foot basis and were applied to multiple buildings where appropriate. In addition to labor and materials, the following contingencies have been applied: General Conditions (10%), Architectural & Engineering Fees (10%), Construction Management Fees (10%, and Contingency (10%). Major costs associated with environmental abatement issues and infrastructure renovations are generally not accounted for unless they were previously identified and specifically addressed within the EEM.

Capital cost estimates generated for each EEM are preliminary in nature and are intended to reasonably reflect the rough order of magnitude of costs likely to be incurred. Potential grants, incentives, and/or other benefits available through federal, state or local utility programs were not investigated at this stage of project development.

4.2 Energy Audit Results

4.2.1 EEM Results

Appendix C contains a summary table and detailed writeups for the measures developed as part of the targeted audit effort. Each measure writeup discusses the existing conditions (baseline), recommended actions, estimated energy savings, estimated project costs, and implementation considerations. Detailed assumptions, manufacturers literature, and other supporting documents are also included within the measure writeups.

A Life Cycle Cost Analysis (LCCA) was performed for each option based on the first costs developed for the project and annually recurring energy costs. The LCCA was performed over the expected useful life of each measure (EUL). Annual escalation rates for the utility costs are based on a US Department of Energy (DOE) rate schedule for commercial buildings in the state of New York (Annual Supplement to Handbook 135, Energy Price Indices and Discount Factors for LCC Analysis, NISTIR 85-3273). Annual maintenance costs and replacement costs are not considered in this analysis. Annual costs are discounted back to year zero using a 3% discount rate. The savings to investment ratio (SIR) is calculated as the net present value of lifetime savings

² <u>https://www.bls.gov/regions/mid-atlantic/data/consumerpriceindexhistorical_us_table.htm</u> 2019 average CPI = 255.7 2022 average CPI = 292.7 14.47% inflation rate from 2019 to 2022 calculated from the LCCA divided by the first cost. A project is typically considered cost effective if the SIR is greater than or equal to 1.2. Additionally, BuildSmart 2025 considers measures cost effective if the SPB is 10 years or less or it has a 7% or greater internal rate of return (IRR).

Table 17 summarizes energy and economic results for the EEMs addressed in Appendix C. A more detailed table presenting annual utility energy savings and greenhouse gas reductions, is presented in Appendix C. Individual measure savings generally do not account for the interaction of different EEMs. However, the subtotals show in Table 17 are multiplied by a 0.7 interactive factor to account for interaction between measures. If all measures are implemented, the total implementation cost would be approximately \$8.8 million with an aggregate simple payback period of 19 years. Numerous capital-intensive projects for equipment and systems that are at or beyond their useful life increase the simple payback period of the entire package of measures. However, these projects can be justified from an infrastructure renewal perspective. For the equipment that is already due for replacement, one could argue to include only the EEM incremental cost for a high efficiency replacement, rather than the full replacement cost; that was not done here, but it would lower the simple payback considerably.

The measure savings identified in Table 17 can be combined in addition to any measures already entered in the BuildSmart 2025 project database as well as any major renovations that will have at least 30% design documents by December 31, 2025.

EEM No.	Potential EEM ¹	Annual Energy Savings (MMBtu/year)	Annual Energy Cost Savings (\$/yr)	Estimated Capital Cost	Simple Payback Period (years)	IRR⁵	Annual GHG Reduction (MTCO2e)
	LIGHTING						
EEM-1	Interior LED Lighting Retrofit	333	\$7,805	\$414,177	53.1	-13%	8
EEM-2	Parking Lot and Roadway LED Retrofit	516	\$8,924	\$1,998,482	224.0	-23%	17
	LIGHTING SUBTOTAL ⁴	594	\$11,710	\$2,412,659	206.0	-23%	18
	HVAC AND CONTROLS						
EEM-3	Retro-Commissioning	11,039	\$81,472	\$246,586	3.0	18%	532
EEM-4	HVAC Scheduling	22,333	\$119,177	\$4,136	0.0	2845%	1,144
EEM-5 ²	Occupancy Based HVAC Controls	26,983	\$192,132	\$3,730,696	19.4	-4%	1,312
EEM-6	Pump Differential Pressure Reset Control	562	\$9,718	\$37,107	3.8	25%	19
EEM-7	Multizone VAV Static Pressure Reset Controls	658	\$11,375	\$24,248	2.1	46%	22
EEM-8	Implement Demand Controlled Ventilation	6,898	\$27,899	\$40,655	1.5	65%	366
EEM-9	Implement Kitchen Demand Controlled Ventilation	2,319	\$14,261	\$192,867	13.5	1%	116
EEM-10	Implement Laboratory Demand Controlled Ventilation	17,452	\$148,044	\$503,100	3.4	28%	814

Table 17. Summary of energy efficiency measures (EEMs)

EEM No.	Potential EEM ¹	Annual Energy Savings (MMBtu/year)	Annual Energy Cost Savings (\$/yr)	Estimated Capital Cost	Simple Payback Period (years)	IRR⁵	Annual GHG Reduction (MTCO2e)
EEM-11	Install VFD on Pump Motor	1,004	\$17,355	\$402,611	23.2	-5%	34
EEM-12	Convert CVSZ to SZVAV	1,284	\$22,201	\$142,040	6.4	13%	43
EEM-13	Install Pool Dehumidification System	3,838	\$15,724	\$1,099,423	69.9	-16%	204
	HVAC AND CONTROLS SUBTOTAL⁴	66,058	\$461,550	\$6,423,470	13.9	-3%	3,224
	GRAND TOTAL ⁴	66,653	\$473,260	\$8,836,129	18.7	-6%	3,242
	BuildSmart 2025 Reduction Goal ³	146,332	-	-	-	-	-
	% of BuildSmart Reduction Goal	46%	-	-	-	-	-
	Total of IRR >= 7%	42,158	\$293,920	\$997,873	3.4	21%	2,058
	% of BuildSmart Reduction Goal	29%	-	-	-	-	-

Notes:

- 1. Energy savings will be impacted by interactive effects from other measures. These interactive effects were not considered when calculating energy savings.
- Measure assumes EEM-3 HVAC Scheduling would be implemented prior to using occupancy based HVAC controls. Measure only accounts for savings during typical building occupied hours.
- Value provided by NYPA. SUNY has an overall goal of ~4.4 TBtu (4,410,860 MMBTU); SUNY Oswego's goal is 146,332 MMBTU.
- 4. Subtotals are multiplied by a 0.7 interactive factor to account for interaction between measures.
- LCCA performed over the expected useful life of each measure (EUL). Annual escalation rates for the utility costs are based on a US Department of Energy (DOE) rate schedule for commercial buildings in the state of New York (Annual Supplement to Handbook 135, Energy Price Indices and Discount Factors for LCC Analysis, NISTIR 85-3273)

4.2.2 Measures considered but not analyzed

The building assessments in Appendix B list additional measures for buildings that could be considered but were not analyzed due to limited savings or lengthy paybacks. No cost/low-cost measures listed are not capital improvement measures but are likely to provide energy savings. Implementation may be carried out by contractors or sometimes site staff. Many capital measures identified are not economically justifiable as an early replacement (*i.e.*, adding wall insulation, window replacement, and HVAC replacement). These measures should be considered when the existing systems undergo end-of-life replacement, or the building undergoes a complete renovation.

4.2.3 Operations & maintenance

The Federal Energy Management Program's (FEMP) Operations & Maintenance (O&M) Best Practices.³ (*FEMP 2010*) document provides a tool for developing campus O&M strategies and benchmarking best practices against industry standards. Per the FEMP manual, O&M programs targeting energy and water efficiency can save from 5 to 20 percent of annual energy use without significant capital investment.

The Building Assessment (BA) Reports included in Appendix B identify several opportunities for energy and maintenance cost savings. A conservative estimate of 2% annual energy savings is considered achievable through the identified O&M strategies, including replacing missing piping insulation, repairing weather seals, addressing space temperature control and occupant behaviors, and reviewing program space needs.

³ U.S. Department of Energy's Federal Energy Management Program (FEMP), Operations & Maintenance (O&M) Best Practices – A Guide to Achieving Operational Efficiency, prepared by the Pacific Northwest National Laboratory, Release 3.0; August 2010.

5. Energy Master Planning

This section articulates and categorizes conceptual strategies that cover a range of technical approaches to reduce GHG emissions and/or phase out fossil fuel use on campus while maintaining reliable utility services to the campus. Summarized below are completed steps and activities that identify the most suited technologies that could cover forecasted heating and cooling demands for the campus and using that information to develop scenarios for consideration.

5.1 Campus energy demand

5.1.1 Baseline campus electric demand

Figure 16 presents the monthly electric demand (kW) and energy use (kWh) for the baseline study period of 2018-2020.

Electric Demand and Usage, January 2018- December 2020

Figure 16. Monthly electric demand and energy use

5.1.2 Baseline building thermal energy demands

Section 3.4 described the methodology of estimating building level energy use as well as end-use estimates. These estimates are on the input fuel side, just as they are in CBECS and as would be reflected in utility bills. For non-heating/cooling electrical loads (*e.g.*, lights, plug loads), the input fuel (electricity) is essentially equal to the demand or load. For heating and cooling applications, we consider the conversion efficiency.

When considering potential options to serve building heating and cooling demands, the input energy should be determined based on the thermal demands of the building. The heating demands are developed based on the heating input fuel from Section 3 and consider the

conversion efficiency of the existing technology; similarly, cooling demands are based on the cooling input fuel and conversion efficiency of the existing cooling technology.

Table 18 contains the estimated annual demand of space heating, domestic hot water heating and space cooling for each building in the baseline scenario. The demands are weather normalized to typical year weather. Note the demand data represents the energy required for the end user; not the input energy, which considers equipment conversion efficiency and on-site distribution losses.

Hourly consumption was derived from dimensionless hourly fractional multipliers developed from daily steam and natural gas data for the central heating plant and similar peer campuses. The profile is shown in Figure 17. In the profile curve, the hour specified on the top horizontal axis denotes the hour from the start of the year. In the load duration curve, the same data are rearranged from the highest to the lowest value. It is noted that cooling is not centralized at the campus, but exists at the building level where applied.

Building	Building position	SH (MMBtu/y)	DHW (MMBtu/y)	Cooling (MMBtu/y)
0001 - SHELDON HALL	MAIN	7,718	527	1,734
0002 - J C PARK HALL	MAIN	4,021	451	1,870
0003 - CAMPUS CENTER	MAIN	9,970	4,209	5,248
003A - I POUCHER HALL	MAIN	2,563	520	1,121
003B - REC & CONVOCATION CTR	MAIN	8,415	1,767	2,024
003C - CC STORAGE BLDG	MAIN	0	0	0
0004 - M V LEE HALL	MAIN	2,855	124	0
004A - CENTRAL HEATING PLANT	MAIN	426	261	0
0005 - SHADY SHORE	MAIN	287	79	85
0005A - PRESIDENT GARAGE	MAIN	0	0	0
0006 - J LANIGAN HALL	MAIN	5,840	1,564	2,825
0007 - J TYLER HALL	MAIN	6,373	1,066	2,474
0008 - RICHARD S SHINEMAN CENTER	MAIN	36,844	4,300	5,790
0009 - WILBER HALL	MAIN	5,156	792	3,016
0010 - MARY WALKER HEALTH CENTER	MAIN	870	149	674
0011 - COMMISSARY BLDG	MAIN-SOUTH	1,182	702	0
0012 - MAINTENANCE BLDG	MAIN-SOUTH	273	100	0
0013 - M E MAHAR HALL	MAIN	4,832	641	1,972
0014 - RICH HALL	MAIN	3,183	444	1,165
0015 - MACKIN HALL	MAIN	1,829	807	0
015A - MORELAND HALL	MAIN	1,055	466	0
015B - LONIS HALL	MAIN	1,216	537	0
0016 - OBSERVATORY	MAIN	0	3	0
0017 - J PENFIELD LIB	MAIN	7,381	649	4,111

Fable 18. Baseline Demand	y building	for space heating	(SH)	, domestic hot water	(DHW) and cooling
----------------------------------	------------	-------------------	------	----------------------	------	---------------

Building	Building position	SH (MMBtu/y)	DHW (MMBtu/y)	Cooling (MMBtu/y)
0019 - LAKER HALL	MAIN-SOUTH	10,692	456	0
0020 - GAR-20	MAIN	586	173	301
0021 - ROMNEY FIELD HOUSE	MAIN-SOUTH	4,287	184	0
0022 - KING HALL	MAIN	315	15	0
0024A - BIO FIELD GARAGE	MAIN	0	0	0
0026 - CULKIN HALL	MAIN	855	65	529
0028 - SEWAGE PUMP STATION	MAIN	0	15	0
0028A - SEWAGE PUMP STATION -	MAIN	0	2	0
0028B - SEWAGE PUMP STATION - BLG 12	MAIN	0	2	0
0029 - HEWITT HALL	MAIN	6,196	927	2,896
0031 - PATHFINDER DH	MAIN	1,366	703	741
0032 - SENECA HALL	MAIN	5,321	2,349	0
0033 - CAYUGA HALL	MAIN	3,734	1,649	0
0034 - ONONDAGA HALL	MAIN	5,419	2,392	0
0035 - LITTLEPAGE DH	MAIN	1,523	667	741
0036 - ONEIDA HALL	MAIN	3,554	1,569	0
0037A - TOWNHOUSE A	MAIN	210	93	124
0037B - TOWNHOUSE B	MAIN	165	73	98
0037C - TOWNHOUSE C	MAIN	257	114	153
0037D - TOWNHOUSE D	MAIN	257	114	153
0037E - TOWNHOUSE E	MAIN	324	143	192
0037F - TOWNHOUSE F	MAIN	374	165	221
0037G - TOWNHOUSE G	MAIN	194	86	100
0037H - TOWNHOUSE H	MAIN	247	109	128
0037I - TOWNHOUSE I	MAIN	302	133	156
0037J - TOWNHOUSE J	MAIN	303	134	157
0037K - TOWNHOUSE K	MAIN	401	177	208
0037L - TOWNHOUSE L	MAIN	302	133	157
0041 - JOHNSON HALL	MAIN	2,770	1,223	987
0042 - LAKESIDE DH	MAIN	1,043	575	610
0043 - RIGGS HALL	MAIN	2,174	960	726
0044 - WATERBURY HALL	MAIN	2,098	926	0
0045 - SCALES HALL	MAIN	2,098	926	0
0046 - HART HALL	MAIN	4,897	2,162	0
0047 - COOPER DH	MAIN	1,388	697	516
0048 - FUNNELLE HALL	MAIN	4,819	2,128	0
0049 - PUBLIC RESTROOM	MAIN	0	1	0
0051 - FM RADIO TRANSMISSION FAC	MAIN	0	396	0

Building	Building position	SH (MMBtu/y)	DHW (MMBtu/y)	Cooling (MMBtu/y)
0061 - MAINTENANCE STORAGE	MAIN	0	0	0
0082 - PRESS BOX	MAIN	0	4	0
0104 - SECURITY PARKING OFFICE	MAIN	102	5	38
0106 - VOLATILE STO	MAIN	0	0	0
0107 - 1 ROOM SCHOOL HSE	MAIN	0	3	12
0108 - POWER STATION 1	MAIN	0	2	0
0109 - POWER STATION 1A	MAIN	0	1	0
0110 - POWER STATION 2	MAIN	0	1	0
Total		180,859	42,809	44,052

Figure 17. Baseline heat demand (SH+ DHW)

5.1.3 Future energy demands

The future demand profiles were adjusted to reflect campus renovation plans. The heating and cooling loads for renovated buildings listed in Section 2.3 were estimated based on the building type and cooling loads of similar buildings on campus. Cooling and heating savings for other buildings were estimated based on the results of the energy efficiency measures identified in Section 4.

Table 19 summarizes the effects of the various measures and compares the current to the future estimated use. Even though cooling will be added to a few buildings, through building

renovations and implementing EEMs, cooling energy is estimated to decrease by approximately 29% while the heating use is assumed to decrease by 25%. Electricity use for purposes other than heating and cooling is estimated to decrease by 19% through building renovations and implementing EEMs. The impact of electrification on heating and cooling will be assed later in Section 5.7.

Table 19. Energy conservation and growth estimates

	Cooling (MMBtu/yr)	Heating ¹ (MMBtu/yr)	Electricity ² (MWh/yr)
Current Annual Demand ³	44,052	223,668	31,049
Additional Cooling Loads	1,021	NA	NA
Reductions from EEMs	-13,997	-55,590	-5,876
Future Annual Use Estimate	31,076	168,078	25,173
Percent Growth over Current	-29%	-25%	-19%

1. Heating includes space heating and domestic water heating

2. Electricity use excludes any local building electricity consumption for heating or cooling

3. The energy demand differs from energy consumption, where consumption accounts for efficiency of the system in

converting input fuel to meet the output demand

Table 20 contains the estimated future annual space heating, domestic hot water heating and space cooling for each building. There is opportunity to serve the heating and cooling loads more efficiently, which is the goal of the scenario analysis.

Note the demand data represents the energy required for the end use; not the input energy, which considers equipment conversion efficiency and on-site distribution losses.

Table 20. Future energy demand by building

Building	Building position	SH (MMBtu/y)	DHW (MMBtu/y)	Cooling (MMBtu/y)
0001 - SHELDON HALL	MAIN	7,718	527	1,734
0002 - J C PARK HALL	MAIN	3,176	451	1,477
0003 - CAMPUS CENTER	MAIN	7,178	4,209	3,779
003A - I POUCHER HALL	MAIN	1,845	520	807
003B - REC & CONVOCATION CTR	MAIN	4,292	1,767	1,032
003C - CC STORAGE BLDG	MAIN	0	0	0
0004 - M V LEE HALL	MAIN	2,255	124	0
004A - CENTRAL HEATING PLANT	MAIN	426	261	0
0005 - SHADY SHORE	MAIN	287	79	85
0005A - PRESIDENT GARAGE	MAIN	0	0	0
0006 - J LANIGAN HALL	MAIN	4,614	1,564	2,231
0007 - J TYLER HALL	MAIN	4,589	1,066	1,781
0008 - RICHARD S SHINEMAN CENTER	MAIN	29,107	4,300	4,574
0009 - WILBER HALL	MAIN	4,073	792	2,383
0010 - MARY WALKER HEALTH CENTER	MAIN	870	149	674
0011 - COMMISSARY BLDG	MAIN-SOUTH	934	702	0

Building	Building position	SH (MMBtu/y)	DHW (MMBtu/y)	Cooling (MMBtu/y)
0012 - MAINTENANCE BLDG	MAIN-SOUTH	273	100	0
0013 - M E MAHAR HALL	MAIN	1,847	245	754
0014 - RICH HALL	MAIN	2,292	444	839
0015 - MACKIN HALL	MAIN	962	131	76
015A - MORELAND HALL	MAIN	674	92	53
015B - LONIS HALL	MAIN	740	101	58
0016 - OBSERVATORY	MAIN	0	3	0
0017 - J PENFIELD LIB	MAIN	5,679	499	3,163
0019 - LAKER HALL	MAIN-SOUTH	8,447	456	344
0020 - GAR-20	MAIN	586	173	301
0021 - ROMNEY FIELD HOUSE	MAIN-SOUTH	3,387	184	0
0022 - KING HALL	MAIN	249	15	0
0024A - BIO FIELD GARAGE	MAIN	0	0	0
0026 - CULKIN HALL	MAIN	676	65	418
0028 - SEWAGE PUMP STATION	MAIN	0	15	0
0028A - SEWAGE PUMP STATION -	MAIN	0	2	0
0028B - SEWAGE PUMP STATION - BLG	MAIN	0	2	0
0029 - HEWITT HALL	MAIN	2,790	364	220
0031 - PATHFINDER DH	MAIN	792	703	430
0032 - SENECA HALL	MAIN	3,491	1,541	145
0033 - CAYUGA HALL	MAIN	2,421	1,069	100
0034 - ONONDAGA HALL	MAIN	3,446	1,521	145
0035 - LITTLEPAGE DH	MAIN	627	27	107
0036 - ONEIDA HALL	MAIN	2,372	1,047	100
0037A - TOWNHOUSE A	MAIN	151	93	89
0037B - TOWNHOUSE B	MAIN	119	73	70
0037C - TOWNHOUSE C	MAIN	185	114	110
0037D - TOWNHOUSE D	MAIN	185	114	110
0037E - TOWNHOUSE E	MAIN	233	143	138
0037F - TOWNHOUSE F	MAIN	269	165	159
0037G - TOWNHOUSE G	MAIN	140	86	72
0037H - TOWNHOUSE H	MAIN	177	109	92
0037I - TOWNHOUSE I	MAIN	217	133	113
0037J - TOWNHOUSE J	MAIN	218	134	113
0037K - TOWNHOUSE K	MAIN	289	177	150
0037L - TOWNHOUSE L	MAIN	217	133	113
0041 - JOHNSON HALL	MAIN	1,994	1,223	711
0042 - LAKESIDE DH	MAIN	605	575	354

Building	Building position	SH (MMBtu/y)	DHW (MMBtu/y)	Cooling (MMBtu/y)
0043 - RIGGS HALL	MAIN	1,566	960	523
0044 - WATERBURY HALL	MAIN	1,510	926	0
0045 - SCALES HALL	MAIN	1,510	926	0
0046 - HART HALL	MAIN	3,868	2,162	0
0047 - COOPER DH	MAIN	805	697	300
0048 - FUNNELLE HALL	MAIN	3,807	2,128	0
0049 - PUBLIC RESTROOM	MAIN	0	1	0
0051 - FM RADIO TRANSMISSION FAC	MAIN	0	396	0
0061 - MAINTENANCE STORAGE	MAIN	0	0	0
0082 - PRESS BOX	MAIN	0	4	0
0104 - SECURITY PARKING OFFICE	MAIN	102	5	38
0106 - VOLATILE STO	MAIN	0	0	0
0107 - 1 ROOM SCHOOL HSE	MAIN	0	3	12
0108 - POWER STATION 1	MAIN	0	2	0
0109 - POWER STATION 1A	MAIN	0	1	0
0110 - POWER STATION 2	MAIN	0	1	0
Total		131,284	36,794	31,076

Figure 18 shows the future hourly profile and load duration curve developed for total net heat demand (SH as well as DHW in both summer and winter) of the buildings which will be connected to the future heating network. Figure 19 shows the future cooling demand for the buildings connected to the future cooling network.

Figure 18. Future heat demand (SH+ DHW)

Figure 19. Future cooling demand

5.2 Campus energy supply

Ramboll analyzed the campus' existing heating, domestic hot water and cooling supply, identifying which buildings are heated and cooled on campus and what types of heating and cooling equipment are used. Understanding the existing campus supply is necessary for modeling potential campus future supply options.

5.2.1 Building heating supply

The main campus is mostly centralized with 56 buildings heated covering nearly 3.4M GSF. 33 buildings on campus are heated from the central steam distribution. The Shineman Center is heated with a ground-source heat pump system. The remaining buildings on campus are heated using local natural gas boilers.

The central heating plant generates steam at 110 psig and is reduced to 40 psig for distribution to the buildings. The steam piping is in a mix of concrete trench tunnels and direct buried piping. Individual buildings have pressure reducing valves to reduce the pressure to 12 psig before entering steam to hot water heat exchangers. Each building is equipped with a condensate return unit to pump the condensate back to the steam plant.

Figure 20 is a breakdown of the main campus heating system types as percentages of the campus total gross square footage.

Figure 20. Heating system type (percent of GSF) by current space heating technology

5.2.2 Building domestic hot water supply

Most of the domestic hot water on campus is produced in steam to hot water heat exchangers. Some buildings on campus have local gas-fired or electric hot water tanks.

Figure 21 presents the percentages of the main campus area served by each DHW supply system type.

Figure 21. Domestic hot water type (percent of GSF)

5.2.3 Building cooling supply

Most of the main campus buildings are cooled by a mix of chillers or packaged rooftop units (RTU) with direct expansion (DX) cooling. The Shineman center has a ground-source heat pump system. Hewitt Hall is currently being renovated and will be served with a GSHP system. About 34% of the campus is currently not cooled.

Figure 22 is a breakdown of the main campus cooling system types as percentages of the campus total gross square footage.

Figure 22. Main campus cooling system type (percent of GSF)

5.3 Overall design considerations

This section provides some key design considerations when establishing a decarbonization transition strategy.

5.3.1 Diversity factor

The peak heating demand in a centralized system will be lower than the sum of the peaks for all buildings since buildings do not have peaks in the exact same hour. The share between the peak heating demand in the central solution and the sum of the peaks in the individual solution is called the diversity factor and is typically estimated between 0.85 and 0.95 depending on the number of buildings. Accounting for the diversity factor provides an economic advantage for a central solution and means that the production capacity requirement in a central solution will be lower than the sum of building level demands. Figure 23 below illustrates the diversity factor for space heating as a function of the number of buildings according to different norms⁴. However, consideration has been given for situations when a central plant trips offline during peak load by sizing the less expensive backup equipment with the capacity to meet the total of all individual building peak loads.

⁴ CIBSE CP1 2020 (Heat Network Code of Practice for UK) & Varme Stabi 7th edition, 1st print 2015, published by Praxis-Nyt Teknisk Forlag 2015

5.3.2 Baseload, peaking, and backup considerations

Typically, base load technologies for electrification strategies (*e.g.*, heat pumps) are costly to install, whereas suitable peak load technologies have limited or even no installation costs. For example, peak load technologies could be existing boilers, which are established assets and often have long remaining lifetime. If they are operated as a peak load technology, the annual operating hours will occur in the coldest times of winter and will be limited in relative comparison to total annual operating hours. Therefore, the technical lifetime for existing boilers will be extended.

Baseload technologies should be in operation for many hours annually and should have a strategy for low operating costs. Since a peaking technology would have limited annual operating hours, potentially higher operational costs will only have limited impact on the overall economy.

The reason for establishing dedicated baseload technologies and peaking technologies is that peaking is only relevant in limited annual hours but requires a high capacity (see Figure 24). Establishing how much a baseload technology should cover of the total annual heat demand is an optimization exercise. However, as a rule of thumb, if the baseload covers 50% to 60% of the peak heating load, then it will cover approximately 90% of the annual heating load. For example, if the baseload technology was a ground heat source system, it would be necessary to nearly double the number of boreholes in the ground to go from approximately 90% to 100% load, but at a significantly higher cost than utilizing existing assets or lower cost peaking technologies, such as natural gas boilers. This could also provide a level of resiliency in both fuel diversification and capital cost management. Therefore, establishing a baseload and peak load strategy will be more cost-effective and could allow financial resources to be allocated to other projects.

The future energy system will increasingly use sources that are more intermittent in nature (i.e., wind and solar) and, therefore, will move from being very stable to being more unstable where electricity backup is crucial. It may also influence the grid reliability and, therefore, heat production backup should be considered. Here are some aspects for planning purposes:

- If baseload technology is electric based, then backup of the heating system should be based on another fuel, as for instance a gas (or oil) boiler
- The backup technology should be highly reliable and have lower installation costs
- The supply of the backup fuel should be non-interruptible and reliable
- The backup technology should be well known for the operational staff

Figure 24. Baseload and peaking illustration

5.3.3 Supply temperature considerations

To introduce low carbon heating technologies like heat pumps, it is typically necessary to reduce the supply temperature to the systems/buildings since heat pumps have operating temperature limits. Furthermore, the lower the supply temperature of a heat pump, the higher the efficiency of the heat pump.

At this time, industrial heat pumps commonly available in the US can typically only produce district HW temperatures as high as 170°F. There are exceptions, and the market is also developing rapidly to include more multi-stage heat pumps and other refrigerant options that are more common in other parts of the world. High temperature heat pump offerings also tend to be available in larger sizes that are more applicable to centralized solutions rather than individual building scale; although expanded size offerings are a likely future development as well. Market offerings should be monitored within the timeframe for implementation of this study.

There are many benefits of reducing central hot water supply temperatures, including:

- Greater long-term economic benefits of lower temperature systems
- Ability to employ a diversified portfolio of low carbon or renewable technologies including heat pumps, geothermal, waste heat, solar thermal, and thermal storage
- Reduction in heat distribution losses due to a lower temperature difference between the circulating fluid in the distribution pipe and its surrounding
- Reduction in the overall temperature drop from the heat source to the most hydraulically remote building
- Ability to use different piping systems such as PEX or HDPE once the network is completely converted to lower temperature. Steel piping may be required initially to bridge the current high temperature and future low temperature systems.
- Increased efficiency of heat pumps by reducing the amount of temperature lift required
- Reduced reliance on fossil fuel technology by limiting annual peaking operation even further
- Longer life expectancy of steel pipes from reduced thermal stresses
- Increased safety and lower risk of scalding injuries

5.3.3.1 Building design temperature considerations

Steam is currently being supplied to most buildings on campus. All buildings on campus have a steam to hot water heat exchanger to generate 180°F hot water. Since a heat pump efficiency increases through a reduction in supply temperature, consideration should be given to the optimal lowest temperature that could be reached, including reset of the setpoint for off-design conditions.

There should be a focus on increasing the deltaT in the buildings, which will increase the overall energy system efficiency. New buildings should be designed for a low supply temperature (also higher deltaT) at potentially 120°F to 130°F. For buildings that undergo partial renovations where HVAC systems are being updated, SUCF recommends that those systems be designed for supply temperatures of 140°F or less.

5.3.3.2 Building-level temperature monitoring to support low temperature hot water transition

Building-level temperature monitoring is an important action to help inform future design and to help determine and prioritize which buildings need renovations to support the further reduction of hot water supply temperatures. While it is possible for heat pumps to be configured to supply hot water at more conventional design supply temperatures (~180°F), the cost of the heat pump increases, and the capacity and efficiency are reduced as compared to lower design supply temperatures.

If the campus can monitor building hot water supply and return temperatures over the course of at least one heating season, the data could be used to define design parameters of the proposed heat pump solutions in addition to identifying coil retrofits that currently require higher supply temperatures. For example, if the data reveal that most of the buildings can meet design loads with a 160°F supply temperature (and reset lower for off-design conditions), but some buildings still require 180°F supply temperature on a design day, then it may be more cost effective to replace the hot water coils in those buildings to enable a central system to operate more

efficiently at a lower supply temperature. Without monitored temperature data the central supply temperature would need to be high enough to meet current building design conditions.

SUNY Oswego has hot water supply and return temperatures in their building automation system for all or most building hot water loops, but the data are not monitored or stored. As part of the monitoring effort, all building hot water supply and return points should be verified for accuracy and set up for trend data collection. It is important that the building hot water supply setpoints be set up for outdoor air temperature reset functionality as well. For a majority of the heating season, the supply temperature can be lower than the design point and heat pump capacity and efficiency will improve significantly.

The original building design hot water supply reset schedules can also be adjusted to optimize the reset, which is much more important for a heat pump application than for fossil fuel supply equipment. For example, the original reset schedule may call for adjusting the supply temperature from 180°F at 0°F outside air temperature down to 120°F at 60°F outside air temperature. This will improve heat pump performance as compared to a constant design supply temperature, but it is likely that the reset schedule can be adjusted and still meet building needs. For example, it may be found that a reset of 160°F at 0°F outside air temperature down to 110°F at 60°F outside air temperature provides sufficient coil capacity. The implications to a heat pump system design and operation are very important, so it is worth the effort of optimizing the reset schedules. A regular review (at least monthly through one heating season) of the data and reset schedule optimization by campus staff and/or outside energy consultants is recommended.

Monitored temperature data would also indicate the system temperature difference (delta T; hot water supply temperature minus return temperature) throughout the season. Knowing the delta-T will help define the design parameters and identify buildings with a low delta T that may benefit from a retrofit. A low delta T can reduce heating capacity, increase pumping power, and/or require larger pipes in the distribution system.

Note that this temperature data monitoring recommendation is different than the energy submetering, which includes heat energy entering each building. The associated energy meters would include supply and return temperature data, but not necessarily temperatures on the building side of the heat exchangers and not necessarily all hot water loops. For instance, a building that uses steam to generate space heating hot water for three zones may only need to install a single energy meter for the steam to meet submetering requirements of BuildSmart 2025. Data from that meter would indicate the total heating load for the building over time, but it would not indicate what supply temperatures are sufficient in the three heating loops. The temperature points needed for this recommendation already exist, and the monitoring effort does not need to wait for energy meter installations.

5.3.3.3 Heating supply temperature recommendations

Heat supplied from a central plant will initially be around 170°F at peak load and operate based on an outdoor air temperature reset schedule to reduce distribution temperatures as outdoor temperature rises, increasing overall seasonal efficiency.

At a supply temperature of 170°F from the central plant and allowing for distribution losses and losses at building heat exchangers, building operating temperatures will be approximately 165°F.

Most building-side heating systems on campus are designed to meet the peak load with 180°F building hot water. As mentioned previously, Ramboll suspects that many buildings on campus could meet design heating loads with lower supply temperatures produced by the heat pumps. However, these temperatures are only required during peak design conditions when the outside air temperature is low, and only occur for a small percentage of the total heating season. For example, Syracuse typical meteorological year (TMY) weather (the closest weather station to Oswego) shows only 697 annual hours (8%) below 20°F outside temperature. Hot water supply temperatures are typically reset to lower temperatures when the outside temperature is higher, which reduces distribution losses and improves temperature control; and in the case of heat pumps, increases efficiency.

An example supply temperature reset schedule is shown in Figure 25 and illustrates that a typical schedule might call for 180°F supply temperature for outside air temperature below 20°F and then decrease that setpoint linearly down to a supply temperature of 120°F at outdoor air temperatures (OAT) above 50°F. The figure shows an outdoor air temperature of 27°F would require 165°F hot-water temperature. Syracuse TMY weather data shows approximately 1,404 hours, or 16% of the year, at or below 27°F OAT.

Typical Outdoor Air Temperature Reset Schedule

The overall capacity of a distribution network is dependent on the supply and the return temperature in the distribution system. Among the campus buildings, there are differences in the required heat to each building and each building's ability to reduce the temperature of that supplied heat (deltaT). Buildings with a low heat demand and a higher deltaT will have a low influence on the overall deltaT in the distribution network, whereas buildings with a high heat demand and low deltaT will have a high influence on the overall deltaT. When building renovations are planned, focus should be on the buildings with a high influence on the overall distribution system deltaT. Often it may only be necessary to concentrate on a limited number of buildings. This could be assessed through further hydraulic modeling in subsequent phases. Furthermore, high return temperatures can limit the contribution heat pumps can make to the heating load at higher supply temperatures. If the return temperature at design conditions exceeds the maximum heat pump supply temperature, then the heat pump could not operate, and the peaking technology would need to meet the design load independently. This would have a major impact on peaking technology design capacity and, for electric peaking, required electrical infrastructure requirements. It is possible that NYISO Class Year limits.⁵ or regional capacity limits may become an issue. Further evaluation, investigation and testing are recommended for buildings which have a high influence on the deltaT.

As mentioned in the previous sections, as campus buildings are modernized and renovated over the long-term, central design supply temperatures will become lower. With consideration to temperature losses in heat exchangers and pipes, heat supplied from the central plant should target a maximum operating temperature of 155° to 160°F on the long-term.

5.3.4 Building upgrade/modification considerations

Determining which buildings can operate at lower design temperatures and implementing reasonable building hot water temperature resets will limit the amount of work that may be required in the buildings to connect them to a low temperature hot water distribution network and allow the campus to start implementing a decarbonization plan sooner. A retro-commissioning study could be conducted on buildings that require higher supply temperatures to assess the issues that cause these buildings to operate at higher supply temperatures.

Ultimately, these buildings may require the heating coils to be replaced with larger coils that have sufficient heat capacity at design conditions with a lower supply temperature (*i.e.*, 130°F at design conditions). If the existing air handling units cannot accommodate larger heating coils, the existing chilled water coils could be valved to the hot water piping to act as a supplementary heating coil.

Some buildings may require complete removal and replacement of the existing HVAC systems. This would likely be required for systems that utilize steam directly for heating (*i.e.*, steam radiators), buildings with no existing hydronic heating/cooling (*i.e.*, rooftop units), or buildings where cooling does not currently exist and is planned to be added.

Initially, the heat pumps will likely need to supply higher hot water temperatures (~170°F), and the system will operate at a lower COP. This may result in peaking technology operating more hours to achieve temperatures higher than the heat pumps may be able to produce. Over time, as buildings are renovated, the distribution temperature could be lowered, allowing the heat pumps to operate at a higher COP.

In this study, building upgrades are not required to implement the scenarios (and serve the building needs with hot water supply temperatures of 170°F or lower). Ramboll also estimated the cost of retrofitting or replacing the HVAC systems in the remaining buildings that would allow them to meet peak heating loads with much lower supply temperatures. The advantage is better heat pump performance, but the retrofit cost is high.

⁵ The Class Year study is performed annually by NYISO to evaluate the cumulative impact a group of large projects will have on the NYS transmission system. The process identifies specific system upgrades required at a transmission level and allocates cost. As a result, unpredictable transmission system upgrade costs may be required in addition to the expected high costs to modify the electrical distribution.

The budgetary cost estimate for building upgrades is shown in Table 21. Additional detail of the building upgrades is provided in Appendix D. To achieve a 130°F operating condition, some buildings would require full HVAC system renovation at a cost of \$121M because they are at the end of their useful life; others would only need coil replacement at a cost of \$45.4M The buildings requiring a full HVAC renovation were identified through discussions with the campus and the 2013-2023 Facility Master Plan (FMP) (Section 2.3).

Modification	Cost		
HVAC Renovation	\$121.0M		
Coil Replacement for 130°F Building HW Supply	\$45.4M		
Total	\$166.4M		

Overall, it would cost \$166.4M for the campus to operate with a 130°F deign temperature at the buildings. These upgrades may allow the LTW distribution temperature to be decreased to improve the heat pump COP. However, replacing coils in HVAC systems that can operate at 170°F under design conditions may not be financially viable. The cost to replace the coil as an early replacement activity should be weighed against the heat pump efficiency gains.

Using the heat load curve in Figure 24, the heat pump would meet about 95% of the annual heating load (162,000 MMBtu/year). If the resulting hot water supply temperature reductions from the \$166.4M HVAC upgrades improved the heat pump efficiency by 25%, the annual electrical energy cost of the heat pumps could potentially be reduced by nearly \$190,000 (\$0.059/kWh from Table 16), resulting in a payback well over 100 years. This high-level analysis would suggest that the building HVAC modifications should not be done as early replacement; rather as the systems are due for replacement.

5.3.5 Piping materials considerations

With lower supply temperatures in the heating network, it is possible to use polymeric materials in the heating network. However, many aspects of the final choice of using a polymeric material should be carefully considered.

- How will the network transition from the higher temperature to the lower temperature? Will it be necessary to maintain the higher temperature for any extended periods, even if that is only to certain portions of the campus?
- What system pressure is necessary? A polymeric material cannot withstand high temperature and high pressure for extended time periods. Are there elevations on the campus which increases the pressure in the system?
- Pipe service life. How long is the service life of the pipe and how is it affected by shorter exceedances in the temperature / pressure gradients?
- Pipes should be insulated, and regardless of material choice, the pipes should be preinsulated
- Pipes should have leak detection to allow for quick identification and repair of potential issues

Final material choice would be selected in subsequent design phases where the above considerations and costs are further assessed.

5.3.6 Energy transfer stations in buildings

This plan considers connecting each individual building to the heating network through an indirect connection. A new heat exchanger would be installed in each building to separate the distribution network from the internal building installations. This is typically referred to as an Energy Transfer Station (ETS), meaning there is hydraulic separation between the two systems.

This has the advantage of being a more secure system than a direct connection in the event of an internal leak where there is risk of getting a large amount of water from the distribution network into the building, potentially causing significant damage. A hydraulically separated indirect connection thus removes this risk. The hydraulic separation also makes it possible to use higher pressures in the distribution network if necessary.

A direct connection, however, has the benefit that temperature loss through the heat exchanger could be avoided, leading to decreasing the central supply temperature and increasing the heat pump efficiency slightly. Furthermore, the return temperature in the distribution network will be lower.

Depending on space availability, the supply of domestic hot water (DHW) can either be instantaneous via a heat exchanger or through stored water in a tank storage. The installation of a DHW hot water storage tank, instead of instantaneous heat exchangers, will reduce the required DHW heating load to the building since the stored water tank volume will act as a buffer to the network. Consequently, this will reduce some of the pipe dimensions of the district heating network, especially the branch connections to each building, although more space will be required in the individual buildings to accommodate the tank. The selection of the type of DHW heater would be based on the DHW demand of the building.

The ETS itself would come as a prefabricated packaged unit solution and depending on the heating demand, will look similar to the unit in Figure 26. A skid mounted unit is suitable for larger demands; for smaller demands, a wall mounted ETS will be more suited. Additional heat exchangers for each building will be necessary to connect to the central cooling network.

Figure 26. Typical ETS installation (source: Danfoss)

The techno-/economic analysis included CAPEX for installation of hot water and chilled water energy transfer stations for all buildings connected to centralized system.

5.3.7 Resiliency considerations

5.3.7.1 Current resiliency posture

The campus currently has natural gas service through National Grid. The main gas account comes into Lee Hall for the central heating plant and is then distributed to some buildings on campus for space heating, domestic hot water heating, cooking, and natural gas-powered generators. The buildings south of State Route 104 have a separate natural gas service.

The campus receives electrical power from National Grid (through the SUNY Energy buying group). Most buildings receive electricity from the main campus electric service, which accounts for nearly all of the electricity consumed on campus. The buildings south of State Route 104 have separate electric service accounts. Many buildings on campus have natural gas-powered generators for emergency backup power.

5.3.7.2 Future resiliency posture

With an increased focus on electrification of the campus, it is advised to have full heating backup from a secondary fuel. Diversified fuel use can support flexibility and cost resiliency.

For buildings connected to a centralized system, the heating backup would be established in the central plant with boilers. Backup boilers may be supplied from either natural gas or from a liquid fuel. For buildings not connected to the centralized system, it would be necessary to install separate backup boilers within each building. Emergency generators should also be in place for supplying electricity to heat pumps and backup boilers.

Currently, the campus has emergency generators in many buildings. To support the central heating system operations, emergency generation should also supply power to the main circulating pumps for heating and cooling in the central system, as well as to larger circulating pumps within the buildings. Some options to consider increasing the resiliency of the campus include:

- Tank thermal energy storage
- Battery storage

Tank Thermal Energy Storage

Tank thermal energy storage (TTES) is an important component in an energy system with fluctuating energy prices. TTES involves storing hot or cold water in insulated tanks to help balance energy demand and supply while ultimately reducing peak demand, energy consumption, carbon emissions and costs. The storage makes it possible to disconnect consumption of electricity from the supply of heat. Thereby, it is possible to capture heat when renewable energy is available and supply heat from the TTES when renewable energy is scarce. Section 5.4.10 provides a broader discussion of this technology and its application.

Battery Storage

Battery storage can provide an uninterruptable power supply when the grid power is lost, but the capacity of a battery storage system is limited and often only a few hours of power supply is available. Scale needs to be considered and battery storage would not be cost-effective at campus scale. Often a building or a data center is backed up with an uninterrupted power supply to allow enough time for a generator to be started.

5.4 Technology screening – energy generation

The objective of the technology screening process is to identify suited technologies and storage options for the future production of heating/cooling that support campus alignment with the carbon reduction goals of the CLCPA. Technologies evaluated considered centralized and distributed (decentralized) solutions.

The process was conducted through a series of meetings where Ramboll presented descriptions of fossil fuel, renewable, and electrification technologies and their ability to produce either baseload and/or peak load production. Ramboll also discussed the technology's ability to increase energy system flexibility and resiliency for the campus. Increasing the campus energy system's flexibility can be advantageous when negotiating the energy utility supply rates and terms.

Technology screening conference calls were held with the campus from May through July 2022. Presentations and meeting minutes were distributed to SUNY Oswego and SUCF for those meetings.

The following subsections document the options considered for each technology category. Conclusions on which specific technologies to proceed with were ultimately made in each technology category during the screening process held with SUNY Upstate and SUCF.

5.4.1 Fossil fuel technologies

Table 22 shows the relevant fossil fuel technologies and the result from the screening process:

2 FOSSIL TECHNOLOGIES 1= poorest performance 5= highest performance CAPEX Forward Base load technology, well Gas turbine (simple cycle). Gas turbine proven 5 No 2 combined cycle, rankine steam turbine, Not carbon neutral if NG is used gas engines - High CAPEX - High CAPEX - Base load technology - Not carbon neutral if NG is used Solid oxide fuel cell CHP - Local use of biogas seems 4 No unrealistic Long start up times, high minimum load % Peak / backup technology, very limited operation Gas boiler 2 3 5 Yes - Not carbon neutral - Verv low CAPEX - Peak / backup technology, very limited operation Oil boiler 2 4 No Not carbon neutral Very low CAPEX - Derived from n-gas and Grey Hydrogen produced from fossil fuels 2 3 No CO2 is released into the air

The fossil-based technologies are mentioned in the left column of Table 22 above. The topmost row of the table contains different characteristics or criteria of the technologies in which each technology was evaluated and subsequently scored against on a scale of 1 to 5, with 5 being the best performance. To qualitatively assist in the evaluation of the technologies, color coding is utilized where red is a "low score" and green is a "high score". For example, all technologies in Table 22 have a low score for "CO2 Neutrality" since they are fossil-based. The technology "Gas Boiler" has a high score when evaluated for CAPEX (*capital expenditures, i.e. upfront installation/construction costs and material costs*) since the CAPEX associated with installing a gas boiler system is relatively low in comparison to some other technologies (e.g., support to the local energy system [e.g., peak / backup], integration with electricity market, space requirements, potential regulatory impact, etc.). All scores are based on a qualitative evaluation.

As seen from Table 22, only natural gas-fired boilers will continue to the subsequent phases. This is primarily due to their ability to act as reliable and effective peaking and/or backup heating assets, as mentioned previously in Section 5.3.2. While gas boilers would still contribute to carbon emissions if implemented, use of these assets in an emergency back-up case or special case (such as peaking) is permitted per SUCF Directive 1B-2: "On-site combustion of fossil fuel and biofuels is prohibited, except for emergency back-up power and emergency heat, and other special cases (*i.e.*, laboratory process loads, kilns, kitchen equipment) which are submitted for approval to the SUCF Project Coordinator". Gas boilers were not considered for base load applications due to these restrictions in 1B-2.

5.4.2 Renewable source technologies

Table 23 shows the relevant renewable source technologies and the result from the screening process:

Table 23. Technology screening process, renewable sources

RENEWABLE SOURCES/TECHNOLOGIES 1= poorest performance						st performance
Technology	Notes	CO2 neutrality -	CAPEX 🗸	OPEX 🗸	System integratio 🗸	Go Forwarc i -
Bio-oil fired turbine (simple cycle)	 Base load technology High CAPEX Very high OPEX 	4	2	1	3	No
Bio-oil engines	 Base load technology Very high OPEX 	4	2	1	4	No
Biomass ORC CHP, wood chips	 Relatively high CAPEX Low OPEX 	4	1	4	3	No
Biomass ORC, wood pellets	 Relatively high CAPEX High OPEX 	4	1	2	3	No
Biomass HOB, wood chips	- Low CAPEX - Low OPEX	4	4	4	5	No
Biomass HOB, wood pellets	- Low CAPEX - High OPEX	4	4	2	5	No
Bio oil boiler	- Low CAPEX - High OPEX	4	5	2	5	No
Photovoltaics	 Intermittent source / need backup from grid Limited production winter / high in summer 	5	2	5	3	Yes
Wind turbine (large scale)	 Relatively low CAPEX Need backup from grid 	5	3	5	3	Yes
Bio gas production - anaerobic digest	-High CAPEX / OPEX	5	1	2	2	No
Large Solar Thermal	 High CAPEX Limited production in winter / high in summer 	5	1	5	3	No
HOB - conversion from n-gas to bio-o	- Very low CAPEX - High OPEX if used in baseload	4	5	2	5	Yes
Boiler, hydrogen	- High CAPEX / OPEX	4	1	1	1	No
Cogeneration, hydrogen	- High CAPEX / OPEX	3	1	1	1	No
Blue Hydrogen	 Derived from n-gas and produced from fossil fuels CO2 is captures in a CCS process and stored 	4	1	1	2	No
Green Hydrogen	 Produced from electrylyzes Electricity is based on renewable electricity 	5	2	1	2	No
Run off river - underwater turbine	- Limitation in electricity production - Fully developed?	5	2	1	2	No
Rooftop solar thermal		5	3	4	3	Yes

As noted in Table 23, the following technologies continued to the scenario planning phase:

- A boiler converted from natural gas to bio-oil
- Rooftop scale solar thermal (individual buildings)
- Photovoltaics
- Wind turbine

It is noted that per 1B-2 (July 2023 version), "onsite combustion of fossil fuel and biofuels is prohibited, except for emergency back-up power and emergency heat, and other special cases (*i.e.*, laboratory process loads, kilns, kitchen equipment) which are submitted for approval to the SUCF Project Coordinator".

The arguments to why large-scale solar thermal is screened out include the following:

- Production is mainly in the summer season, where there is limited demand for heat
- It will not lead to reduced CAPEX for other technologies since they would be designed for full capacity considering potential for limited sun in the winter months
- High CAPEX technology needing significant available space

5.4.3 Electrification technologies

Table 24 shows the relevant electrification technologies and the result from the screening process. Most are heat pumps with different capacities (single building or central) and different heat sources (wastewater, air, or ground).

Table 24. Electrification technologies

2 ELECTRIFICATION TECHNOLOGIES 1= poorest performance 5= highest performance CAPEX Notes ΟΡΕΧ neutrality Base load or peak load - Very low CAPEX for boiler - High requirement for electric Electric boiler 4 5 5 Yes load. Potentially need for larger upgrade of electric feeders - High OPEX - Air as secondary heat source - Low efficiency in winter period HP (air-to-water) - large scale 3 3 4 Yes - Reduction in load in winter season - Standardized product, low HP (air-to-water) - small scale CAPEX 2 3 3 Yes - Low efficiency in winter period - Base load technology GSHP open-loop, deep geothermal 3 3 No - High risk and high CAPEX - Closed loop, baseload GSHP closed-loop, horiz, individual technology 3 3 No - Requires high available area - Closed loop, base load technology Requires much available space 4 Yes GSHP closed-loop, vert 2 3 - High CAPEX - Boreholes would require balancing in summer periode - Base load technology HP (sewage water-to water) Often, relatively low CAPEX 3 3 4 Yes compared to benefits - low OPEX considering that heating and cooling is produced Heat recovery chillers, electric simultaneously 3 4 Yes - higher CAPEX compared to conventional chiller - low OPEX considering that heating and cooling is produced Chillers, electric simultaneously 3 3 5 Yes - lower CAPEX compared to heat recovery chillers

5.4.4 Borehole thermal energy storage (BTES)

Borehole Thermal Energy Storage (BTES) refers to systems that utilize closed-loop ground heat exchangers that are used as heat source, heat sink, and seasonal thermal storage. Conventional ground source borefields have a reduced seasonal thermal storage capacity as compared to a BTES specifically designed and operated to optimize thermal storage characteristics. Both types exchange heat with the ground and store thermal energy within borefields, and each has its advantages and disadvantages. It is beyond the scope of this study to determine the most economical BTES design for the site, which should be evaluated in follow-up work.

Number of boreholes

To estimate the number of boreholes needed to serve the campus heating (or cooling) load, an average heat extraction rate is needed. The scope for this project did not include test bore installation and analysis, but Ramboll did review previous investigation results from the Shineman geothermal project and the Hewitt Hall renovation project. Ramboll applied a heat extraction value of 40 Btu/hr-ft and a heat of rejection value of 68 Btu/hr-ft. Using that assumed value, a borehole depth of 500 feet, and 20 ft spacing between boreholes, the number of thermal of boreholes to cover the baseload heating and cooling for the buildings the district is estimated. This will be covered in detail in Section 5.7.1.

Borehole balancing

Using the subsoil as BTES (borehole thermal energy storage) means that the ground temperature for the entire area of the BTES field varies in temperature. Since the campus is heating dominant (a higher demand for heating than for cooling), the demand for cooling is not adequate to rebalance the boreholes and, therefore, the subsoil would eventually get cooler from season to season unless the boreholes are balanced.

The borefield will be at a lower temperature after winter because of high heat demand. Whether the ground temperature can be partly used for direct cooling of the buildings should be further studied. If it is possible, the benefit is that part of the cooling is produced as free cooling with a very high efficiency, where the only electricity needed would be for pumping. The warmer water from the buildings will partly balance the boreholes as the buildings are cooled. When the cooling supply temperature reaches a certain maximum temperature, it would be necessary to operate the heat pumps to meet the cooling load, but also to supply additional heating for the balancing of the boreholes.

Because the campus is heating dominant, it is expected that it will be necessary to add additional heat to the boreholes. Various methods for balancing the borefield for each scenario is discussed in Section 5.7.1. This may either be from direct use of the warmer ambient air in the summer season but may also be from the heat pumps used as conventional heat pumps where cooling is wasted in the ambient air (air source heat pump) and the condenser side of the heat pumps is connected to the boreholes.

5.4.5 Wastewater treatment plant heat recovery

Wastewater can be an effective heat source for heat pump technology if its temperatures are at least a few degrees above freezing. The higher the wastewater temperature, the more heat that can be extracted. Ramboll evaluated the economic feasibility of recovering the low temperature heat from a wastewater treatment plant (WWTP) to feed a water-to-water HP, which was compared to a geothermal heat source in the form of vertical boreholes. Both solutions (wastewater and geothermal heat) provide low temperature heat, which can be used by a HP to produce higher temperature heat.

The Oswego Westside Wastewater Treatment Facility is about half a mile from the central heating plant, as shown in Figure 27. The yellow line represents the path of the piping that would connect the two plants. A heat exchanger at the WWTP would capture heat from the effluent as it leaves the plant for use as a heat source in the water-to-water HP.

Figure 27. Oswego westside wastewater treatment facility location

Ramboll obtained daily flow (in millions of gallons per day) and effluent temperature from the WWTP, illustrated in Figure 28. From this data, the amount of heat that could be extracted from the effluent leaving the plant and the potential heat output of the heat pump was estimated, as shown in Figure 29.

Figure 28. Oswego westside WWTP data

Wastewater can potentially cover approximately 67% of the future annual heating baseload, as shown in Figure 30. A secondary baseload technology, such as geothermal, or other heat sources discussed in the subsections that follow, would cover the remaining baseload.

WASTEWATER HEAT PUMP PRODUCTION

Figure 30. Wastewater heat pump production

5.4.6 Lake Ontario Heat Source

Utilizing water from Lake Ontario as a heat source was reviewed. Water temperature data at depths ranging from 1 m to 19 m (about 3 ft to 62 ft) was obtained from the Upstate Freshwater Institute. Data during winter months was only available from the 2021-2022 season. Figure 31 shows that the lake water temperature in the winter drops to about 32°F. Lake water temperature data at deeper depths was not available. At the temperatures observed, the heat pump evaporator would experience a very low delta T, which would result in a large flow of lake water, and thereby large pipe dimensions. The hours of operation of the system would be limited to conditions with warmer lake water temperatures to avoid freezing the return lake water. Due to these limitations and likely limited hours of use, installing a dedicated lake water intake would likely be cost prohibitive.

However, the Metropolitan Water Board raw pumping station is adjacent to the campus and takes in raw lake water and pumps it to a treatment facility several miles inland. Ramboll reached out to the Metropolitan Water Board to discuss the existing typical flow of the system and the excess capacity available. The board was not at a point to discuss this information, as they are assessing prior commitments for incoming industry (*i.e.*, Micron) that may utilize a significant amount of water.

A study conducted by The Research Foundation for the State University of New York assessed the potential to use lake water for areas of Central New York⁶. This study indicates that at a depth of 250 feet, the water temperature is approximately 39°F year-round. However, temperatures are

⁶ Assessing the Feasibility of a Central New York Naturally Chilled Water Project, The Research Foundation, The State University of New York, June 2011

in general lower from the lake than from wastewater, making wastewater a better alternative as a heat source. If wastewater is used as a priority, then lake water will have limited hours in operation (intermediate technology is Figure 30).

LAKE ONTARIO WATER TEMPERATURE (FROM UPSTATE FRESHWATER INSTITUTE)

Figure 31. Lake Ontario water temperature (obtained from Upstate Freshwater Institute)

5.4.7 Substation Transformer Waste Heat

Two electric distribution substations owned by National Grid are adjacent to the campus, highlighted in Figure 32. The transformers are oil cooled, and heat can be captured for use as a heat source for heat pumps. There are two size units, a 115/34.5 kV transformer and a 345/115 kV transformer. Based on transformer loss data provided by National Grid, at full load, Ramboll estimates 400 MMBtu/h could be recovered from the smaller transformer and 2,400 MMBtu/h could be recovered from the smaller transformer and 2,400 MMBtu/h could be recovered from the smaller transformer and 2,400 MMBtu/h could be recovered from the transformer. A total of 2,800 MMBtu/h could be recovered from the transformers at full load, and about 1,600 MMBtu/h at 50% load. It is unclear what the typical loading of the transformers is. At an average of 50% transformer load versus 100% load, the waste heat would provide about 8% and 14% of the annual heat load, respectively. Ramboll suspects these transformers are around or below 50% loaded on average, limiting any heat recovery potential.

Figure 32. Electric substations

TRANSFORMER HEAT RECOVERY

Figure 33. Transformer Heat Recovery

5.4.8 Cluster versus centralized

At the time this study was being conducted, SUNY Oswego was also conducting a NYSERDA Community Heat Pump project that looked at a geothermal plant at Hewitt Hall that would provide heating and cooling to a cluster of buildings around Hewitt Hall. SUNY Oswego was interested in building out similar cluster plants around the campus. Ramboll and SUNY Oswego developed the clusters shown in Figure 34. A common energy center for each cluster would be located within existing buildings to provide heating and cooling to the buildings within the cluster. The energy centers were identified by Ramboll and SUNY Oswego based on location within the cluster, available mechanical area, and renovation timeline. The following buildings were identified to house the energy centers:

- Cluster C Central Heating Plant
- Cluster E Mackin
- Cluster N Riggs
- Cluster W Little Page DH
- Cluster S Laker Hall

Figure 34. Heating and cooling clusters

Ramboll evaluated the cost difference between individual clusters versus connecting clusters to a single centralized energy center, as illustrated by the highlighted piping in Figure 35.

Figure 35. Cost comparison to connect clusters

Because of the relatively short piping connections needed to connect the clusters, Ramboll concluded that it was more cost effective to connect the Clusters E, W, and N to cluster C than to build out dedicated energy centers for each cluster. The distance and need to cross NY104 made it more cost effective to leave Cluster S as a stand-alone cluster. The results of the analysis are presented in Table 25.

Energy Center	Energy Center Size (GSF)	Energy Center Cost	Connection Pipe Length and Diameter	Cost of Connection	Takeaway
Cluster W	4,900	\$1.675 M	8″ Ø x 920′	\$1.130 M	Clustering is 1.5 times more expensive
Cluster E	3,600	\$1.230 M	6″ Ø x 577′	\$0.530 M	Clustering is 2.3 times more expensive
Cluster N	3,600	\$1.230 M	6″ Ø x 560′	\$0.510 M	Clustering is 2.3 times more expensive
Cluster S	2,000	\$0.684 M	4″ Ø x 2,400′	\$1.980 M	Clustering is ~65% cheaper
Sum of Clusters W, E, N	-	\$4.135 M	-	\$2.170 M	Clustering is 1.9 times more expensive

Table 25. Cluster versus centralized cost comparison

74/124

5.4.9 Additional technologies and heat sources

Additional technologies and heat sources were discussed and researched during meetings between SUNY Oswego and Ramboll. The technologies are listed below, but further analysis was not performed.

- Heat from composting
- Technical challenges of within-pile heat exchangers
 - Within pile heat exchange tubing can be easily damaged, due to compression from compost settling, loading, or unloading
 - Recirculating the within-pile heat exchange liquid too early or too fast can inhibit the composting process, reducing temperatures and future heat exchange
 - Compost cannot be mixed once the heat exchanger is placed within the pile
 - Energy recovery is limited due to poor heat conduction characteristics of composting feedstocks
 - High uncertainty on system performance
- Very few examples of this technology
- No predictable trend of heat recovery by system type or scale was apparent
- Heat recovery rates varied significantly and were dependent on system scale, type of heat exchange system, composting method, composting feedstocks, continuous versus batch loading, model versus operational data, geographic location, and duration of heat recovery
 - High uncertainty on system costs
- Of the 45 systems reviewed, only eight detailed cost. Without an economic component, comparison between technologies becomes difficult
 - Microhydro
- Based on pre-commercial demonstration project⁷
- Necessary water velocity is 3.3 ft/s or 2 knots (1 m/s)
- Data from Oswego River was not available
- Brookfield Renewable is the operator of hydro dams on the Oswego River
 - Potential to enter into a power purchase agreement (PPA) with Brookfield to purchase hydro power

5.4.10 Tank thermal energy storage (TTES)

Tank thermal energy storage (TTES) is a very important component to overall efficiency of energy systems, particularly district heating and cooling. TTES stores hot or cold water in insulated tanks to help balance energy demand and supply while ultimately reducing peak demand, energy consumption, carbon emissions and costs.

TTES is designed as a day-to-day storage, being able to discharge during periods of high electricity prices or charge during periods of low electricity prices. The total storage volume depends on system needs and desired function. TTES helps to level out daily fluctuations, whereas other types of storage are more suited for seasonal fluctuations (as for example, borehole thermal energy storage). TTES can also function as a cooling storage.

⁷ <u>Tidal Testing Underway in New York's East River | Department of Energy</u> <u>Verdant Power deploys three tidal turbines in New York City's East River (hydroreview.com)</u>

The benefits of TTES include the following:

- Lowers energy system operating costs, since the storage enables operation in off-peak hours for electricity
- Reduces the requirements for peak production since the storage can help provide peak. If peak is produced from fossil fuels, it will thereby reduce the GHG emissions
- Can, to a certain extent, provide backup for the system if pumps and ancillary equipment are on a secured electrical supply or emergency generator backup
- Functions as a "virtual battery" in energy systems dominated by intermittent renewable energy production and variability of hourly electrical prices. TTES has similar characteristics as a chemical battery (using electricity at low electricity prices and curtailing consumption of electricity when prices for electricity are high) but provides significantly higher energy content than a chemical battery and at a lower overall cost.

TTES typically can be in the form of cylindrical steel tanks (typically located above ground level) or concrete tanks (which can be partially buried if necessary). The tanks are insulated in both cases. In most installations, the temperature supplied to the storage is the supply temperature in the district heating network. Temperature stratification (i.e., having distinct layers of water at different temperatures within the storage tank rather than a fully mixed tank with a uniform temperature) can be achieved through multiple inlets, which increase the performance of the storage. Figure 36 shows the principles of a TTES:

Figure 36. Principle of a tank thermal energy storage

There is not a physical separation between the warm and the cold water. The separation is handled by the difference in density between warm and cold water. Since the temperature in the separation layer is in between the supply and return temperatures, it is desired to keep it as thin as possible, typically 6-8 feet. Therefore, to avoid disturbances of the separation layer the inlet and outlet velocities are kept low with diffusers in the top and bottom of the tank. A tall and slim tank is preferred, since it will limit the unusable volume in the separation layer.

To avoid corrosion of the tank (in the case of a steel tank), steam is sometimes used in the space between the water level and the tank structure. More often, nitrogen is used instead of steam, and the nitrogen is produced from a small nearby nitrogen generator. If necessary, tanks can be slightly pressurized, but that will increase the construction costs. Most often, the water temperature will not exceed 212°F (100°C) in new low temperature heating systems, and

therefore, the tank will be unpressurized. The temperatures in the example shown are 95°C (203°F) as supply temperature, and 40°C (104°F) as return temperature.

Unpressurized tank storage will serve to maintain minimum static pressure for a district heating network in case of pump failure. Therefore, it is recommended that the water level in the tank is always above the highest point in the district heating system. If the water level is below the highest point, it would be necessary to separate the systems, which will complicate the installation and increase the risk of failures.

The basic structure of connecting the heat storage tank to the district heating system, as a pressure holding vessel, is shown in Figure 37 below. With the heat storage tank included in the system, the instantaneous demand of the heat consumers does not have to equal the heating plant output; instead, the storage component allows flexibility in operation of the system to achieve energy cost and GHG emission savings.

Figure 38 below is from DN Tanks⁸ and illustrates how thermal energy (chilled water in this case) is produced during periods of off-peak electrical periods, collected in a thermal energy storage tank, then withdrawn and distributed to the facility during on-peak periods.

Figure 38. Connection of a TTES – cooling storage

5.4.10.1 Preliminary sizing of thermal storage

The TTES should be able to provide heating or cooling to the energy system when there is limited renewable electricity in the grid. Therefore, in principle, it should be designed based on a thorough analysis of the prices for electricity and their fluctuations. However, since the further build out of intermittent renewable energy in NY will occur over many years to meet the goals of CLCPA, for purpose of this analysis, Ramboll assumed that TTES would cover 8 hours of base load operation.

From the load curve described in Section 5.3.2, it is estimated that the 60% of the peak heating demand covers approximately 95% of the heat demand. This load has been used as basis for the preliminary design. The peak heating demand is approximately 58 MMBtu/h, and the maximum baseload is approximately 35 MMBtu/h.

As previously mentioned, it is desired to keep the stratification layer between the warmer (supply) and the colder (return) water as thin as possible. The larger the diameter of the tank storage compared to the height of the tank storage, the more volume there will be in the stratification layer. Therefore, a higher and slimmer tank storage is generally preferred.

For this assessment, Ramboll has estimated a gross tank volume of 500,000 gallons. Based on a diameter/height ratio of 0.6, the water level height is estimated at 61 ft with a diameter of 37 ft (excluding insulation).

5.4.11 Aquifer thermal energy storage (ATES)

Aquifer Thermal Energy Storage (ATES) system is an innovative open-loop geothermal technology that relies on seasonal storage of cold and/or warm groundwater in an aquifer. An ATES system requires significantly fewer boreholes than a traditional geothermal borefield of the same capacity. As a result, ATES can have significantly lower CAPEX, should it be a viable option for the site. An ATES system requires suitable geological formations and sufficient water flow extraction rate from the borings.

Ramboll reviewed the hydrogeology of the Oswego area and found that ATES is not a viable option to pursue.

5.4.12 Distribution system: 4-pipe versus 2-pipe

When it comes to heating and cooling systems, two popular options for thermal distribution are the 4-pipe system and the 2-pipe system. The main difference between these systems lies in the number of pipes used for circulating hot and cold water. In a 2-pipe system, a single pipe is responsible for both the supply of hot water for heating and chilled water for cooling. On the other hand, a 4-pipe system utilizes separate pipes for hot water and chilled water, allowing simultaneous heating and cooling operations. The choice between a 4-pipe or 2-pipe system depends on factors including energy efficiency requirements and design flexibility, with each system offering unique advantages for heating and cooling applications.

Diagrams representing 4-pipe and 2-pipe systems are shown in Figure 39 and Figure 40, respectively.

Figure 39. 4-pipe system

2-pipe system

Description

One set of pipes (a supply and return line) is installed.

During the heating season (e.g. October-April), the network runs as a district heating system, supplying hot water (e.g. 150 F supply/ 110 F return) to buildings.

During the cooling season (e.g. May-September), the network runs as a district cooling system, supplying chilled water (e.g. 43 F supply/ 55 F return).

Residual heat demand during the cooling season must be met at building level, e.g. via electric resistance heating, solar thermal or other

In order to avoid thermal stresses on the pipes, the switch from heating supply to cooling supply (and vice versa) cannot happen instantly, but will require some hours to acclimate

Figure 40. 2-Pipe system

The main advantage of a four-pipe system lies in its ability to provide simultaneous heating and cooling, allowing for enhanced comfort and control within a building. However, it is important to note that this system does come with a drawback, namely a higher capital expenditure due to the need for two sets of pipes. In situations where the cooling demand is limited, the implementation of dedicated centralized cooling may not be cost-effective.

On the other hand, a two-pipe system offers a more cost-effective solution as it requires only a single set of pipes to supply both heating and cooling. This streamlined design leads to a lower installation cost, particularly when providing cooling to existing buildings. However, it's worth noting that two-pipe systems lack flexibility as they are unable to provide simultaneous heating and cooling. Switching between dedicated modes takes time and introduces additional thermal stress cycling to the piping system, which can have adverse effects on both reliability and useful life. Moreover, defining the exact switch date can be a challenging task. Cooling and heating demands must be seasonal and easily defined for this type of system to work sufficiently.

The project team considered the advantages and drawbacks of both system types. The campus currently shuts down parts of the steam distribution in the summer and regularly shuts down local chillers and cooling towers for the heating season. As a result, SUNY Oswego was interested in advancing the 2-pipe system into the list of scenarios selected for analysis.

5.4.13 Ambient loop

An ambient loop circulates ambient temperature water throughout a district piping network. The low temperature is not suitable for direct heating; however, it is the source water supply for individual water source heat pumps (WSHP's) installed at each building. Building level heat pumps, as opposed to central heat pumps, is the fundamental difference between an ambient loop and a low temperature hot water (LTW) network. Oswego was not interested in exploring an ambient loop due to concerns of maintaining heat pumps at all buildings on campus.

5.5 Hydraulic modeling

Hydraulic modeling plays a crucial role in designing and analyzing piping distribution systems, including water supply networks, sewer systems, and energy distribution systems. These systems require efficient and reliable hydraulic performance, and hydraulic modeling enables engineers to predict and optimize fluid flow within them. It assists in determining appropriate pipe sizes, identifying potential pressure losses, predicting temperature differentials, evaluating system capacity to meet demands, and identifying operational issues. With its ability to simulate various scenarios, hydraulic modeling provides engineers valuable insights for informed decision-making to ensure optimal performance of piping distribution systems.

Hydraulic modeling is an efficient way to evaluate the current situation and the impact of changes to the distribution network. For instance, it assesses the impact of modifications such as pipe size alterations, network sectioning through valve operation, or distribution network expansion. Furthermore, the hydraulic model can be used to evaluate different production strategies involving multiple heat sources operating at varying temperatures. It also aids in determining maximum throughput, optimal pipe sizing, and pump requirements.

Ramboll utilized existing steam site piping drawings, flow diagrams, and stated design conditions to determine that the current distribution network cannot be reused for the proposed low-temperature hot water networks considered in this project.

New distribution networks were modeled for the centralized and cluster scenarios to supply lowtemperature hot water or chilled water in a 2-pipe distribution using the Termis software package. The centralized distribution systems were modeled with the energy center at the existing Central Heating Plant, as shown in Figure 41. The cluster distribution system assumed the same path for piping distribution but with the pipes connecting the clusters removed, as shown in Figure 42. As mentioned in Section 5.4.8, the following locations were identified for the cluster energy centers:

- Cluster C Central Heating Plant
- Cluster E Mackin
- Cluster N Riggs
- Cluster W Little Page DH
- Cluster S Laker Hall

The analysis, based on space heating and cooling demands, as well as domestic hot water demands, provided piping sizes, system pressure drops, and operating pressures for the distribution systems. The models assume direct buried piping throughout the campus. Appendix E contains summaries of the model assumptions and outputs for the three distribution systems. The results from the analysis were used to size the main distribution pumps and determine piping sizes and quantities, which were then incorporated into the scenario cost estimates.

Figure 41. Centralized 2-pipe distribution network

Figure 42. Cluster 2-pipe distribution network

5.6 Conceptual scenario selection and initial screening

The objective of the planning efforts is to develop a group of scenarios to assess centralized and decentralized energy supply alternatives, and to identify those that will be advanced for further assessment. The scenarios are based on the technologies presented in Section 5.4 and consider the aspects below through a combination of quantitative and qualitative screening:

- Heating and cooling demands for each building on the campus
- Domestic hot water production during winter and summer months
- Best suited technologies and energy systems

5.6.1 Scenario variations

The number of scenarios was established through the discussion of variations during the project meetings. The following variations were identified in the provision of heating and cooling:

- GSHP, ASHP, natural gas boilers and electric boilers as centralized technologies
- GSHP, ASHP, lake water heat pumps, and wastewater heat pumps as baseload technologies
- Centrally supplied heating and cooling versus cluster heating and cooling
- 4-pipe versus 2-pipe distribution networks
- Production of domestic hot water (centralized and/or local)

The following subsections below describe the additional screening that was conducted and reviewed with the campus and SUCF to select variants considered most practical for each campus.

5.6.1.1 Domestic hot water

Domestic hot water at the campus is mainly produced at the buildings from the central plant steam distribution system. Some steam lines are shut down during the summer, and numerous buildings have electric or natural gas DHW heaters for summertime production of DHW. For the decarbonization scenarios, DHW production from the proposed LTW distribution system via building level heat exchangers was evaluated. For the 2-pipe distribution network scenarios, local production of DHW at each building in the cooling season will be analyzed.

A qualitative comparison of relevant technologies was performed for local production of DHW. Local production units that could be considered to produce DHW are summarized below. Additionally, it could be considered to connect buildings to produce DHW from one unit to several buildings.

- Gas/oil boilers
- Electric boilers
- Smaller heat pumps (air or ground source)
- Solar thermal panels

Critique and observations of the technologies include the following:

 New gas/oil boilers are prohibited from being installed in accordance with SUCF directive 1B-2 and would not comply with the long-term goals for the campus transition away from fossil fuel use.

- Electric boilers have very simple components and are not dependent of a heat source as air or water. CAPEX is low, but OPEX can be high.
- Heat pumps have higher costs (\$ per MMBtu/h) compared to electric boilers and have additional complexity. This is important since the operation and the efficiency of the units is highly dependent of the subsequent adjustment after the installation. Heat pumps should predominantly be considered when the unit can achieve many annual operating (more than 3,000 to 4,000 full load hours)
- Solar thermal production is dependent on actual solar radiation. The design of a solar thermal
 plant should balance the limited demand for DHW in the summer season with the production.
 Therefore, tank storage for DHW would be necessary. It may be necessary to curtail
 production in some instances or to utilize excess solar thermal production for balancing
 geothermal boreholes.

5.6.1.2 Ground-source heat pump (GSHP) versus air-source heat pump (ASHP)

Two potential electrification technologies to serve the baseload demands at the campus have been considered: ground-source heat pumps (GSHP) and air-source (air-to-water) heat pumps (ASHP). The following items were discussed:

- **ASHP fan noise.** The evaporator of the ASHP is equipped with fans to improve the heat transfer rate. When in operation, the fans create noise. Depending on the context, noise reduction/mitigation may be required, which can be challenging and an add cost. However, the fans may be equipped with variable frequency drives to reduce fan speed, which will decrease the noise when operating at reduced speed.
- Land availability for geothermal. A GSHP will require a geothermal heat exchanger and access to the subsurface. Vertical boreholes significantly reduce the space requirements compared to a horizontal geothermal heat exchanger. The installation of the boreholes will have substantial surface disruption around the building during the installation phase. Once the boreholes are installed, the soil around the area can still be used, but substantial new building construction would not be possible. Parking lots can be a good application for geothermal borefields, particularly when a parking lot is being replaced or added.
- **Space availability for ASHP evaporator.** The ASHP evaporators will be located outdoors. Smaller units can be installed on the ground or on the top of buildings, but larger units will require dedicated horizontal space for the installation of the air heat exchanger.
- ASHP performance limitations on cold days. ASHPs experience lower operating efficiencies during colder periods of the year, namely when ambient temperatures are well below freezing. This limitation is driven by how cold the refrigerant within the ASHP system can get, as the refrigerant must be colder than the air in order to accommodate an effective heat transfer. While innovations in ASHP technology have resulted in systems capable of operating at subzero ambient temperatures, the drop-off in operating efficiency and capacity at colder ambient temperatures is still a crucial issue to consider when evaluating baseload technologies.

ASHP

ASHPs considered in this study are air-to-water heat pumps that use ambient air as the heat source or heat sink to generate hot water or chilled water, respectively. ASHPs use a refrigeration cycle to facilitate this heat transfer between components. ASHPs can be integrated into either a decentralized (building-level) or centralized system, such as a district thermal system. In either arrangement, ASHPs are best sized to contribute toward the annual baseload heating demand. This is due to the heat pump's cost, inverse relationship between capacity and demand, and efficiency degradation for peak demand operation. In cold climates, application of ASHPs for heating are often more economical when coupled with the use of more conventional heating technologies, such as electric or gas-fired boilers, for supplemental heat for peak demands.

Some additional attributes of ASHPs to consider for implementation into a building-level or district-level hot or chilled water system are:

- ASHPs have higher efficiency than electric boilers, but this efficiency is impacted by ambient air temperatures
- High CAPEX relative to other technologies such as boilers
- Large space requirements for the air coolers
- Generally located on roof space of existing or new buildings, or dedicated open-air mechanical space on the ground
- Will have a noise impact to the immediate surroundings
- Will have a visual impact to a campus's or building's overall aesthetic
- Can be configured achieve hot water supply temperatures of up to 180°F
- The lower the supply temperature, the higher the efficiency of the ASHP
- Outdoor air coolers will pose the risk of icing-over when operating in sub-freezing temperatures
- Defrosting methods/options such as the use of hot refrigerant gas must be taken into account when designing an ASHP system

Figure 43 below represents a pro/con analysis done for ASHPs when compared to other technologies. Some of the attributes of ASHPs discussed previously are reiterated in the analysis.

Pros

- Free supply from ambient air
- Unlimited supply of ambient air
- Always accessible
- Scalable
- Less expensive to install when compared to Ground Source or Wastewater Source Heat Pumps

Cons

- Low energy content -> large air flows
- Noise
- The efficiency is low when the demand is high (During the years coldest months)
- Water vapor results in condensate and frost when the temperature approaches the freezing point
- The capacity decreases with the outside temperature
- Overcapacity if designed for winter peak
- Very few full load hours

Figure 43. ASHP pro/con chart

GSHP

The Shineman Center currently has a GSHP system serving most of the heating loads and all cooling loads of the building. Hewitt Hall is currently under construction and the building will be heated and cooled with GSHPs.

GSHPs as considered in this study are water-to-water heat pumps that use the ground as the heat source or heat sink to generate hot water or chilled water, respectively. In the context of vertical closed-loop GSHP technology screened in Section 5.4.4, heat is exchanged to the earth via an array of vertical closed-circuit boreholes (the borefield) installed underground. The GSHP systems circulate a water or glycol solution through the borefield on one side and the building or central HW or CHW distribution loop on the other side.

Like ASHPs, GSHPs can be integrated into either a decentralized or centralized system, and they are also often most economical when sized to meet baseload heating demand rather than the entire peak heating demand. This is due, primarily, to their relatively high cost but also due to efficiency degradation for ground conditions typical in peak demand operation. In cold climates, application of GSHPs for heating are often more economical when coupled with the use of more conventional heating technologies, such as electric or gas-fired boilers, for supplemental heat for peak demands.

Some additional attributes of GSHPs to consider for implementation into a building-level or district-level hot or chilled water system are:

- Water is pumped in a closed-circuit through the ground to exchange heat with the ground
- Significant civil and ground works would be required to install this type of circuit
- Ground and site characteristics, along with load profiles, should be understood when sizing a GSHP system
- High CAPEX relative to other technologies such as boilers
- Large space requirements to install borefields
- Can achieve hot water supply temperatures of up to 180°F
- The lower the supply temperature, the higher the efficiency of the GSHP •

Figure 44 below represents a pro/con analysis done for GSHPs when compared to other technologies. Some of the attributes of GSHPs discussed previously are reiterated in the analysis.

Pros Cons · Risk of imbalances in thermal profile of ground · Free supply from ground · GSHP must be sized correctly to avoid this Scalable Large space required for borehole arrays Stable ground temperatures High CAPEX · High annual operating efficiency Performance may vary with local geology Higher efficiency in coldest months, compared to AHSP

Figure 44. GSHP pro/con chart

Conclusion

There are both advantages and disadvantages to GSHP and ASHP technology. As explained later in Section 5.7, Ramboll optimized the advantages of both technologies by using ASHP and GSHP to collectively serve as the baseload in some scenarios.

5.6.1.3 Geothermal borefield locations

The campus has substantial green space and parking area available for geothermal borefields. The shaded areas shown in Figure 45 represent the area that could be used for the borefield installation for each energy center. The potential areas were identified based on discussions with the campus; considerations included planned parking lot or courtyard renovations, intended future use of each area, and required land area for the borefield. The centralized scenario borefield could be placed in the Cluster C area (blue shading), in addition to the Cluster N area (orange shading), and the area to the east of the Cluster N area, if additional land is required.

Additionally, the existing Shineman Center borefield is shown as light blue shading and the borefield for Hewitt Hall is shown in pink shading. At the time of this study, Hewitt Hall was still under construction, but the borefield has been installed.

Figure 45. Potential and existing borefield locations on campus

5.7 Final screening and selection

This section contains a summary of the final scenarios that advanced through energy modeling and techno-economic analysis, including their impact on reducing carbon emissions.

5.7.1 Final scenarios selected

Through a process of qualitative and quantitative analyses, Ramboll reduced the number for scenarios from around 40 to 7, which advanced to further detailed techno-economic analysis. Table 26 below lists the seven final scenarios for the techno-economic analysis.

The business-as-usual (BAU) scenario considered in this study provides a comparison relative to the proposed modeled scenarios of costs and GHG emissions for the campus heating and cooling systems. In all cases, the scenarios numbered with an "a" indicate natural gas as the peak load technology and "b" indicate electricity as the peak load technology.

Table 26. Final scenarios for the techno-economic assessment

Scenario	2a	2b	4a	4b	5b	6a	6b
Approach	Cluster GSHP Variant	Cluster GSHP Variant	Centralized GSHP Variant	Centralized GSHP Variant	Centralized WWHP + GSHP Variant	Centralized Cascade ASHP+WSHP Variant	Centralized Cascade ASHP+WSHP Variant
Total number of heated buildings	54	54	54	54	54	54	54
Total number of cooled buildings	44	44	44	44	44	44	44
Number of buildings connected to district network	52	52	52	52	52	52	52
Total heat load of all buildings (SH+DHW), MMBtu/year	167,647	167,647	167,647	167,647	167,647	167,647	167,647
Heat load covered by DH network, MMBtu/year	167,277	167,277	167,277	167,277	167,277	167,277	167,277
Baseload	GSHP	GSHP	GSHP	GSHP	WWHP + GSHP	Cascade ASHP+WSHP GSHP	Cascade ASHP+WSHP GSHP
Peaking	Natural gas boiler	Electric Boiler	Natural gas boiler	Electric Boiler	Electric Boiler	Natural gas boiler	Electric Boiler
DHW	Centralized Local Electric (Summer)	Centralized Local Electric (Summer)					
Space Cooling	GSHP Chiller	GSHP Chiller	GSHP Chiller	GSHP Chiller	GSHP Chiller	GSHP Chiller	GSHP Chiller
Thermal Storage	Yes	Yes	Yes	Yes	Yes	Yes	Yes

Scenario	2a	2b	4a	4b	5b	6a	6b
Backup Heat	Natural gas boiler	Natural gas boiler	Natural gas boiler				
Borefield Balancing	Cooling and ambient air	Cooling and Wastewater	Cooling and ASHP	Cooling and ASHP			
Location of Borefield	Figure 45	Figure 45	Figure 45				
Distribution Network	2-pipe	2-pipe	2-pipe	2-pipe	2-pipe	2-pipe	2-pipe

GSHP = ground source heat pump; WWHP = wastewater heat pump; ASHP=air source heat pump

The **Scenarios 2a and 2b** are cluster heating and cooling scenarios, whereas **Scenarios 4a through 6b** are centralized heating and cooling scenarios. **Scenarios 2a and 2b** are identical to **Scenarios 4a and 4b**, except for cluster versus centralized distribution approach, respectively. The centralized scenarios are conceptually identical to each other, except for the different baseload technology mix that is assumed at a new energy center that would supply the centralized district heating & cooling (DH&C) network.

Scenarios 2b, 4b, 5b, and 6b consider full electrification, while Scenarios 2a, 4a, and 6a consider a natural gas boiler to address peaking during the heating season.

Full electrification scenarios (**2b**, **4b**, **5b**, **and 6b**) are equipped with natural gas emergency backup boilers, which are sized to meet the peak heating loads. The natural gas peaking boilers in **Scenarios 2a**, **4a**, **and 6a** can double as emergency backup boilers. All boilers are in their respective energy center.

As shown in Table 26, the centralized scenarios only differ in terms of technology mix used in the energy center supplying the centralized distribution network. In all scenarios, a borefield is used as the heat source and sink for water-to-water HPs. In summer, the GSHPs switch mode, producing cooling for the 2-pipe distribution network and injecting the heat from the condenser back into the borefield to help recharge it before the start of the next heating season. Due to the difference between heating and cooling demand (see Figure 18 and Figure 19), the heat from the cooling production in summer is not sufficient to fully balance the borefield. Methods for balancing the borefield are discussed below.

As shown in Figure 46, the base load technology (heat pumps) will cover approximately 60% of the peak heating load (in MMBtu/h), thereby covering approximately 95% of the annual demand for heat (in MMBtu per year). The heat pumps have the capability to produce cooling but cannot provide 100% of the cooling load when sized for 60% of the heating demand. Additional cooling capacity could be provided by chillers or by additional heat pump capacity sized to handle the cooling load. Additional heat pump capacity would provide redundancy on the heating side but would also require larger geothermal borefields. Based on discussions, SUNY Oswego preferred to analyze the scenarios assuming additional ground source heat pump capacity would be installed to satisfy the cooling load.

While the borefield needs to be larger enough to handle 100% of the cooling load, it is sized based on the cooling capacity and the borehole heat rejection value (68 Btu/h-ft from Section 5.4.4), not the additional heating capacity and borehole heat extraction value (40 Btu/h-ft from Section 5.4.4) that is provided by redundant heat pumps. If the peak heating load were to be covered by 100% electrification sources, it would require 67% more boreholes and only cover an additional 5% of the annual heat load. This would have a significant impact on CAPEX when compared to alternative peaking technologies, as noted above. While the additional cooling capacity of the geothermal heat pumps would require a larger borefield, it only increases the borefield size by about 13%. This comparison is illustrated in Table 27, based on Scenario 4a/4b capacities.

Table 27. Borefield sizing comparison

Geothermal Sizing Scenario	60% of Peak Heating Load	100% of Peak Cooling Load	100% of Peak Heating Load
HP Heating Capacity (MMBtu/h)	30.2	47.0	50.3
HP Cooling Capacity (MMBtu/h)	22.0	34.3	36.7
Heat of Extraction (MMBtu/h)	22.0	34.3	36.7
Heat of Rejection (MMBtu/h)	26.9	41.9	44.9
# Boreholes	1,095	1,236	1,825
% Increase in Boreholes	0%	13%	67%

BASE LOAD VS PEAK LOAD

Figure 46. Heat load curve

Business-as-usual (BAU) scenario considers the existing central heating plant producing to the existing steam network, geothermal at the Shineman Center, and local natural gas-fired boilers at a few buildings on campus. In the BAU scenario, technologies will be renewed when they reach the end of their useful lifetime.

Scenarios 2a and 2b each consider a cluster scenario with five energy centers. Each energy center utilizes ground source heat pumps for baseload technology, and the scenarios differ only in terms of peaking technology: natural gas boilers in Scenario 2a and an electric boiler in

Scenario 2b. To maintain balance in the borefield, a dry cooler is used in warmer months to recharge the borefield.

Scenarios 4a and 4b each consider a centralized scenario for the buildings north of Route 104. The buildings South of Route 104 are identical to Scenarios 2a and 2b. Like Scenarios 2a and 2b, the energy centers utilize ground source heat pumps for baseload technology, and the scenarios differ only in terms of peaking technology: natural gas boilers in Scenario 4a and an electric boiler in Scenario 4b. To maintain balance in the borefield, a dry cooler is used in warmer months to recharge the borefield.

Scenario 5b is identical to Scenario 4b but considers recovering heat from wastewater as a heat source for the centralized energy center heat pumps. Wastewater heat recovery and ground source heat pumps are used as the baseload technologies and electric boilers are utilized for peaking technology. The borefield size is reduced by just over 200 boreholes, or about 25% fewer boreholes than Scenarios 4a and 4b. The wastewater heat recovery reduces the heat extraction of the borefield, likely eliminating any need for borefield balancing. However, the wastewater heat recovery can also be used to help balance the borefield by injecting heat into the borefield if needed.

Scenario 6a and 6b use an air-source heat pump in a cascade setup with a water-to-water heat pump as the baseload technology. Ground source heat pumps are utilized as a second baseload technology. The cascade heat pumps do not utilize the geothermal borefield, instead the base heat load is extracted from ambient air. The cascade heat pumps produce part of the base heat load, reducing the heat extraction of the borefield, and eliminating any need for borefield balancing. The two scenarios differ in peaking technology: natural gas boilers for Scenario 6a and an electric boiler in Scenario 6b.

5.7.2 Techno-economic analysis

The objective of techno-economic analysis is to identify the most cost-efficient mix of technologies for future supply of heating and cooling.

5.7.2.1 Main assumptions

<u>Tariffs</u>

Electricity

The hourly electricity price was developed from an applicable 12-month time series of recent historical day-ahead market prices. The following two cost components were added to the day-ahead market price to reflect other electricity charges:

- a delivery charge
- an add-on to reflect to the annual demand charges (as assessed monthly)

The resulting rate used for the centralized solution analyses is an hourly blended rate that is variable, following the day-ahead market prices, and including demand charges that are blended as an add-on cost to each unit of electrical energy consumed. The result is an assumption that the ratio of monthly peak demand to monthly consumption is the same for the decarbonization

scenarios as it is for the BAU. This is a necessary simplification in order to model an optimized sequencing of supply and storage assets within the EnergyPRO models.

The overall hourly price used as input to the EnergyPRO model for the centralized solution evaluation is shown in the Figure 47. The calculated average electricity price of the day-ahead data (with add-ons) is lower than the blended rate derived from historical consumption. This is expected since electricity prices are higher in hours of higher demand. The blended rate can be regarded as a consumption-weighted average electricity price; the straight average of hourly day-ahead pricing is not comparable.

Figure 47. Overall hourly electricity price used for the centralized production units

Using an hourly blended rate (Figure 47) for electricity instead of explicitly including a separate demand charge has a consequence that can be described using an example.

Consider a centralized cooling production with thermal storage. If an hourly blended rate (Figure 47) is assumed, the optimal operation strategy (lowest operation cost) for operating the electric chillers would be to operate at full capacity in the hours with the lowest electricity prices to charge the thermal storage and then minimize/avoid operation during the hours with the highest electricity price, where the storage tank would be discharged to cover the demand. If the thermal storage charging ends up occurring during times that are not during the peak time window designated by the utility, or if the chiller demand during these times does not contribute to the monthly total electric peak, then the simplification has no consequence; that is not guaranteed. In practice, the thermal storage implementation would be operated to consider monthly demand peaks.

Social cost of carbon

The social cost of carbon was estimated based on the New York State Department of Environmental Conservation (NYSDEC) document "Establishing a value of carbon".⁹. Table 28 presents the values used to calculate the social cost of carbon over the life of the project. The NYSDEC guidance document expresses the values in 2020 dollars. Ramboll calculated the social cost of carbon expressed in 2022 dollars based on historical consumer price index (CPI) published by the United States Bureau of Labor Statistics.¹⁰.

	Car	Carbon Methane		nane	Nitrous Oxide		
Emissions Year	2020\$ per metric ton of CO2	2022\$ per metric ton of CO2	2020\$ per metric ton of CH4	2022\$ per metric ton of CH4	2020\$ per metric ton of N2O	2022\$ per metric ton of N2O	
2020	\$121	\$137	\$2,700	\$3,053	\$42,000	\$47,492	
2021	\$123	\$139	\$2,800	\$3,166	\$43,000	\$48,623	
2022	\$124	\$140	\$2,800	\$3,166	\$44,000	\$49,754	
2023	\$126	\$142	\$2,900	\$3,279	\$45,000	\$50,884	
2024	\$128	\$145	\$2,900	\$3,279	\$45,000	\$50,884	
2025	\$129	\$146	\$3,000	\$3,392	\$46,000	\$52,015	
2026	\$131	\$148	\$3,100	\$3,505	\$47,000	\$53,146	
2027	\$132	\$149	\$3,100	\$3,505	\$47,000	\$53,146	
2028	\$134	\$152	\$3,200	\$3,618	\$48,000	\$54,277	
2029	\$136	\$154	\$3,300	\$3,732	\$49,000	\$55,408	
2030	\$137	\$155	\$3,400	\$3,845	\$50,000	\$56,538	
2031	\$139	\$157	\$3,400	\$3,845	\$50,000	\$56,538	
2032	\$141	\$159	\$3,500	\$3,958	\$51,000	\$57,669	
2033	\$142	\$161	\$3,600	\$4,071	\$52,000	\$58,800	
2034	\$144	\$163	\$3,600	\$4,071	\$53,000	\$59,931	
2035	\$146	\$165	\$3,700	\$4,184	\$54,000	\$61,061	
2036	\$147	\$166	\$3,800	\$4,297	\$54,000	\$61,061	
2037	\$149	\$168	\$3,900	\$4,410	\$55,000	\$62,192	
2038	\$151	\$171	\$3,900	\$4,410	\$56,000	\$63,323	
2039	\$152	\$172	\$4,000	\$4,523	\$57,000	\$64,454	
2040	\$154	\$174	\$4,100	\$4,636	\$58,000	\$65,584	

Table 28. 2% Average (central rate) social cost of carbon

⁹ <u>https://www.dec.ny.gov/docs/administration_pdf/vocapp22.pdf</u>

¹⁰ <u>https://www.bls.gov/regions/mid-atlantic/data/consumerpriceindexhistorical_us_table.htm</u>

2020 average CPI = 258.8

2022 average CPI = 292.7

13.1% inflation rate from 2020 to 2022

	Carbon		Methane		Nitrous Oxide	
Emissions Year	2020\$ per metric ton of CO2	2022\$ per metric ton of CO2	2020\$ per metric ton of CH4	2022\$ per metric ton of CH4	2020\$ per metric ton of N2O	2022\$ per metric ton of N2O
2041	\$156	\$176	\$4,200	\$4,749	\$58,000	\$65,584
2042	\$158	\$179	\$4,200	\$4,749	\$59,000	\$66,715
2043	\$160	\$181	\$4,300	\$4,862	\$60,000	\$67,846
2044	\$162	\$183	\$4,400	\$4,975	\$61,000	\$68,977
2045	\$164	\$185	\$4,500	\$5,088	\$61,000	\$68,977
2046	\$166	\$188	\$4,500	\$5,088	\$62,000	\$70,108
2047	\$167	\$189	\$4,600	\$5,202	\$63,000	\$71,238
2048	\$169	\$191	\$4,700	\$5,315	\$64,000	\$72,369
2049	\$170	\$192	\$4,800	\$5,428	\$65,000	\$73,500
2050	\$172	\$194	\$4,800	\$5,428	\$66,000	\$74,631

Fuels

Campus fossil fuels rates from Table 16 were escalated to 2022 dollars using the same methodology as described in Section 4.1.3.

• Natural gas: 0.404 USD/therm

Staffing needs and workforce development

The need for staffing is dependent on the complexity of the local energy system. The energy system will transition over time from a fossil fueled steam-based combustion system to a low temperature hot water system with heat pump technology, where combustion fuels are only used for peaking and backup purposes. The operation of the plant will, to a high extent, be automated.

Future operations are expected to be more complicated than todays. With the CLPCA goal of a carbon-free grid by 2040, there will be a broad build out of wind (off-shore, on-shore) and solar. This will result in more intermittent renewable energy as part of the electric grid and a heightened attention to shifting demand away from hours of limited intermittent renewable electricity in the grid. Daily strategies will include operating the heat pumps at the lowest wholesale day ahead prices for electricity and produce to thermal storage. In situations with potential high prices for electricity, it may be more optimal to produce from natural gas boilers.

This techno-economic evaluation does not include differences in workforce and staffing needs between the BAU and the scenarios.

Technical lifetime of assets

Table 29 includes equipment lifetime that have been assumed for estimating CAPEX.

Table 29. Assumed equipment technical lifetime

Item	Technical Lifetime (years)
Building level installations	
Air cooled chiller	15
ASHP	15
Building level tank thermal energy storage	25
Dry coolers	20
DX cooling	15
Electric boilers	15
Electric radiators	30
Electric domestic hot water heater	15
Energy transfer station (ETS)	25
Fossil fuel boilers	20
Fossil fuel domestic hot water heater	15
Geothermal borefield	40
GSHP	20
Local domestic hot water HP	15
Rooftop units (RTU)	15
Water cooled chiller	20
Distribution system	
Ambient network	50
Condensate lines	20
Electrical infrastructure upgrades	50
Low temperature water (LTW) network	50
Hot water/steam tunnel network	50
HTW network (direct buried)	35
MTW network (direct buried)	30
Steam lines (direct buried)	25
Energy center	
Air cooled chiller	20
Geothermal borefield	40
Building for energy center	50
Dry coolers	20
Electric boilers	20
Fossil fuel boilers	25

Item	Technical Lifetime (years)
Heat pump (GSHP, WWHP, HRC)	25
Heat pump (ASHP)	20
Tank thermal energy storage (TTES)	30
Water cooled chiller	25
Wood chip boiler	25

5.7.2.2 EnergyPRO modeling tool

The operation of the centralized systems has been modeled through EnergyPRO software to assess how the different energy production units, as well as energy storage, would be operated considering technical, economic, and environmental aspects. The layout of an EnergyPRO model for the campus is shown in Figure 48 below.

Figure 48. EnergyPRO model for the campus (centralized system only)

In EnergyPRO, the different colors of the connectors denote a different type of energy flow:

- Blue: "cooling energy"
- Red: "heating energy"
- Black: electricity
- Maroon: "heat rejected to BTES"
- Pink: "heat extracted from BTES"
- Yellow: natural gas

On the right-hand side, the cluster heating and cooling demand blocks represent the energy demands that must be covered. In the figure, the energy-production units are the following:

GSHP heating/GSHP cooling – these units are the same machine (i.e., a ground source heat pump), but need to be modeled as separate units in EnergyPRO to properly simulate the behavior and operation of the machine.

Chiller – this is the additional GSHP capacity added to meet peak cooling requirements that can also provide redundant heating capabilities. This is modeled separate from the GSHP units in EnergyPRO to avoid providing more than 60% of the heating baseload from GSHP.

Cascade HP heating – This unit is an air source heat pump in a cascade arrangement (series ASHP/WSHP configuration) with a water-to-water heat pump; the ASHP heated water acts as the source for the WSHP to further boost hot water supply temperature. Its performance depends on the outdoor ambient temperature. It is assumed that the unit has a cut-off temperature of 10°F. The operation of the heat pump is dependent on both the electricity price and on the outdoor ambient temperature.

WWHP – This unit is the same unit as the GSHP but uses wastewater as the heat source instead of the geothermal borefield. Even though it has the same compressor as the GSHP, it needs to be modeled separately in EnergyPro because of the different heat source. Its performance depends on the wastewater temperature throughout the year. The operation of the heat pump is dependent on both the electricity price and on the assumed performance at different wastewater temperatures.

Natural gas boiler/Electric boiler – these units (either of the two, depending on the scenario) work as peak units. These will run a limited number of full-load hours during the year, only in the periods where the heat demand exceeds the capacity of the baseload technology. In this way the more CAPEX-intensive technologies (such as the geothermal borefield) do not have to be sized for peak load, and the investment cost in these technologies can be reduced significantly with minimal impact to GHG emissions reduction. All scenarios (including those with electric boiler as peak production units) assume gas boilers as emergency backup units. This alternative energy source improves the resiliency and reliability of the energy system and supply.

Local summer boilers – This unit estimates the energy for summer boilers or domestic hot water heaters located in buildings that handle heating loads when the two-pipe distribution is in cooling mode.

Thermal energy storage ("Heat storage" and "Cold storage") buffers energy supply from energy demand. One physical tank will act as heat storage in the heating season and cold storage in the cooling season but must be modeled as two separate units in EnergyPRO. The presence of thermal storage allows the system to take advantage of lower hourly electricity prices when they occur in the market; operating the electric-drive machines at full capacity to cover instantaneous demand and charging storage(s). During times when the electricity price increases, the stored energy can be discharged to cover the demand, while reducing the output from the energy-production units.

On the left-hand side, two blocks ("BTES charge" and "BTES discharge") are used to model the seasonal thermal energy storage for scenarios equipped with GSHP.

The objective of EnergyPRO is to optimize the yearly operation of the production units so that the energy demands (heating and cooling in this case) are covered at the lowest yearly operational cost. Simply stated, EnergyPRO assigns to each production unit a marginal cost of production in each hour of the year, considering relevant external conditions such as ambient temperature (for the ASHP) and electricity price (for electric-driven machines). The units with the lowest marginal cost of production will be called into operation first. If more production capacity is required to cover demand, units with progressively higher marginal costs of production are called into operation. The optimization process in EnergyPRO also involves the optimal utilization of the energy storages and technical constraints, such as unavailability periods and minimum duration of operation.

EnergyPro can produce an hour-by-hour output of energy-production units. As an example, the heating and cooling production graphic for Scenario 5b is shown in Figure 49, while the state of charge of the thermal energy storage during the heating and cooling season is shown in Figure 50. Note in Figure 49

As seen from Figure 49, the WWHP and GSHP provide the base heating load and the electric boiler is used during peak periods. During the summer, the GSHP and chiller provide the cooling load.

It can be seen how EnergyPRO optimizes the operation of the available technologies, based on the availability of storage capacity and electricity prices. A clearer demonstration of this is shown in Figure 51, where the operation of a chiller is shown together with the state of charge of thermal storage and electricity price. In periods with low electricity prices, the chiller operates at full capacity to cover the cooling demand and recharge the thermal energy storage. Conversely, in hours with higher electricity prices, the chiller stops operating and the cooling demand is covered by discharging the storage.

It is noted that the power unit on the y-axis is megawatt (MW), and the chart starts at the beginning of the heating season (assumed October 1) when the two-pipe system is transitioned to a heating network. The two-pipe system is transitioned to a cooling network on May 15.

Figure 49. Hour-by-hour production schedule of the different production units over one year in Scenario 5b for both heating (upper diagram) and cooling (lower diagram)

Figure 50. State of charge of the thermal energy storage during the heating and cooling season

SUNY Oswego – Clean Energy Master Plan

Figure 51. Operation of the central chiller in summer in connection to the available storage capacity and the electricity price

5.7.2.3 Modeling: technical results

Figure 52 and Figure 53 show the annual heating and cooling production (output) from the main technologies in the different scenarios. The heating and cooling demand are the same in all scenarios, but the heating and cooling generated can vary due to different distribution losses between scenarios, and the required input energy to meet the demands (Figure 54) varies due to differing conversion efficiencies of the various production units. Detailed output of the modeling results for the scenarios can be found in Appendix F.

In all scenarios, the heat pumps cover about 80% of the annual heating load. Since the campus is heating dominated, Scenarios 2a through 4b utilize dry coolers to help balance the borefield. However, Scenarios 5b through 6b rely on alternative heat sources to reduce the heat extraction from the borefield, eliminating the need for rebalancing. Establishing how much a baseload technology should cover of the total annual heat load and the associated NPV is an optimization exercise that was not part of this analysis.

Figure 52. Annual heating production

Annual Fuel Consumption

Figure 54. Annual fuel/electricity consumption to meet heating and cooling demand

5.7.2.4 Capital expenditures (CAPEX)

Cost estimating was performed by Trophy Point Construction Services & Consulting (Trophy Point) for Scenarios 2a and 2b. The remaining scenario costs were extrapolated from this cost estimate and previous studies conducted by Ramboll. The full cost estimate with associated breakdown is provided in Appendix G.
The cost estimates include raw labor and material in addition to the markups listed below:

- General Conditions 15%
- Overhead & Profit 10%
- Design Contingency¹¹ 20%
- Bid Contingency 5%
- Phasing 10%

Figure 55 denotes the CAPEX for the BaU and the scenario variants divided, respectively, into CAPEX for building level installations, distribution system, centralized system and other. Additional detail is provided in Appendix G. As expected, the CAPEX in the BaU is limited (\$37 million), whereas the CAPEX for Scenario 2b, which is the most CAPEX intensive, is approximately \$140 million.

Comparing the natural gas peaking variants (2a, 4a, and 6a) with electric peaking variants (2b, 4b, 5b, and 6b) provides the estimated cost impact to cover 100% of the annual heating load through electrification assets. The additional cost for an electric boiler, electrical upgrade, and backup natural gas boilers is around \$5.3M to \$6.7M as compared to the natural gas peaking scenarios. A backup natural gas boiler in the electrical scenarios will provide resiliency in the event of extended power outage, whereas the peaking natural gas boilers already included in cost estimates can also serve as backup boilers. A natural gas variant for the wastewater heat recovery, Scenario 5b, was not completed. Scenario 5b was developed strictly to compare wastewater heat recovery with the centralized GSHP variant.

The cluster scenarios (2a and 2b) were more expensive than the fully centralized scenarios (4, 5, 6) by \$3.8M to \$15.6M.

¹¹ Design contingency is related to the progress of the project. In early stages before details have been defined the contingency is higher and typically decreases as the project progresses.

Figure 55. CAPEX for the scenarios

5.7.2.5 Modeling: economic results

Figure 56 provides an overview of the economic performance of the different scenarios in terms of project net present value of costs (NPV) over the project lifetime. CAPEX costs, together with the operational costs (OPEX), are fed into a cashflow model which considers a period of 20 years for the economic evaluation of each scenario.

Assets whose lifetime exceeds the 20-year project period are attributed a residual value at the end of the project period in order to align all costs to that point in time; this shows up in the calculation as a fictitious revenue (incoming cashflow) occurring at the end of the project period. The residual value of the asset is determined by assuming linear depreciation of the asset value (its original CAPEX) over its technical lifetime. For example, an asset with a technical lifetime of 30 years and CAPEX of 3,000,000 USD, installed in the first year of the 20-year project period will retain at the end of the project period a residual value equal to 1/3 of the original CAPEX, i.e., \$1,000,000. Conversely, assets whose technical lifetime ends before the end of the 20-year period will require additional investments for replacement or overhaul; these costs and the residual value of the replacements are also included in the cashflow analysis. This approach provides an equitable comparison across the scenarios despite the different technical lifetimes of the assets. The CAPEX shown in the shown in Figure 56 includes the initial CAPEX investment, any replacement costs over the 20-year project period, reduced by any residual value of assets. A year-by-year breakout of the NPV analysis is included in Appendix F that shows the initial investment, annual energy and O&M costs, when replacement costs occur, and the residual value of assets.

The WWHP scenario (5b) has the lowest NPV of the decarbonization scenarios. The centralized GSHP scenario with natural gas peaking (4a) has a similar NPV with a slightly lower CAPEX.

Based exclusively on economics, there is no clear guidance on which scenario is the most favorable. However, the scenarios using a gas boiler for peaking purposes (scenarios 2a, 4a and 6a) have less capital investment needs than scenarios using an electric boiler for peaking purposes (scenarios 2b, 4b and 6b).

Figure 56. Economic overview of the different scenarios: NPV of the overall system cost over the project lifetime

5.7.2.6 Modeling: environmental results

Figure 57 shows the CO_2e emissions for the different scenarios together with the overall NPV (CAPEX, OPEX and residual value). The total NPV is shown with social costs of carbon (green triangle) and without social costs of carbon (yellow dot) for each scenario. The project lifetime social cost of carbon was calculated from the values listed in Table 28, with a projected starting year of 2030 and a 20-year project life. From this representation, the overall NPV of the BaU scenario (with high CO_2e emissions) increases significantly when including the cost of carbon; not so much for the decarbonization scenarios.

It is seen that BaU has the lowest NPV of the overall system cost ("TOTAL OPEX+CAPEX (with Residual value))" and "TOTAL OPEX+CAPEX (with Residual value + carbon)". However, including a social cost of carbon reduces the difference between the BaU and the other scenarios significantly. In the BaU, the social cost of carbon increases the NPV of the costs from approximately \$71M to \$107M. All of the decarbonization scenarios show lower CO_2e emissions and higher NPV of costs compared to the BaU.

All alternatives achieve at least a 90% reduction in CO_2e emissions compared to BaU. This is due to:

- A significant reduction in the share of natural gas use towards the overall energy production in the alternative scenarios
- Beneficial electrification and the progressive decarbonization of the grid electricity over time, in alignment with the EO22 2030 goals (100% electricity from renewable sources under the

Clean Energy Standard (eligible systems) and CLCPA goals of at 100% carbon free electric grid by 2040

Figure 57. CO₂e emissions and project NPV for the different scenarios

The "shadow price of carbon" represents the price of carbon which makes the NPV of each alternative scenario equal to the NPV of the BAU scenario. The shadow price is calculated as:

Shadow price (Sc. X) = $-\frac{NPV(Scenario X cost) - NPV(BaU cost)}{NPV(Sc. X CO2e emissions) - NPV(BaU CO2e emissions)}$

The NPV of costs in the equation above includes:

- CAPEX
- Residual Value of CAPEX
- OPEX (energy costs and O&M costs)

It does not include the social cost of carbon, as this would result in "double counting" of carbon costs. The lower the shadow price of carbon for a scenario, the more cost-efficient the scenario is in reducing carbon emissions.

Table 30 compares the shadow price of carbon for the scenarios. A shadow price of carbon between \$226 and \$271 per metric ton, would balance the economy between the BaU and the scenarios.

	Scenario 0	Scenario 2a	Scenario 2b	Scenario 4a	Scenario 4b	Scenario 5b	Scenario 6a	Scenario 6b
Scenario	BaU	Cluster + NG Peaking	Cluster + Electric Peaking	Centraliz ed + NG Peaking	Centraliz ed + Electric Peaking	Centraliz ed + WWHP + Electric Peaking	Centraliz ed Cascade + NG Peaking	Centraliz ed Cascade + Electric Peaking
Shadow Price of carbon (USD/metric ton)	0	268	271	232	237	226	259	263

Table	30.	Shadow	price of	carbon	com	pared	to	Bal
Tubic	50.	Shadow	price or	curbon	CON	puicu		Duc

5.7.2.7 Consideration for a combination of ASHP and GSHP

Scenarios 6a/b utilize a hybrid of ASHP and GSHP, which can have numerous benefits, including:

- Could mean fewer boreholes, thus reducing CAPEX
- May provide a higher resiliency level
- Would have less need for balancing

Ramboll offers the following considerations regarding a hybrid solution:

- From a pure economic standpoint, the CAPEX for a GSHP solution is higher than for a ASHP solution. On the other hand, the OPEX for a GSHP system is lower due to the increased average efficiency of the heat pump.
- A GSHP will experience more stable and higher temperatures on the evaporator. When looking at the economic evaluation of the two systems and considering all CAPEX and OPEX for the systems, the NPV of a ASHP system will be lower in a 20-year lifetime of the asset. However, the difference in NPV is minor (as for instance seen in Figure 57) and the difference is within the uncertainties of the estimates.
- A hybrid combination of GSHP and ASHP can offer the flexibility of operating the ASHP to meet heating loads when outside air temperatures are favorable, and efficiency is good. As a result, the GSHP and borefield could be reduced in size and CAPEX; the GSHP performance would also improve because the heating load carried by the ASHP did not have to be extracted from the borefield. The system still needs to be designed and operated to be able to meet the load requirements.

A GSHP system operating alone in a heating dominated system may require significant balancing of the boreholes. If the GSHP is combined with an ASHP, then the seasonal imbalance can be reduced or eliminated due to the heating load being partially met by the ASHP. This was incorporated into the scenario analysis. Challenges with larger scale ASHP systems must be considered. Larger scale systems are in operation abroad, and Ramboll has designed several systems in Denmark. Here are some of the challenges to be aware of:

- When the air temperature is close to freezing the humidity level is high. When air is cooled through the air-cooler, moisture condenses and can freeze on the ground. This can be avoided if the GSHP is prioritized at temperatures close to freezing or lower.
- Air-coolers are noisy, so sound mitigation may be needed depending on where they are located.
- Due to the low temperature on the evaporator side, the efficiency is (very) low in the winter season where the heat is needed the most. With a combination of GSHP and ASHP, it would not be necessary to operate the ASHP at conditions with low ambient temperature.
- In-service ASHP systems have experienced short circuiting at certain wind speeds. Though mitigation of these challenges has been occurring.

Until very recently, the number of vendors for high temperature heat pumps achieving 150F and higher in the US was very limited. However, the heat pump market has developed significantly through the last couple of years. Several vendors now offer heat pumps up to 170F, which is adequate in most situations.

5.8 Campus electrical capacity assessment

Electrification of the campus will result in increased electricity use for heating purposes, as well as an increase in peak electrical load. The existing peak electrical demands typically occur in August or September. With the shift to electrical heating sources, the electrical peak will occur in the winter months. Figure 58 summarizes the peak electrical demand impact of each scenario.

Figure 58. Estimated electrical capacity per scenario

The existing campus Substation #1, which serves the campus buildings north of Route 104, has two 6,250 kVA transformers. During existing peak demand periods, both transformers are required, and at about 76% loaded. There is little to no redundancy in the existing substation during peak demand periods. In all scenarios, the substation would need to be upgraded. New 34.5 kV overhead lines would be run to a new substation for the natural gas scenarios and a 115 kV overhead line would be required for the electric peaking scenarios.

The existing Substation #2, which serves the buildings south of Rout 104, has a 25 kVA and a 2,000 kVA transformer. No upgrades would be required for the natural gas peaking scenarios, but the substation would be upgraded with a 3,125 kVA transformer for electric peaking scenarios.

Building electric service upgrades would be required for all energy centers (new transformers and switchgears), regardless of peaking technology.

5.9 Renewable electricity generation

SUNY Oswego has two on-site solar photovoltaic (PV) arrays: a 20 kW_{dc} array on the Shineman Center and a 36 kW_{dc} array offsite at the Rice Creek Field Station. Ramboll discussed the potential for the campus to generate a portion of its own electricity via on-site PV or wind. Based on discussions, the area known by the campus as Hidden Fields was identified as a potential site for wind or PV. As shown in Figure 59, two 65 m hub height turbines (each rated for 850 kW) could be installed at the Hidden Fields. Due to offsets from roads, property boundaries, and

buildings, and maintain a suitable spacing between turbines, it would be difficult to fit any more than two turbines.

Figure 59. Potential location for wind turbines at the Hidden Fields

Alternatively, the Hidden Fields is about 20 acres, which is large enough for a 6.5 MW_{dc} PV array. A comparison of renewable potential at the Hidden Fields is presented in Table 31. Wind and PV annual production was estimated using EnergyPro which uses site specific wind and solar data, along with PV and wind system performance data to determine annual production. The electricity generated by the wind turbines would offset about 54% of the additional electricity required from electrifying the campus with heat pumps (based on Scenario 4a). The PV option would offset about 120% of the additional electricity from Scenario 4a.

Wind turbine installation costs were estimated based on a U.S. Department of Energy study¹². This study showed an average installation cost of \$1,370 per kW in 2022 dollars, which includes material and labor, balance of plant, and any substation and interconnection expenses. However, the study indicates that the installed costs exhibit economies of scale. There is no data available for smaller projects on the scale applicable to the Hidden Fields consideration. The study shows that the average cost for the 5-20 MW range is \$2,693 per kW. Ramboll assumed a project cost of \$3,000 per kW.

PV installation costs were estimated based on an NREL study¹³. The study shows that commercial ground mount systems, 500 kW_{dc}, have an installed cost of $1.94/W_{dc}$. Utility scale ground mount systems, 100 MW_{dc}, $0.99/W_{dc}$. Ramboll assumed a project cost of $1.88/W_{dc}$.

¹² Land-Based Wind Market Report: 2023 Edition <u>https://emp.lbl.gov/sites/default/files/2023_lbwmr_final.pdf</u>

¹³ U.S. Solar Photovoltaic System and Energy Storage Cost Benchmarks, With Minimum Sustainable Price Analysis: Q1 2022 https://www.nrel.gov/docs/fy22osti/83586.pdf

Table 31. Renewable potential at hidden fields

	PV	
	2 turbines @ 850 kW ea	~ 20 acres
System Size	1.7 MW _{ac}	6.5 MW _{dc} 5.6 MW _{ac}
Annual Production % of additional electricity	3,983 MWh	8,800 MWh
from heat pumps offset by renewables	54%	120%
CAPEX	\$5,100,000	\$13,300,000
Cost savings ²	\$235,000	\$520,000
SPB	21.7	25.6

Notes:

1. Scenario 4a, Centralized Heat Pump Scenario with natural gas peaking

2. \$0.059/kWh from Table 16

Some items that need to be considered for developing renewables at the Hidden Fields include:

- Hidden Fields is on the opposite end of the campus from the campus electric substation
- Both renewable options could potentially connect to a feeder loop at the western part of campus
- The feeder loop could handle a maximum of 4.5 MW without major changes to the distribution system
- Any renewable system more than 4.5 MW in capacity would require a feed back to the substation, over a mile from point to point
- Interconnection with the grid may be needed for systems larger than the feeder loop can accept
- Distributed energy resource interconnection requirements vary by utility
 - Application process
 - Feasibility study
 - Potentially a Coordinated Electric System Interconnection Review (CESIR) study
- Studies review the impact of the generation on the grid as well as the customer's point of common coupling (PCC)
- This could mean as little as adding special relaying and controls to the substation or an entire substation rebuild

Renewable technologies at Hidden Fields could be as a direct owned asset or through a developer power purchase agreement (PPA) where a separate entity would invest in the infrastructure and the campus would purchase the energy that is produced. Ground mount PV was analyzed, as it typically has the lowest cost per MW installed. However, rooftop and PV covered parking, whether it was direct ownership or a PPA, could be considered as well. PV covered parking should be coordinated with any parking renovation plans.

It is noted that EO 22 was issued (during the course of this project) by Governor Kathy Kochul on September 20, 2022. EO 22 stipulates three approaches for NYS agencies to reduce GHG emissions (from electricity use) 100% by 2030. Those include:

- 3. Count the amount of clean energy generated by Eligible Systems across the State that the Affected Entity pays for in its electricity bills or otherwise towards compliance with the Clean Energy Standard (CES), based on calculations provided by NYSERDA. Affected Entities shall provide information requested by NYSERDA to perform the applicable calculations, including load data, CES compliance payments, and any other necessary information.
- 4. For the remainder of its electricity usage, each Affected Entity shall next be required to demonstrate meeting this obligation, where feasible, through the use of on- or off-site Eligible Systems providing energy dedicated to the Affected Entity's operations.
- For the portion of electricity that cannot be served by such Eligible Systems, each Affected Entity shall, in consultation and agreement with NYSERDA and Department of Public Services (DPS), procure renewable energy certificates ("RECs") qualified under a Qualifying Tier of the CES.

EO 22 further notes that NYSERDA and DPS shall establish further detailed guidelines and requirements with respect to how each Affected Entity shall comply and report compliance.

5.10 Conclusions

Several conclusions can be drawn from the techno-economic analysis:

- 1. The cluster scenarios (2a and 2b) are more expensive than the fully centralized scenarios (4, 5, 6)
- 2. Scenarios with electric boilers for peaking (Scenario 2b, 4b, 5b, and 6b) have higher costs due to electrical upgrades that are required compared to natural gas peaking boiler counterparts (Scenario 2a, 4a, and 6a)
- 3. Utilizing wastewater as a heat source (Scenario 5b) reduces borefield size by about 200 boreholes and overall CAPEX by about \$3M compared to scenario 4b
- 4. The air-source/water-source cascade scenario (Scenario 6a/b) has the highest CAPEX, due to the addition of ASHPs
- 5. The BAU scenario has the lowest NPV and does not meet GHG emission goals
- 6. When the social cost of carbon is not included, centralized GSHP with natural gas peaking (Scenario 4a) has the lowest NPV of the beneficial electrification scenarios. This scenario has the lowest OPEX (fuel costs plus O&M) and lowest CAPEX of the beneficial electrification scenarios analyzed
- 7. A peaking natural gas variant was not analyzed for the wastewater heat recovery (Scenario 5b). It can be inferred from the difference of Scenario 4a and Scenario 4b that utilizing waste water as a heat source with natural gas peaking would result in the lowest CAPEX and lowest NPV of the decarbonization scenarios.
- 8. When the social cost of carbon is included, utilizing wastewater as a heat source (Scenario 5b) has the lowest NPV
- 9. By applying a social cost of carbon, the difference in NPV costs between the BaU and the scenarios is reduced significantly, but the BAU remains the lowest NPV scenario
- 10. A value of carbon between \$226 and \$271 per metric ton, would balance the economics between the BaU and the scenarios
- 11. All scenarios except BaU, would require electrical substation upgrades in order to meet the projected electrical peak demand. Even without an increase in electrical peak demand, the

campus has identified a need to upgrade the electrical substation for resiliency purposes (cost not included in the BaU).

- 12. The Hidden Fields could potentially site 1.7 MW_{ac} of wind or 5.6 MW_{ac} of PV. The annual production from the wind would cover about 54% of the additional electricity use of the heat pumps, while PV would cover about 120%.
- 13. Offsite renewable energy generation and/or renewable energy certificates (RECs) would be required to meet the EO22 mandate of 100% renewable sources for electricity by 2030.

6. Phasing and Implementation

This section describes initial phasing and implementation considerations to support the low carbon transition planning horizon, while also balancing the near-term campus operational needs associated with end-of-life central heating plant assets. The following guiding principles influence the decarbonization strategy:

- 1. Move away from producing steam (for space heating) as soon as practical
- 2. Focus on transitioning clusters with a central plant in mind
- 3. Focus on transitioning Clusters C and W, which account for 75% of the total heat demand
- 4. Manageable construction schedule in line with FMP
- 5. Enable projects to coordinate with landscaping, utilities, and borefields
- 6. Identify a pragmatic and cost-efficient solution that is future proof and allows for easy plug and play of low carbon technologies
- 7. Establish a realistic implementation horizon that is flexible, recognizes utility constraints and allows for incorporation of technology and market advancements
- 8. Look to enhance operational and structural resilience in anticipation of a forecasted increase in average global temperatures. Rise in average global temperatures may result in increased likelihood of extreme weather events. Building for resiliency and quick recovery from extreme weather events will be key to best serving the campus community and beyond.

6.1 Phasing and sequencing

Based on discussions with the campus, the clusters were viewed as phases that could be transitioned to electrification with a centralized plant in mind, as shown in Figure 60. The following timeframes were identified based on discussions between Ramboll, SUNY Oswego, and JMZ Architects (JMZ) (the authors of the current FMP study being conducted):

- Cluster C and W has extensive renovation plans over the next 10-15 years
- Cluster C and W transitioned by 2040
- Cluster E has plans for renovations in the 15-20 year timeframe
- Cluster E transitioned by 2045
- Cluster N was not discussed in JMZ's FMP, but can be considered 25 years out
- Cluster N transitioned by 2050
- Cluster S was not discussed in JMZ's FMP, but can be considered 15-25 years out
- Cluster S transitioned by 2050

Figure 60. Campus phasing plan

Clusters C and W together account for 75% of the total heat load and over 80% of the heat load of buildings on campus north of Route 104 (which would be served by a centralized or cluster energy centers). Through discussions between Ramboll and SUNY Oswego, focus was placed on transitioning these two clusters. The campus would like to remove the west campus from the steam network, as it is the furthest extent of the network. This includes Cluster W and parts of Cluster C (separated from Cluster C with a dashed line in Figure 60). These areas have substantial projects planned or projects that the campus would like to develop with high priority:

- Hewitt is under construction with a geothermal plant in the plans, 90 wells have been installed at the time of this study
- Mahar will be under construction in 2 years
- Lanigan and Penfield are high priority projects
- Littlepage Dining Hall is under construction
- The courtyard in between Onondaga, Littlepage, Cayuga, and Pathfinder will be renovated as part of JMZ's FMP.

The western part of the campus could potentially be built up with its own plants then connected to distribution network from Lee Hall as equipment ages out. The courtyard renovation only covers about an acre, which is not of sufficient size to handle the Cluster W heating load; Cluster W requires about 1.5 acres. There were discussions of removing The Villages from Cluster W, but they only account for 10% of the heating load and would only reduce the borefield to about 1.3 acres. Adjacent green area to the west of Cayuga and east of Littlepage could be included to form a borefield of about 2 acres, as shown in Figure 61. Based on the cost estimates from Trophy Point, building a dedicated energy center for Cluster W would cost over \$1 million more than connecting to a centralized energy center.

Figure 61. Potential borefield for Cluster W

Transitioning the rest of the buildings on Cluster C will focus on building up an energy center at the Lee Hall Central Heating Plant and extending the distribution network towards the buildings on the western part of campus. If energy centers are developed on the western part of campus, the networks could eventually be connected to the Cluster C network to form a centralized network as the original energy center equipment ages. However, the network piping should be installed with a centralized approach in mind, which means it should be sized so that it has capacity to carry heat to portions that may eventually be connected. For example, the main network piping connecting buildings on the western part of Cluster C (Hewitt, Mahar, Penfield, Lanigan, etc.) should be sized so it has capacity to serve Cluster W. Likewise, the main network piping in the remaining Cluster C should be sized so that it can serve the loads of the entire campus, not just the buildings in Cluster C.

Cluster E accounts for about 10% of the heating load of buildings on campus north of Route 104. A distribution network stemming from Cluster C could connect a network connecting buildings in Cluster E. As buildings are added to the network, the centralized energy center would need to be upgraded to handle the additional load.

Cluster N accounts for less than 10% of the heating load of buildings on campus north of Route 104. Like Cluster E, network piping could be installed; extending Cluster C to serve a network in Cluster N.

Cluster S is separated from the rest of campus by Route 104.

Table 32 below provides a summary of the phasing strategy and associated key actions towards decarbonization and electrification of campus heating and cooling. It is noted that these actions are based on a centralized scenario approach. When a final scenario has been selected for advancement, phasing and sequencing would be developed specific to the scenario.

Table 32. Low-carbon electrification phasing strategy

Cluster C and W	Cluster E	Cluster N and S
(2025-2040)	(2035-2045)	(2040-2050)
 Remove Clusters C and W from the steam network Develop new Energy Center at Lee Hall and potential smaller centers in the western part of campus Establish borefields Ground source heat pumps Dry coolers Utilize central heating plant natural gas steam boilers as backup Potential ASHP Thermal energy storage tank Develop LTW network and connect to Energy Center Substation #1 electrical improvements Potential end of life building renovations/upgrades Targeted energy efficiency measures for entire campus 	 Establish LTW network and connect to main LTW network Some building renovations/upgrades/hot water coil replacement Increase centralized energy center capacity to handle additional load of Cluster E 	 Establish LTW network and connect Cluster N to main LTW network Increase centralized energy center capacity to handle additional load of Cluster N Develop energy center for cluster S Establish borefields Ground source heat pumps Dry coolers Potential ASHP Thermal energy storage tank Substation #2 electrical improvements Some building renovations/upgrades/hot water coil replacement

6.1.1 Stand-alone initiatives

Stand-alone initiatives include the following:

- New Energy Center
 - Establishing first part of LTW network and connect to energy center
 - Utilize existing natural gas steam boilers for backup and/or peaking
- Potential ASHP
 - Electric feed to energy center
- Tank thermal energy storage

- Emergency generator
- New LTW network to replace steam lines
- Site electrical improvements
- Targeted energy efficiency measures (*e.g.*, building retro-commissioning)
- Ground source heat pumps
- Dry air coolers

6.1.2 Interdependent initiatives

Interdependent initiatives include the following:

- Building renovations/upgrades
- HVAC mechanical equipment replacements
- Borefield installation

6.1.3 Implementation considerations

The following implementation considerations are provided to help highlight the market and technology nuances that influence a low carbon transition:

Heat Pumps – The US market for heat pumps is changing rapidly with higher efficiency and/or higher potential supply temperature regularly becoming available, and additional options expected to grow pending energy code updates in 2024. Many heat pumps with higher efficiency and temperature exist today on the European market and, therefore, it is anticipated that similar units will be introduced in the US from the main vendors. The campus and SUCF will want to monitor market maturity and technology advancements to help inform design and installation decisions and timing.

Building HVAC

- Monitor supply and return temperature and assess measures to increase the delta T for hot water and chilled water
- Ensure building hot water and chilled water loops have outdoor temperature reset implemented

6.2 Funding source and incentive program potential

There are many potential funding sources and incentive programs that could support energy projects or activities at the campus. Source and programs typically have application deadlines and expirations dates, so periodic monitoring is needed to confirm eligibility. Below are some example resources for consideration.

NYSERDA

- <u>https://www.nyserda.ny.gov/All-Programs#category=schools-colleges-universities</u>
- Community Heat Pump Systems (PON 4614)
- NY-Sun Commercial / Industrial Incentive Program (PON 3082)
- Carbon Challenge and Carbon Neutral Community Economic Development programs

Inflation Reduction Act

- Established new credit delivery mechanisms that enables state, local, Tribal governments, non-profit organizations, U.S. territories, and other entities to take advantage of clean energy tax credits
- RMI developed a list that breaks out Inflation Reduction Act programs and incentives
 <u>RMI IRA break down by incentive</u>
- Production Tax Credit for Electricity from Renewables

Additional incentives may be found at the following websites which provide a list of available incentives:

DSIRE

• https://programs.dsireusa.org/system/program/ny

US Department of Energy (DOE)

• <u>https://www.energy.gov/eere/funding/eere-funding-opportunities</u>

7. Key Takeaways and Recommended Next Steps

7.1 Key takeaways from the Clean Energy Master Planning Process

Table 33 provides a summary of important topics and associated aspects that surfaced during the planning process. These inform the complexities and challenges that will need to be considered and managed as part of the campus energy transition. These aspects intersect to influence and balance carbon reduction, energy efficiency, flexibility, resiliency, and redundancy in a pragmatic and cost-effective manner.

Electrical Demand Impact	Natural Gas Peaking Benefits	Building Improvements	Infrastructure Scenarios	Emission Reduction
In all scenarios, the Substation #1 would need to be upgraded	Flexibility Redundancy for	Address steam use in buildings	Piping material decisions – temperature and pressure	85% reduction is achievable without 100% electrification
Substation #2 would need to be upgraded in full- electrification scenarios	Bridging fuel-while electric utility infrastructure catches up	operate acceptably at lower supply temperatures? (coil replacements or load reductions)	Centralized vs cluster Property space needs for	
Significant emergency/stand-	Manages capital spend	Renovation approval and timing	geothermal	
by power requirements, without nonelectric-based backup	Future NYS plans of NG to renewable natural gas (RNG) and hydrogen	Add cooling to non-cooled buildings/spaces		
High CAPEX with relatively small carbon emissions reduction to electrify peak load in addition to baseload	Reuse of existing infrastructure and backup power assets	Hazardous materials impact		
Connection of renewables from Hidden Fields to campus electric feeder loop has limitations				

Table 33. Key takeaways from the clean energy master planning process

Figure 62 illustrates the forecasted GHG emissions (CO_2e) trend for the campus. 1990 GHG data was taken from the campus' 2012 Climate Action Plan (CAP). Scenario 4a was selected for illustrative purposes. The black line represents the BAU scenario, gray shading above the black line represents emission reductions attributed to the electric grid getting cleaner over time. The red line represents the forecasted emissions after energy efficiency and beneficial electrification

is implemented. This trend shows that even when natural gas is used for peaking purposes, the campus can achieve greater than 85% reduction and would meet the CLCPA reduction goal.

Scope 1 & 2 Greenhouse Gas Emissions

Figure 62. Projected GHG emissions trend (Scenario 4a)

7.2 Recommended next steps

Ramboll has identified the following recommend next steps to help the campus prioritize projects that can influence future systems designs and demonstrate progress towards campus goals.

- 1. Implement EEMs that will be cost effective within the time periods that buildings would benefit from the measure
- 2. Existing geothermal test bore studies previously conducted at the campus can be utilized to inform future borefield design
- 3. Establish detailed strategy to convert from steam to low temperature hot water, including distribution network piping and impact to specific buildings currently using steam directly
- 4. Establish a building strategy
 - a. Install building level thermal submetering
 - i. Most of the campus buildings have electric, but some may need to be calibrated or replaced
 - ii. Install building-level steam meters

- iii. Submetering is required by BuildSmart 2025 for buildings greater than 25,000 GSF Buildings shall be submetered for all fuels and other energy sources including, but not limited to, electricity, natural gas, steam, chilled water, and oil
- iv. Clamp-on ultrasonic thermal submetering could be cost-efficient option to explore
- b. Monitor building level hot water data and explore lower building supply temperatures on the district loop during the heating season refer to Section 5.3.3.2.
- c. Steam building conversion
 - i. All buildings on campus are hydronic
 - ii. Remaining direct uses need a transition plan (i.e. steam kitchen equipment)
- 5. Monitor market developments and advancements in heat pump technology and US market availability
- 6. Some of the preceding recommendations should be completed to help the campus select a preferred scenario, or variation thereof, prior to beginning preliminary design

Appendix A Preliminary Energy-Use Analysis (PEA)

ENERGY

All Fuels Summary

000 - Campus Total

Energy Use Analysis and Benchmarking Profile

SUNY Oswego

Building Data											
Gross Area (SF):	3,498,777	% Heated: 99%	% Cooled: 59%								
Building Type(s)	Year(s) of Construction	Year(s) of Renovation	Operating Schedule								
20% College/university	NA	NA	NA								
33%											
Dormitory/fraternity/so											
rority											
15% Office											
12% Recreation											
2% Laboratory											

Benchmark Comparisons									
	Source EUI	Site EUI							
Weighted CBECS Compariso	170.8	100.0							
Average	196.7	115.2							
Weather Normalized	199.3	116.7							
Jan 2018 to Dec 2018	197.8	115.8							
Jan 2019 to Dec 2019	195.6	114.5							
Jan 2020 to Dec 2020	178.0	104.2							

		Total Energy Profile														
		A۱	verage	e	Weather	r Nori	malized	Jan 2018	3 to D	ec 2018	Jan 201	9 to D	ec 2019	Jan 2020 to Dec <u>2020</u>		
	Month	MMBtu		Cost	MMBtu		Cost	MMBtu		Cost	MMBtu		Cost	MMBtu		Cost
	Jan	52,685	\$	347,205	41,389	\$	312,783	56,700	\$	438,195	48,670	\$	344,934	44,943	\$	225,591
	Feb	47,069	\$	271,234	41,760	\$	254,468	45,465	\$	303,085	48,673	\$	292,371	47,122	\$	217,647
	Mar	45,622	\$	248,816	39,932	\$	243,980	46,325	\$	263,488	44,919	\$	263,654	38,383	\$	188,920
	Apr	38,920	\$	231,913	38,559	\$	245,117	41,563	\$	268,079	36,276	\$	235,517	31,604	\$	142,398
	May	23,303	\$	177,850	30,910	\$	212,386	19,632	\$	183,971	26,973	\$	169,741	23,327	\$	158,175
	Jun	17,010	\$	176,931	21,817	\$	195,354	15,888	\$	191,291	18,132	\$	155,018	13,289	\$	147,830
	Jul	19,345	\$	218,592	15,748	\$	209,124	18,762	\$	232,372	19,928	\$	211,987	21,845	\$	202,360
	Aug	20,020	\$	210,061	22,199	\$	220,407	20,112	\$	235,443	19,928	\$	195,328	19,401	\$	194,199
	Sep	22,979	\$	210,040	32,502	\$	245,475	23,029	\$	233,528	22,929	\$	187,110	20,081	\$	179,751
	Oct	29,633	\$	220,165	41,176	\$	265,287	30,816	\$	255,200	28,450	\$	196,160	27,584	\$	179,268
	Nov	42,105	\$	289,115	40,942	\$	258,741	42,697	\$	305,185	41,514	\$	313,416	38,235	\$	216,721
	Dec	44,277	\$	311,571	41,297	\$	269,256	44,299	\$	363,850	44,255	\$	301,412	38,838	\$	226,936
	Annual	402,967	\$	2,913,494	408,231	\$	2,932,377	405,288	\$	3,273,689	400,647	\$	2,866,648	364,651	\$ 2	2,279,796
	Site EUI	115.	2 kBtı	u/SF	116.	7 kBt	:u/SF	115.	8 kBt	:u/SF	114	.5 kBt	u/SF	104.	2 kBt	u/SF
Total	ECI	0.83 \$/SF		0.8	4 \$/S	F	0.94 \$/SF		0.8	32 \$/S	F	0.6	5 \$/S	F		
	Utility Cost	7.23 \$/MMBtu		7.1	8 \$/N	MMBtu	8.0	8 \$/N	иMBtu	7.1	L6 \$/N	/MBtu	6.2	5 \$/N	иMBtu	
	Site FUI		36.8 kBtu/SF			8 kBt	:u/SF	37.	4 kBt	:u/SF	36	.1 kBt	u/SF	32.	5 kBt	u/SF
		10.8 kWh/SF		10.	8 kW	'h/SF	11.	0 kW	h/SF	10	.6 kW	h/SF	9.	5 kW	'h/SF	
Flectric	Demand/SF	2.1	8 W/S	SF	2.1	8 W/	SF	2.31 W/SF		SF	2.04 W/SF		SF	1.9	5 W/	SF
	ECI	0.55	2 \$/SI	F	0.552 \$/SF		0.636 \$/SF		0.511 \$/SF		F	0.44	2 \$/S	F		
	Utility Cost	0.05	1 \$/k	Wh	0.051 \$/kWh		0.058 \$/kWh		0.048 \$/kWh		0.046 \$/kWh		Wh			
		15.0	2\$/№	1MBtu	15.0	2 \$/N	MMBtu	17.0	1\$/N	иMBtu	14.1	L5 \$/N	/IMBtu	13.5	3 \$/N	иMBtu
	Site EUI	18.	1 kBtı	u/SF	18.	5 kBt	:u/SF	18.	8 kBt	:u/SF	17	.4 kBt	u/SF	15.4	4 kBt	u/SF
		0.18	1 The	rms/SF	0.18	5 The	erms/SF	0.18	8 The	erms/SF	0.17	74 The	erms/SF	0.15	1 The	erms/SF
Natural Gas	ECI	0.06	8 \$/SI	F	0.06	9 \$/S	F	0.07	4 \$/S	F	0.07	70 \$/S	F	0.04) \$/S	F
	Utility Cost	0.37	4 \$/TI	herm	0.37	4 \$/T	herm	0.39	4 \$/T	herm	0.40	04 \$/T	herm	0.32) \$/T	herm
		3.7	4\$/№	1MBtu	3.7	4\$/N	MMBtu	3.9	4 \$/N	иMBtu	4.0	04 \$/N	/MBtu	3.2) \$/N	иMBtu
	Site EUI	60.	2 kBtı	u/SF	61.	3 kBt	:u/SF	59.	5 kBt	:u/SF	60	.9 kBt	u/SF	56.	2 kBt	u/SF
		0.60	2 The	rms/SF	0.61	3 The	erms/SF	0.59	5 The	erms/SF	0.60	9 The	erms/SF	0.56	2 The	erms/SF
CHP Natural Gas	ECI	0.21	3 \$/SI	F	0.21	7 \$/S	6F	0.22	5 \$/S	F	0.23	88 \$/S	F	0.16) \$/S	F
	Utility Cost	0.35	3 \$/TI	herm	0.35	3 \$/T	herm	0.37	8 \$/T	herm	0.39	91 \$/T	herm	0.28	5 \$/T	herm
		3.5	3\$/№	1MBtu	3.5	3 \$/N	MMBtu	3.7	8 \$/N	иMBtu	3.9	91 \$/N	/MBtu	2.8	5 \$/N	иMBtu
	Site EUI	0.	1 kBtı	u/SF	0.	1 kBt	:u/SF	0.	1 kBt	:u/SF	0	.1 kBt	u/SF	0.1	I kBt	u/SF
		0.01	8 kWl	h/SF	0.01	8 kW	'h/SF	0.01	8 kW	h/SF	0.01	.8 kW	h/SF	0.01	3 kW	h/SF
PV Electricity	ECI	0.00	0 \$/SI	F	0.00	0 \$/S	ρF	0.00	0 \$/S	F	0.000 \$/SF		0.000 \$/SF			
	Utility Cost	0.00	0 \$/k	Wh	0.00	10 \$/k	Wh	0.00	0 \$/k	Wh	0.00	00 \$/k	Wh	0.000 \$/kWh		
		0.0	0 \$/N	1MBtu	0.0	IO \$/N	MMBtu	0.0	0 \$/N	иMBtu	0.0)0 \$/N	/MBtu	0.0) \$/N	иMBtu

Notes:

• Energy Use Intensity (EUI) is expressed as energy per square foot per year. Energy Cost Intensity (ECI) is expressed as energy cost per square foot per year.

• Comparison site EUI, source EUI and end-use estimates are based on 2012 CBECS (Commercial Building Energy Consumption Survey).

• Site EUI indicates site energy requirement. Source EUI includes transmission losses and energy conversion efficiency.

• Key Performance Indicators (KPIs) allow comparison between buildings. Base 55°F used for Cooling Degree Days (CDD) and Heating Degree Days (HDD).

• "Average" may not match the average of billing month data when billing months don't start and end with the actual month.

• Utility data include all campus accounts covering the campus buildings.

• "Weather Normalized" Natural Gas energy uses typical weather year heating degree days in a model fit of metered natural gas use data.

• "Weather Normalized" CHP Natural Gas energy uses typical weather year heating degree days in a model fit of metered natural gas use data.

"Monthly PV output estimated using PV Watts.

Electric Summary

000 - Campus Total

SUNY Oswego

Utility Account Information										
Component	Provider	Account Number	Rate Class							
Electric Delivery	National Grid	Multiple	Multiple							
Electric Supply	0	Multiple								

Electric Energy Profile												
Month			A	verage				We	athe	er Normalize	d	
WOITCH	kWh	kW Total Cost		otal Cost	CDD	HDD	kWh	kW		Fotal Cost	CDD	HDD
Jan	2,991,948	5,566	\$	201,077	0	919	2,991,948	5,566	\$	201,077	0	919
Feb	3,099,489	5,780	\$	142,763	0	721	3,099,489	5,780	\$	142,763	0	721
Mar	3,085,285	5,570	\$	138,690	1	606	3,085,285	5,570	\$	138,690	1	606
Apr	2,983,602	5,352	\$	143,510	8	378	2,983,602	5,352	\$	143,510	8	378
May	2,681,436	5,316	\$	134,532	153	95	2,681,436	5,316	\$	134,532	153	95
Jun	2,634,802	5,807	\$	149,548	320	3	2,634,802	5,807	\$	149,548	320	3
Jul	3,540,338	6,416	\$	196,178	592	0	3,540,338	6,416	\$	196,178	592	0
Aug	3,610,442	7,313	\$	185,169	511	0	3,610,442	7,313	\$	185,169	511	0
Sep	3,695,102	7,620	\$	174,297	300	7	3,695,102	7,620	\$	174,297	300	7
Oct	3,281,447	6,703	\$	157,907	62	143	3,281,447	6,703	\$	157,907	62	143
Nov	3,127,849	5,581	\$	150,306	18	459	3,127,849	5,581	\$	150,306	18	459
Dec	2,965,451	5,535	\$	157,550	0	700	2,965,451	5,535	\$	157,550	0	700
Annual	37,697,187	7,620	\$	1,931,526	1,965	4,032	37,697,187	7,620	\$	1,931,526	1,965	4,032
KDIc	10.8	2.18		0.55			10.8	2.18		0.55		
KP15	kWh/SF	W/SF		\$/SF			kWh/SF	W/SF		\$/SF		
Load Factor	56%						56%					
Blended	0.051						0.051					
Rates	\$/kWh						\$/kWh					

	Electric Energy Profile																	
Month		Jan	2018	to Dec 201	8			Jan	201	9 to Dec 201	9			Jan	202) to Dec 202	0	
WOITCH	kWh	kW	Т	otal Cost	CDD	HDD	kWh	kW	T	otal Cost	CDD	HDD	kWh	kW	T	otal Cost	CDD	HDD
Jan	3,086,669	5,605	\$	296,585	0	972	2,897,226	5,527	\$	178,810	0	1,014	2,876,875	5,342	\$	120,315	0	772
Feb	3,092,534	5,853	\$	148,676	0	625	3,106,444	5,707	\$	155,600	0	777	3,101,540	5,608	\$	123,228	0	760
Mar	3,062,734	5,473	\$	148,064	0	684	3,107,835	5,668	\$	144,141	0	683	2,851,289	5,412	\$	113,782	4	452
Apr	3,060,795	5,366	\$	165,970	7	474	2,906,408	5,338	\$	144,592	8	308	2,306,692	3,667	\$	85,551	9	352
May	2,603,506	5,468	\$	144,308	230	16	2,759,365	5,164	\$	111,468	55	129	2,214,654	3,661	\$	121,281	173	142
Jun	2,579,833	5,977	\$	164,542	317	0	2,689,770	5,636	\$	123,525	266	8	2,162,736	4,274	\$	131,129	379	1
Jul	3,518,375	6,281	\$	206,059	575	0	3,562,300	6,551	\$	187,437	573	0	3,216,062	5,619	\$	175,057	628	0
Aug	3,806,571	7,845	\$	208,870	564	0	3,414,313	6,780	\$	170,207	440	0	3,589,051	6,854	\$	173,538	531	0
Sep	3,925,038	8,086	\$	197,682	351	8	3,465,166	7,155	\$	152,829	254	0	3,166,734	6,430	\$	146,688	294	14
Oct	3,401,662	6,838	\$	183,324	83	209	3,161,231	6,567	\$	136,179	51	111	2,750,840	4,666	\$	125,262	53	110
Nov	3,198,816	5,651	\$	182,019	0	558	3,056,882	5,511	\$	142,771	0	559	2,645,804	4,742	\$	104,573	54	261
Dec	3,020,758	5,610	\$	180,680	0	719	2,910,143	5,460	\$	140,365	0	766	2,497,157	4,011	\$	125,669	0	616
Annual	38,357,291	8,086	\$	2,226,781	2,125	4,263	37,037,083	7,155	\$	1,787,924	1,645	4,354	33,379,434	6,854	\$	1,546,075	2,124	3,479
KDic	11.0	2.31		0.64			10.6	2.04		0.51			9.5	1.96		0.44		
KF13	kWh/SF	W/SF		\$/SF			kWh/SF	W/SF		\$/SF			kWh/SF	W/SF		\$/SF		
Load Factor	54%						59%						56%					
Blended	0.058						0.048						0.046					
Rates	\$/kWh						\$/kWh						\$/kWh					

Notes:

• Energy Use Intensity (EUI) is expressed as energy per square foot per year. Energy Cost Intensity (ECI) is expressed as energy cost per square foot per year.

• Comparison site EUI, source EUI and end-use estimates are based on 2012 CBECS (Commercial Building Energy Consumption Survey).

• Site EUI indicates site energy requirement. Source EUI includes transmission losses and energy conversion efficiency.

• Key Performance Indicators (KPIs) allow comparison between buildings. Base 55°F used for Cooling Degree Days (CDD) and Heating Degree Days (HDD).

"Average" may not match the average of billing month data when billing months don't start and end with the actual month.
Electric data from utility billing data.

Natural Gas Summary

000 - Campus Total

SUNY Oswego

Utility Account Information										
Component	Provider	Account Number	Rate Class							
Natural Gas Delivery	National Grid	Multiple	Multiple							
Natural Gas Supply	-	-								

				Natural	Gas Energy	Profile				
Month			Average				W	eather Norm	alized	
wonth	Therms	Т	otal Cost	CDD	HDD	Therms	Ţ	otal Cost	CDD	HDD
Jan	119,957	\$	41,709	0	919	74,152	\$	27,765	0	899
Feb	93,399	\$	35,355	0	721	74,152	\$	27,765	0	830
Mar	79,665	\$	27,882	1	606	69,586	\$	26,056	34	578
Apr	62,943	\$	21,444	8	378	66,964	\$	25,074	53	265
May	22,115	\$	8,163	153	95	50,060	\$	18,744	178	27
Jun	16,332	\$	6,044	320	3	27,252	\$	10,204	347	4
Jul	14,153	\$	4,833	592	0	3,866	\$	1,448	519	0
Aug	15,779	\$	5,809	511	0	19,730	\$	7,388	402	0
Sep	19,571	\$	7,412	300	7	45,309	\$	16,965	213	42
Oct	36,697	\$	14,635	62	143	71,073	\$	26,612	23	194
Nov	73,246	\$	30,660	18	459	71,824	\$	26,894	17	440
Dec	80,826	\$	33,703	0	700	74,152	\$	27,765	0	845
Annual	634,680	\$	237,648	1,965	4,032	648,119	\$	242,680	1,786	4,123
KDIc	0.181		0.068			0.185		0.069		
11715	Therms/SF		\$/SF			Therms/SF		\$/SF		
Blended	0.374		3.74			0.374		3.74		
Rates	\$/Therm	Ş	\$/MMBtu			\$/Therm	ŝ	\$/MMBtu		

						Natural	Gas I	Energy Profi	le						
Month		Jan	2018 to De	c 2018			Jan	2019 to De	c 2019			Jar	n 2020 to De	c 2020	
wonth	Therms	Т	otal Cost	CDD	HDD	Therms	Т	otal Cost	CDD	HDD	Therms	Т	otal Cost	CDD	HDD
Jan	149,559	\$	41,021	0	972	90,355	\$	40,765	0	1,014	82,300	\$	30,247	0	772
Feb	89,921	\$	42,729	0	625	96,877	\$	37,054	0	777	94,216	\$	26,590	0	760
Mar	77,567	\$	27,475	0	684	81,762	\$	30,189	0	683	63,295	\$	20,253	4	452
Apr	69,518	\$	24,983	7	474	56,367	\$	21,592	8	308	53,904	\$	14,678	9	352
May	16,069	\$	7,647	230	16	28,160	\$	10,521	55	129	23,569	\$	6,857	173	142
Jun	12,386	\$	5,051	317	0	20,277	\$	7,778	266	8	12,618	\$	3,929	379	1
Jul	12,392	\$	5,151	575	0	15,913	\$	5,405	573	0	15,034	\$	4,245	628	0
Aug	13,255	\$	5,370	564	0	18,303	\$	6,112	440	0	4,678	\$	1,857	531	0
Sep	17,594	\$	7,014	351	8	21,548	\$	7,438	254	0	11,168	\$	4,603	294	14
Oct	41,833	\$	16,523	83	209	31,560	\$	14,974	51	111	34,861	\$	11,675	53	110
Nov	76,440	\$	31,412	0	558	70,051	\$	31,045	0	559	89,330	\$	36,257	54	261
Dec	82,885	\$	45,653	0	719	78,768	\$	33,292	0	766	54,978	\$	11,385	0	616
Annual	659,419	\$	260,029	2,125	4,263	609,941	\$	246,165	1,645	4,354	539,951	\$	172,575	2,124	3,479
KDIc	0.188		0.074			0.174		0.070			0.154		0.049		
KP15	Therms/SF		\$/SF			Therms/SF		\$/SF			Therms/SF		\$/SF		
Blended	0.394		3.94			0.404		4.04			0.320		3.20		
Rates	\$/Therm	\$	/MMBtu			\$/Therm	\$	/MMBtu			\$/Therm	ç	5/MMBtu		

Notes:

• Energy Use Intensity (EUI) is expressed as energy per square foot per year. Energy Cost Intensity (ECI) is expressed as energy cost per square foot per year.

• Comparison site EUI, source EUI and end-use estimates are based on 2012 CBECS (Commercial Building Energy Consumption Survey).

• Site EUI indicates site energy requirement. Source EUI includes transmission losses and energy conversion efficiency.

• Key Performance Indicators (KPIs) allow comparison between buildings. Base 55°F used for Cooling Degree Days (CDD) and Heating Degree Days (HDD).

• "Average" may not match the average of billing month data when billing months don't start and end with the actual month.

• Natural Gas data includes all utility accounts.

• "Weather Normalized" Natural Gas energy uses typical weather year heating degree days in a model fit of metered natural gas use data.

CHP Natural Gas Summary

000 - Campus Total

SUNY Oswego

	Utility	Account Information	
Component	Provider	Account Number	Rate Class
CHP Natural Gas	National Grid	Multiple	Multiple
Natural Gas Supply	-	-	

			C	HP Natur	al Gas Energ	y Profile				
Month			Average				W	eather Norm	alized	
wonth	Therms	Т	otal Cost	CDD	HDD	Therms	Т	otal Cost	CDD	HDD
Jan	304,717	\$	104,419	0	919	237,569	\$	83,940	0	899
Feb	271,410	\$	93,116	0	721	237,569	\$	83,940	0	830
Mar	271,078	\$	82,245	1	606	224,251	\$	79,235	34	578
Apr	224,230	\$	66,959	8	378	216,603	\$	76,533	53	265
May	119,159	\$	35,155	153	95	167,292	\$	59,109	178	27
Jun	63,614	\$	21,339	320	3	100,761	\$	35,602	347	4
Jul	58,231	\$	17,581	592	0	32,544	\$	11,499	519	0
Aug	60,986	\$	19,083	511	0	78,822	\$	27,850	402	0
Sep	83,944	\$	28,331	300	7	153,434	\$	54,213	213	42
Oct	147,531	\$	47,623	62	143	228,588	\$	80,767	23	194
Nov	240,986	\$	108,149	18	459	230,779	\$	81,541	17	440
Dec	260,694	\$	120,318	0	700	237,569	\$	83,940	0	845
Annual	2,106,579	\$	744,319	1,965	4,032	2,145,780	\$	758,170	1,786	4,123
KDic	0.602		0.213			0.613		0.217		
KP15	Therms/SF		\$/SF			Therms/SF		\$/SF		
Blended	0.353		3.53			0.353		3.53		
Rates	\$/Therm	ç	5/MMBtu			\$/Therm	Ş	\$/MMBtu		

						CHP Natur	al Ga	as Energy Pr	ofile						
Month		Jar	n 2018 to De	c 2018			Jar	2019 to De	c 2019			Jar	n 2020 to De	c 2020	
wonth	Therms	T	otal Cost	CDD	HDD	Therms	T	otal Cost	CDD	HDD	Therms	Ţ	otal Cost	CDD	HDD
Jan	312,033	\$	100,589	0	972	297,401	\$	125,359	0	1,014	268,878	\$	75,029	0	772
Feb	259,081	\$	111,680	0	625	283,739	\$	99,717	0	777	271,056	\$	67,829	0	760
Mar	280,976	\$	87,949	0	684	261,179	\$	89,324	0	683	223,035	\$	54,885	4	452
Apr	241,456	\$	77,125	7	474	207,004	\$	69,334	8	308	183,208	\$	42,169	9	352
May	91,162	\$	32,015	230	16	147,156	\$	47,753	55	129	133,874	\$	30,037	173	142
Jun	58,214	\$	21,698	317	0	69,014	\$	23,715	266	8	46,224	\$	12,772	379	1
Jul	54,909	\$	21,163	575	0	61,553	\$	19,145	573	0	93,417	\$	23,059	628	0
Aug	57,742	\$	21,203	564	0	64,230	\$	19,008	440	0	66,624	\$	18,803	531	0
Sep	78,574	\$	28,832	351	8	89,314	\$	26,843	254	0	81,397	\$	28,459	294	14
Oct	150,122	\$	55,353	83	209	144,941	\$	45,007	51	111	146,978	\$	42,332	53	110
Nov	241,284	\$	91,753	0	558	240,687	\$	139,600	0	559	202,651	\$	75,891	54	261
Dec	256,969	\$	137,517	0	719	264,419	\$	127,755	0	766	248,127	\$	89,883	0	616
Annual	2,082,522	\$	786,878	2,125	4,263	2,130,637	\$	832,559	1,645	4,354	1,965,469	\$	561,146	2,124	3,479
KDic	0.595		0.225			0.609		0.238			0.562		0.160		
KP15	Therms/SF		\$/SF			Therms/SF		\$/SF			Therms/SF		\$/SF		
Blended	0.378		3.78			0.391		3.91			0.286		2.86		
Rates	\$/Therm	\$	/MMBtu			\$/Therm	\$	/MMBtu			\$/Therm	Ş	S/MMBtu		

Notes:

• Energy Use Intensity (EUI) is expressed as energy per square foot per year. Energy Cost Intensity (ECI) is expressed as energy cost per square foot per year.

Comparison site EUI, source EUI and end-use estimates are based on 2012 CBECS (Commercial Building Energy Consumption Survey).

• Site EUI indicates site energy requirement. Source EUI includes transmission losses and energy conversion efficiency.

• Key Performance Indicators (KPIs) allow comparison between buildings. Base 55°F used for Cooling Degree Days (CDD) and Heating Degree Days (HDD).

• "Average" may not match the average of billing month data when billing months don't start and end with the actual month.

• Natural gas data from CHP daily steam logs.

• "Weather Normalized" CHP Natural Gas energy uses typical weather year heating degree days in a model fit of metered natural gas use data.

PV Electricity Summary

000 - Campus Total

SUNY Oswego

	Utility	Account Information	
Component	Account Number	Provider	Rate Class
PV Electricity	-	SASP	-

				PV Electri	city Energy	Profile				
Month			Average	2			We	ather Norn	nalized	
WOITIN	kWh	То	tal Cost	CDD	HDD	kWh	То	tal Cost	CDD	HDD
Jan	2,602	\$	-	0	919	2,602	\$	-	0	919
Feb	3,710	\$	-	0	721	3,710	\$	-	0	721
Mar	6,128	\$	-	1	606	6,128	\$	-	1	606
Apr	6,590	\$	-	8	378	6,590	\$	-	8	378
May	7,660	\$	-	153	95	7,660	\$	-	153	95
Jun	7,530	\$	-	320	3	7,530	\$	-	320	3
Jul	7,882	\$	-	592	0	7,882	\$	-	592	0
Aug	7,210	\$	-	511	0	7,210	\$	-	511	0
Sep	5,863	\$	-	300	7	5,863	\$	-	300	7
Oct	4,079	\$	-	62	143	4,079	\$	-	62	143
Nov	2,868	\$	-	18	459	2,868	\$	-	18	459
Dec	1,964	\$	-	0	700	1,964	\$	-	0	700
Annual	64,087	\$	-	1,965	4,032	64,087	\$	-	1,965	4,032
KDIe	0.018		0.000			0.018		0.000		
KPIS	kWh/SF		\$/SF			kWh/SF		\$/SF		
Blended	0.000		0.00			0.000		0.00		
Rates	\$/kWh	\$/	MMBtu			\$/kWh	\$/	MMBtu		

						PV Elect	ricity E	nergy Pro	file						
Month		Jan 20)18 to De	ec 2018			Jan 2	2019 to De	ec 2019			Jan 2	2020 to De	ec 2020	
WOILI	kWh	Tota	l Cost	CDD	HDD	kWh	To	tal Cost	CDD	HDD	kWh	Tot	al Cost	CDD	HDD
Jan	2,602	\$	-	0	972	2,602	\$	-	0	1,014	2,602	\$	-	0	772
Feb	3,710	\$	-	0	625	3,710	\$	-	0	777	3,710	\$	-	0	760
Mar	6,128	\$	-	0	684	6,128	\$	-	0	683	6,128	\$	-	4	452
Apr	6,590	\$	-	7	474	6,590	\$	-	8	308	6,590	\$	-	9	352
May	7,660	\$	-	230	16	7,660	\$	-	55	129	7,660	\$	-	173	142
Jun	7,530	\$	-	317	0	7,530	\$	-	266	8	7,530	\$	-	379	1
Jul	7,882	\$	-	575	0	7,882	\$	-	573	0	7,882	\$	-	628	0
Aug	7,210	\$	-	564	0	7,210	\$	-	440	0	7,210	\$	-	531	0
Sep	5,863	\$	-	351	8	5,863	\$	-	254	0	5,863	\$	-	294	14
Oct	4,079	\$	-	83	209	4,079	\$	-	51	111	4,079	\$	-	53	110
Nov	2,868	\$	-	0	558	2,868	\$	-	0	559	2,868	\$	-	54	261
Dec	1,964	\$	-	0	719	1,964	\$	-	0	766	1,964	\$	-	0	616
Annual	64,087	\$	-	2,125	4,263	64,087	\$	-	1,645	4,354	64,087	\$	-	2,124	3,479
KDic	0.018	0.	000			0.018	(0.000			0.018	C	0.000		
KP15	kWh/SF	\$	/SF			kWh/SF		\$/SF			kWh/SF		\$/SF		
Blended	0.000	0	.00			0.000		0.00			0.000		0.00		
Rates	\$/kWh	\$/M	MBtu			\$/kWh	\$/	MMBtu			\$/kWh	\$/1	MMBtu		

Notes:

• Energy Use Intensity (EUI) is expressed as energy per square foot per year. Energy Cost Intensity (ECI) is expressed as energy cost per square foot per year.

• Comparison site EUI, source EUI and end-use estimates are based on 2012 CBECS (Commercial Building Energy Consumption Survey).

• Site EUI indicates site energy requirement. Source EUI includes transmission losses and energy conversion efficiency.

• Key Performance Indicators (KPIs) allow comparison between buildings. Base 55°F used for Cooling Degree Days (CDD) and Heating Degree Days (HDD).

"Average" may not match the average of billing month data when billing months don't start and end with the actual month.
"Monthly PV output estimated using PV Watts.

Energy Use Analysis and Benchmarking Profile SUNY Oswego

			We	ather Normalized	EUI			Weighted	
	Groce Area	Flectuicitu	Notural Cos	CHP Natural		Total		CBECS	
Building	(SF)	(kBtu/SF)	(kBtu/GSF)	Gas (kBtu/GSF)	(kBtu/GSF)	(kBtu/SF)	CBECS Building Type	(kBtu/SF)	Notes
0001 - SHELDON HALL	119,211	30.5	5.8	55.8	0.0	92.1	30% College/university 50% Office 20% Recreation	96.4	2, 4, 5
0002 - J C PARK HALL	66,979	35.2	6.8	90.8	0.0	132.9	60% College/university 40% Office	112.0	1, 5
0003 - CAMPUS CENTER	185,524	50.9	32.9	100.6	0.0	184.4	30% College/university 30% Office 15% Recreation 25% Restaurant/cafeteria	150.3	1, 5
003A - I POUCHER HALL	40,080	35.3	18.8	93.8	0.0	147.9	75% College/university 25% Office	118.5	1, 5
003B - REC & CONVOCATION CTR	115,421	31.7	45.0	97.2	0.0	173.9	100% College/university	127.5	1, 5
003C - CC STORAGE BLDG	310	2.8	0.0	0.0	0.0	2.8	100% Self-storage	3.8	1
0004 - M V LEE HALL	65,000	15.9	0.0	67.3	0.0	83.2	10% Office 90% Recreation	67.5	1, 5
004A - CENTRAL HEATING PLANT	21,980	7.8	0.0	47.5	0.0	55.3	5% Office 95% Other service	47.1	1, 3
0005 - SHADY SHORE	8,754	9.1	51.7	0.0	0.0	60.9	100% Single-Family Detached	42.9	1, 4
0005A - PRESIDENT GARAGE	576	2.8	0.0	0.0	0.0	2.8	100% Self-storage	3.8	1
0006 - J LANIGAN HALL	88,200	36.9	25.7	101.5	0.0	164.1	80% College/university 10% Office 5% Restaurant/cafeteria 5% Other service	129.4	1, 5
0007 - J TYLER HALL	115,430	26.5	17.9	76.7	0.0	121.0	50% College/university 10% Office 10% Recreation 30% Other service	94.6	1, 5
0008 - RICHARD S SHINEMAN CENTER	235,860	94.3	17.4	0.0	0.3	112.1	30% College/university 20% Office 5% Restaurant/cafeteria 30% Laboratory 15% Other service	146.8	1, 5
0009 - WILBER HALL	108,933	30.5	0.0	80.0	0.0	110.5	40% College/university 40% Office 20% Other service	95.5	1, 5
0010 - MARY WALKER HEALTH CENTER	33,260	22.5	0.0	43.0	0.0	65.5	5% College/university 40% Office 15% Self-storage 40% Other service	60.9	1, 5
0011 - COMMISSARY BLDG	30,836	58.1	114.7	0.0	0.0	172.8	10% Office 40% Self-storage 50% Restaurant/cafeteria	157.8	1, 4
0012 - MAINTENANCE BLDG	20,664	18.2	22.2	0.0	0.0	40.4	30% Office 10% Self-storage 60% Other service	52.3	1, 4, 6
0013 - M E MAHAR HALL	91,530	32.9	0.0	87.5	0.0	120.4	50% College/university 40% Office 10% Other service	103.8	1, 5
0014 - RICH HALL	53,742	38.9	6.7	96.3	0.0	141.9	55% College/university 40% Office 5% Restaurant/cafeteria	120.5	1, 5
0015 - MACKIN HALL	41,984	41.2	37.6	92.4	0.0	171.2	30% College/university 5% Dormitory/fraternity/sorority 15% Office 25% Self-storage 25% Restaurant/cafeteria	129.1	1, 5
015A - MORELAND HALL	29,400	25.4	11.5	66.5	0.0	103.3	90% Dormitory/fraternity/sorority 10% Self-storage	80.9	1, 5
015B - LONIS HALL	32,285	26.6	12.0	69.8	0.0	108.4	95% Dormitory/fraternity/sorority 5% Self-storage	85.0	1, 5
0016 - OBSERVATORY	460	40.7	0.0	0.0	0.0	40.7	100% College/university	56.6	1
0017 - J PENFIELD LIB	192,298	28.8	0.0	65.7	0.0	94.5	10% College/university 10% Office 15% Self-storage 5% Restaurant/cafeteria 60% Library	87.0	1, 5
0019 - LAKER HALL	196,608	16.7	71.1	0.0	0.0	87.8	5% Office 90% Recreation 5% Self-storage	63.9	1, 4

EUI

Energy Use Analysis and Benchmarking Profile SUNY Oswego

12/13

			We	ather Normalized	EUI			Weighted	
	Gross Area	Electricity	Natural Gas	CHP Natural Gas	PV Electricity	Total		CBECS Comparison	
Building	(SF)	(kBtu/SF)	(kBtu/GSF)	(kBtu/GSF)	(kBtu/GSF)	(kBtu/SF)	CBECS Building Type 20% Office	(kBtu/SF)	Notes
0020 - GAR-20	14,850	12.7	63.4	0.0	0.0	76.1	50% Self-storage 30% Other service	35.6	1, 4
0021 - ROMNEY FIELD HOUSE	55,000	136.2	93.7	0.0	0.0	229.9	95% Recreation 5% Self-storage	63.2	2, 4
0022 - KING HALL	7,200	11.0	56.6	0.0	0.0	67.6	90% Office 10% Self-storage	73.7	2, 4
0023A - RICE CREEK FIELD STATION	7,500	114.3	0.0	0.0	18.6	132.8	60% College/university 15% Office 20% Laboratory 5% Self-storage	136.9	2, 7
0024A - BIO FIELD GARAGE	960	3.4	0.0	0.0	0.0	3.4	100% Self-storage	3.8	2, 7
0026 - CULKIN HALL	63,591	33.5	0.0	0.0	0.0	33.5	95% Office 5% Self-storage	82.2	1, 5
0028 - SEWAGE PUMP STATION	1,881	20.0	0.0	0.0	0.0	20.0	100% Other service	27.8	1
0028A - SEWAGE PUMP STATION - SENECA	211	20.0	0.0	0.0	0.0	20.0	100% Other service	27.8	1
0028B - SEWAGE PUMP STATION - BLG 12	224	20.0	0.0	0.0	0.0	20.0	100% Other service	27.8	1
0029 - HEWITT HALL	135,010	29.7	0.0	77.3	0.0	106.9	35% College/university 40% Office 5% Recreation 20% Other service	92.7	1, 5
0031 - PATHFINDER DH	33,827	59.0	46.7	118.3	0.0	223.9	30% Office 20% Self-storage 50% Restaurant/cafeteria	177.1	1, 3
0032 - SENECA HALL	152,548	28.9	0.0	72.2	0.0	101.1	95% Dormitory/fraternity/sorority 5% Self-storage	85.0	1, 12
0033 - CAYUGA HALL	105,072	27.8	0.0	74.6	0.0	102.4	95% Dormitory/fraternity/sorority 5% Self-storage	85.0	1, 12
0034 - ONONDAGA HALL	152,548	26.6	0.0	77.2	0.0	103.9	95% Dormitory/fraternity/sorority 5% Self-storage	85.0	1, 5
0035 - LITTLEPAGE DH	33,827	55.9	12.8	129.9	0.0	198.6	5% Other service 5% Office 35% Recreation 10% Self-storage 45% Restaurant/cafeteria	167.6	1, 5
0036 - ONEIDA HALL	105,000	25.4	0.0	73.6	0.0	99.0	90% Dormitory/fraternity/sorority 10% Self-storage	80.9	1, 5
0037A - TOWNHOUSE A	10,260	28.3	36.8	0.0	0.0	65.1	100% Dormitory/fraternity/sorority	90.7	1, 4, 8
0037B - TOWNHOUSE B	8,082	27.0	36.8	0.0	0.0	63.8	95% Dormitory/fraternity/sorority 5% Self-storage	86.6	1, 4, 8
0037C - TOWNHOUSE C	12,599	28.3	36.8	0.0	0.0	65.1	100% Dormitory/fraternity/sorority	90.7	1, 4, 8
0037D - TOWNHOUSE D	12,599	28.3	36.8	0.0	0.0	65.1	100% Dormitory/fraternity/sorority	90.7	1, 4, 8
0037E - TOWNHOUSE E	15,880	28.3	36.8	0.0	0.0	65.1	100% Dormitory/fraternity/sorority	90.7	1, 4, 8
0037F - TOWNHOUSE F	18,295	28.4	36.5	0.0	0.0	64.9	75% Dormitory/fraternity/sorority 5% Office 20% Library	88.7	1, 4, 8
0037G - TOWNHOUSE G	8,082	27.0	44.3	0.0	0.0	71.3	95% Dormitory/fraternity/sorority 5% Self-storage	86.6	1, 4, 9
0037H - TOWNHOUSE H	10,260	28.3	44.3	0.0	0.0	72.6	100% Dormitory/fraternity/sorority	90.7	1, 4, 9
0037I - TOWNHOUSE I	12,599	28.3	44.1	0.0	0.0	72.4	100% Dormitory/fraternity/sorority	90.7	1, 4, 9
0037J - TOWNHOUSE J	12,599	28.3	44.3	0.0	0.0	72.6	100% Dormitory/fraternity/sorority	90.7	1, 4, 9
0037K - TOWNHOUSE K	16,729	28.3	44.1	0.0	0.0	72.4	100% Dormitory/fraternity/sorority	90.7	1, 4, 9
0037L - TOWNHOUSE L	12,567	28.3	44.3	0.0	0.0	72.6	100% Dormitory/fraternity/sorority	90.7	1, 4, 9
0041 - JOHNSON HALL	79,097	28.0	0.8	74.3	0.0	103.1	95% Dormitory/fraternity/sorority 5% Self-storage	86.6	1, 5
0042 - LAKESIDE DH	27,870	55.8	46.7	113.7	0.0	216.1	20% Office 30% Self-storage 50% Restaurant/cafeteria	169.3	1, 5
0043 - RIGGS HALL	58,201	28.2	0.9	80.3	0.0	109.4	100% Dormitory/fraternity/sorority	90.7	1, 5

Confidential

Building Summary

SUNY Oswego

			We	ather Normalized	EUI			Weighted	
				CHP Natural				CBECS	
	Gross Area	Electricity	Natural Gas	Gas	PV Electricity	Total		Comparison	
Building	(SF)	(kBtu/SF)	(kBtu/GSF)	(kBtu/GSF)	(kBtu/GSF)	(kBtu/SF)	CBECS Building Type	(kBtu/SF)	Notes
0044 - WATERBURY HALL	57,464	29.1	0.0	78.3	0.0	107.4	100% Dormitory/fraternity/sorority	89.0	1, 5
0045 - SCALES HALL	57,464	29.1	0.0	78.3	0.0	107.4	100% Dormitory/fraternity/sorority	89.0	1, 5
0046 - HART HALL	114,365	27.9	31.5	61.3	0.0	120.8	100% Dormitory/fraternity/sorority	89.0	1, 5
0047 - COOPER DH	33,546	52.8	46.7	119.8	0.0	219.3	25% Recreation 25% Self-storage 50% Restaurant/cafeteria	168.4	1, 5
0048 - FUNNELLE HALL	114,365	28.2	31.0	60.3	0.0	119.5	95% Dormitory/fraternity/sorority 5% Office	88.6	1, 5
0049 - PUBLIC RESTROOM	160	20.0	0.0	0.0	0.0	20.0	100% Other service	27.8	1
0051 - FM RADIO TRANSMISSION FAC	440	2167.8	0.0	0.0	0.0	2167.8	100% Other service	27.8	2, 5
0061 - MAINTENANCE STORAGE	100	2.8	0.0	0.0	0.0	2.8	100% Self-storage	3.8	1
0071 - POLE BARN (FALLBROOK)	17,369	18.0	0.0	0.0	0.0	18.0	100% Recreation	25.0	1
0080 - FT DRM ED SVC CONSORTIUM	290	0.0	0.0	0.0	0.0	0.0	100% Office	49.1	
0081 - RICE CREEK OBSERVATORY	550	49.5	0.0	0.0	0.0	49.5	100% College/university	56.6	2, 7
0082 - PRESS BOX	495	20.0	0.0	0.0	0.0	20.0	100% Other service	27.8	1, 5
0083 - RICE CREEK PAVILION	893	49.5	0.0	0.0	0.0	49.5	100% College/university	56.6	2, 7
0104 - SECURITY PARKING OFFICE	2,297	100.7	64.4	0.0	0.0	165.1	100% Office	86.0	2, 4, 10
0106 - VOLATILE STO	400	2.8	0.0	0.0	0.0	2.8	100% Self-storage	3.8	1
0107 - 1 ROOM SCHOOL HSE	550	40.3	0.0	0.0	0.0	40.3	100% College/university	62.0	2, 3
0108 - POWER STATION 1	216	20.0	0.0	0.0	0.0	20.0	100% Other service	27.8	1
0109 - POWER STATION 1A	175	20.0	0.0	0.0	0.0	20.0	100% Other service	27.8	1
0110 - POWER STATION 2	177	20.0	0.0	0.0	0.0	20.0	100% Other service	27.8	1
FALLBROOK REC CENTER	17,167	0.0	28.5	0.0	0.0	28.5	15% College/university 10% Office 50% Recreation 25% Library	45.2	4, 11
Campus Total	3,498,777	36.7	18.5	61.3	0.1	116.6	Weighted CBECS Comparison	100.0	-

Overall Notes:

• Weather Normalized electric energy and demand are represented by the "Average" year data due to limited correlation to monthly cooling degree days.

Weather Normalized natural gas energy uses typical weather year heating degree days in a model fit of metered natural gas use data.

- EUI calculated based on building submeter data.
- PV Electric output estimated using PV Watts.

Building Specific Notes:

- 1 Electric service from main campus electric service. Electric EUI estimated.
- 2 Electric service provided by National Grid utility meter
- 3 Natural gas supplied to the building from main campus natural gas service. Natural gas EUI estimated.
- 4 Natural gas supplied to the building by National Grid utility meter
- 5 Steam provided from Central Heating Plant. CHP Natural Gas EUI estimated.
- 6 Maintenance building served by 'POLE BARN/SALT STORAGE' natural gas meter
- 7 Buildings served by 'RICE CREEK FIELD STATION-ALL BLDGS' electric meter
- 8 Buildings served by '90 IROQOUIS TOWNHOUSES' natural gas meter
- 9 Buildings served by '80 IROQOUIS TOWNHOUSES' natural gas meter
- 10 Building served by 'CHS104' and 'PARKING OFFICE' natural gas meters
- 11 Building served by 'AUXILLARY SVS/CULKIN HALL' natural gas meter
- 12 Steam provided from Pathfinder Dining Hall boiler. Natural Gas EUI estimated.

Building Summary

EUI

SUNY Oswego – Clean Energy Master Plan

Appendix B Building Assessment Reports

SUNY Oswego | EEM Opportunity Matrix (DRAFT)

								stor tall	Insulation?	Bows with	ooseven	ow and atom	Steam Sub	scention	not cor	rols for the form	ines of contra	ols pressure	Revential Pres	Source Lory D	enand contro	id control IN	AC Temper	ature Reset	Inte Reset	ing Academic	Breaks	Into Water Put	une Single Lo	ne Streen	ared the free area	N Fan Moto	For Controllin Ed by FIR	9 19 ^{stern} Pe ^{cl}	over Nater	Heaters with	sanit sates sates	Drives to	Longed Bert	an sustaining	S we we here the	
		Pote	ntial Energ	y Efficiency	Measure ¹ -	Upprate	Roof Insul	Exterior where Single Perface Single Perface Single Performance Single	e Glairee V	Fill. Propage	Sunding Le	Replace I	resion files	Pancy Is and the second	nt Seat Leon	VEURES SI	onent control	ent outrols	nt Demanut	Laborat Ki	on Occupant	Penent HWS	onent Chw SU	Setback Ed	uipment pre-	unaticors on Actuators on Actual VFD on Install VFD on Ins	Hot on Chi	Str. Constant V	AV Coton anical cation midification trestalities trestalities	place Critter with	PD ON COOL	er lonces up Jai Spaces up Jai Space and up	A an Exhaust	Replace Do	mestic Don's aneous Duct as aneous Duct as	nd pilv and	noeves stat	how flow out	and Automatic	N Fume In Se	ers ration	atural 685
Buildings	Y	'ear Built	GSF	Level 1 Ro Audit S	enovations cheduled		Env	velope		Subm	eters		Lighting	ı					HV	AC Contro	ols								HVAC	Equipment					0&0	м	Water	Sp	ecial Syst Presence	tems æ	Utility Meter Presence	
0001 - SHELDON HALL		1912	119,211	•				•	•		•	•	0		•	•	•	•		•	•	•	0	•	•	•			•)				•	•	•		С			• •	
0002 - J C PARK HALL		1933	66,979					•		•	•										•	•	0	•	0								•			•		Т	•			4
003A - L POUCHER HALL		1963	40.080									•									, ,	•	0		•							•	•					т	0			
003B - REC & CONVOCATION	CTR	2006	115,421	•					,	•	•	0	0 (•	•	•		• •		•	0	•	0				•••	,			•	•	•	•	•	т	•			1
003C - CC STORAGE BLDG		2007	310	-							-	-						-				-		-									-	-		-	-		-			
0004 - M V LEE HALL		1958	65,000	•				•)	•	•	•	•		•			•		٠	•		o	•	•		•	•			•	٠		•	•	٠	•	С				1
0006 - J LANIGAN HALL		1967	88,200	•				•		•	•		•		•			•		•)	•	0	•	•	•			•		• •		•	•	•	•		С	O			
0007 - J TYLER HALL		1968	115,430	•				•)		•		0		•	٠	٠	•		•				•	•					•	•					٠	•	т				
0008 - RICHARD S SHINEMAN	N CENTER	2013	235,860	•				•)		•	0	•) (•		•	•	•	•				•	•						•					•		C & T	• •			4
0009 - WILBER HALL		1964	108,933	•	-		-	•)		•	•	• •		•	•	•	•		•		•	0	•	•						•				•	•	•	т				
0013 - M E MAHAR HALL		1966	91,530	•	•	•	•	•			•	•	•		•		•	•						•					• •		• •	•		•	-	•		С	-			4
0014 - RICH HALL		1961	53,742	•				•	•			•	• (•	•			•)	•		•					• •	,			•	•	•	•		т	0			
0010 - UBSERVATURY		1968	460	•								•	•											•					-		•							С % Т	•			4
0019 - LAKER HALL		1968	196,608	•	0		•	•	•			0	•					•				-	•	•				•	•	,	•	•	•	•				C&T	U		•	
0021 - ROMNEY FIELD HOUSE	E	1962	55,000	•	-			•	ě	•		•	•		•			•			•		0	•			•		•			ě	•	•		•	•	с			• •	1
0023A - RICE CREEK FIELD ST	TATION	2013	7,500	•								•	0)	•				•														•			•	•	т	•		•	
0024A - BIO FIELD GARAGE		2013	960																																							
0029 - HEWITT HALL		1967	135,010	0	•	•	•																																			4
0053 - METRO CENTER		2008	14,526																																							
0080 - FT DRM ED SVC CONS	ORTIUM		290																																							4
0081 - RICE CREEK OBSERVA	TORY	2013	550											-																												
0083 - PRESS BUX	4	2015	495												,																											4
0044 - LEE HALL (HEATING P	I ANT)	1958	21 980	•								•	•	•											•													т			•	1
0005 - SHADY SHORE		1909	8,754	•				•)			•									•								•							•						1
0005A - PRESIDENT GARAGE		1984	576	-										G							-								-													
0010 - MARY WALKER HEALTH	H CENTER	1965	33,260	•							•	o		•	•		•			•				•	•		•								0	•		т				1
0011 - COMMISSARY BLDG		1966	30,836	•				•				0	•		•					•	•		0				-		•					•		•		т	•	•	•	
0012 - MAINTENANCE BLDG		1965	20,664	•				•				0	•		•								٠														•				•	
0020 - GAR-20		1971	14,850	•				•)			•	•		•						•		•	•	•				•		•				•	•					•	4
0022 - KING HALL		1935	7,200	•				•)			•	•		•						٠		٠						•						•						• •	
0026 - CULKIN HALL		1967	63,591	•				•)	•	•	0	•		•					•		•		•	•				•	1	•					•		C & T		•		4
0028 - SEWAGE PUMP STATIC 0028A - SEWAGE PUMP STATIC	ON ION -	1964	1,881																																							
SENECA 0028B - SEWAGE PUMP STATE	ION - BLG	1998	211																																							4
12 0021 - DATHEINDED DH		1988	224										•										•						-	•		-										
t 0035 - LITTLEPAGE DH		1968	33,827		•					-			•										•															c				1
0042 - LAKESIDE DH		1959	27,870	•	-		•		•				•								-		•	•								•				-		c	-			
0047 - COOPER DH		1967	33,546	•				•		•	•	0	•			-		•				•	0	•	•	•)	•			•		•		с	•	•		
0049 - PUBLIC RESTROOM			160	-				-			-	-		Ċ				-				-		-										-		-				-		
0051 - FM RADIO TRANSMISS	SION FAC		440											•)																										•	1
0061 - MAINTENANCE STORAG	GE		100											•																												
0071 - POLE BARN		1984	6,925																																							
0084 - BUSINESS AND COMM	IUNITY		1,917																																							
RELATIONS 0085 - BUSINESS RESOURCE	CENTER		2,739																																							1
0104 - SECURITY PARKING OF	FFICE	1980	2,297											-)																										• •	
0106 - VOLATILE STO			400																																							
0107 - 1 ROOM SCHOOL HSE		1905	550)																										•	
0108 - POWER STATION 1			216																																							
0109 - POWER STATION 1A			175																																							
0110 - POWER STATION 2			177																																							

SUNY Oswego | EEM Opportunity Matrix (DRAFT)

	Pote	ntial Energy	y Efficiency	∕ Measure ¹	. Jages	Ste Roof IT	substori	Well Industry	Cont Mindown	Swith South States	s windows	and store	Steam Super	sontion participation of the second s	Sene contro	99 Provinsions Jues Systems	a controls to nd controls to controls to controls to the present	RESOURCE SOFT	and control and control of the second	or Denand	ontrol ontrol ontrol of the section	WAC TENPE Supph Tenpe Enert CHWS	Selbert Cold	Perfection for the service of the se	Prodenic OF	und and a set of the s	HARE PURP	singe tonest	sen od ny communities come with the	on compared	Lorestantest torestantest specsarestant installing	Storfic Stars AV	Energy PERSON PERSON	Sovers	exercised work and a population	anti- ares por transition por transi	Son or contracts	Sed performance	Antennas a	B. B	
Buildings	Year Built	GSF L	Level 1 R Audit	enovations Scheduled			Envelope	•		Submet	ers		Lighting						HVAC Co	ntrols								HVAC Eq	uipment					0&M		Water	Spe	cial System Presence	15 M Pro	ility eter sence	
0015 - MACKIN DINING HALL	1951	41,984	•	•	٠	٠	O			•	• •	•	• •	•	•				•		•	0	• 0				•			• •			•		•	•	С	•	0		
015A - MORELAND HALL	1951	29,400	•	•	•	٠	O			•	• •		• •	•								0	•							•						•	С				
015B - LONIS HALL	1951	32,285	•	•	•	•	O			•	• •		• •	•								0	•							•						•	С				
0032 - SENECA HALL	1967	152,548	•	•	•	٠					• •		• •	•	•					•	•	0	•				۲		(• •	٠		•	•	•	•	С				
0033 - CAYUGA HALL	1967	105,072	•	•	•	•					• •		• •	•	•					•	•		•				•			• •	•		•		•	•	т				
0034 - ONONDAGA HALL	1968	152,548	•	•	•	•					•)	•	•	•							0	• 0							• •	•		•		•	•	С				
0036 - ONEIDA HALL	1970	105,000	•	•	•	•					• •		• •	•	•							0	• 0				•			• •	•		•		•	•	С				
0037 - THE VILLAGE TOWNHOUSES	2010	150,551	•					•			•		• •	•	•		•			•			•										•			•	С			••	
2 0041 - JOHNSON HALL	1958	79,097	•					•		•	•		•	•			•			•	•		•			•	•			•	•		•		•	•	С				
0043 - RIGGS HALL	1960	58,201	•					•			•		• •	•	٠	•	•			•	• •		•				•			•			•		•	•	С				
0044 - WATERBURY HALL	1960	57,464	•					•					• •			•	•			•			•				•			•	•		•		•	•	т				
0045 - SCALES HALL	1961	57,464	•					•					0		٠		•			•			•				•			•	•		•		•	٠	С				
0046 - HART HALL	1963	114,365	•					•		•	()	• •	•	•							0	• 0				•			•			•		•	•	т				
0048 - FUNNELLE HALL	1965	114,365	•					•		•	()	• •	•	•		•					0	•							•			•		•	•	т				
Total	1905 - 2015	; -	43	12	12	11	13	23	4	17	25 3	8	40 4	1 44	38	12	18 2) 2	8	27	15 15	28	36 2	9 13	6	6	2 23	12	3 2	26 12	15	7	25	5 11	36	24	37	2 10 1	6 7	11	
nergy and Greenhouse Gas Savings	Potential											м	м	н	н		I N	н	н	м		м	M	1 M	м	м	- 1	м	м	I H	м		м	1							
M.H) stimated Capital Cost					н	н	н	- M	-	- M	- ·	н		1 M	M	-		н	м	н		н		4 M	м	M	н і	н	M	м н	м	-	н		+			+++-	+ + +	+	
., М. Н)									-				-		14	-							-	. 19	14			1			11	-								<u> </u>	

 Leagend:

 Measures in green shading denote targeted measures that will be further analyzed to assess technical and economic potential

 EEM to consider

 EEM already partially implemented, additional opportunity for savings

 Tarne Tracer Ensemble controls system

 C

 C arrier i-Vu controls system

 Under construction at time of walk-throad 	ugh, unable to audit	
Energy and Greenhouse Gas Savings Poter	t Estimated Capital Cost	Estimated Simple Payback Period
L = Low	L = Low	L = 0.5 years
M = Medium	M = Medium	M = 5-10 years
H = High	H = High	H = 10 + years
Notes:		

 Notes:
 Iteration

 1
 Refer to Building Assessment Reports for details on EEM implementation.

 2
 Upgrade roof insulation to at least code levels during gut rehab projects.

 3
 Upgrade exterior wall insulation to at least code levels during gut rehab projects.

 4
 Replace and upgrade HVAC system during gut rehab projects.

SUNY OSWEGO | LAKER HALL BUILDING ASSESSMENT

Building Description

Building Name: Laker Hal	
Year Constructed:	1968
No. of Floors:	2 + Basement
Est. GSF:	196,608

Recent Building Upgrades

- Boiler replacement 2010
- Pool mechanical system upgrades, pool gutter and piping replacement 2011
- LED lighting upgrade in swimming pool 2015
- LED lighting upgrade in gymnasiums 2016

Functional Description

Laker Hall is an athletic facility located on the southern side of Route 104. It houses two gymnasiums, a pool, locker rooms, laundry room, weight room, racquet ball courts, classrooms, and coaches' offices.

Occupancy Patterns

The building has varying occupancy patterns dependent on season and athletic schedules. The gymnasium has a capacity of 3,500. During the fall, winter, and spring seasons, Laker Hall is open from 6 a.m. to 11 p.m. on weekends. During the summer season, Laker Hall is open from 6 a.m. to 8 p.m. on weekdays and from 10 a.m. to 5 p.m. on weekends.

Building Envelope

Roof

- Roof is insulated and in good condition according to 2010 Facilities Master Plan
- Courtyard roof is an insulated membrane roof and in good condition

Exterior Walls

• Original walls are constructed of precast concrete panels, 1-1/2-inch or 2-inch rigid insulation, and interior concrete blocks

Windows

- Single glazed, fixed windows in gymnasiums and pools areas
- Single glazed, operable windows on second floor

Doors

• Building entryway doors are metal framed, glass doors

Air Infiltration/Leakage

• Single set of entryway doors may allow air infiltration

• No noticeable signs of excessive infiltration

Utilities

Electricity

• Electricity is fed to the building from the National Grid electric substation on Washington Boulevard

Natural Gas

- The building has a National Grid gas service separate from the rest of the campus
 - Used for steam production

District Steam

• This building does not receive steam from the Central Heating Plant

Submeters

• None observed during walk-through

Lighting

Interior Fixture Types

- Predominant lighting types as follows:
 - Pool: Indirect LED wall sconces on each side of pool with light directed upward toward white ceilings and LED canned lights above bleachers
 - Large gymnasium: LED lighting
 - Small (auxiliary) gymnasium: LED lighting
 - Racquetball courts: Recessed 2F32 T8 fixtures
 - Mechanical room: 2F32 T8 fixtures
 - Basement: F17 linear T8 fixtures
 - Stairway: Tri-tube fluorescent fixtures
 - Hallways: Compact fluorescent lamps (CFL)

Interior Lighting Controls

- Manually switched lighting
- LEDs in gymnasium are sectioned in different lighting circuits so lights can be turned on when specific basketball/volleyball courts are used. These circuits are controlled via local panels.
- Bi-level lighting in natatorium

Exterior Lighting and Controls

- LED wall pack fixtures above entryway doors (including service entrances)
- Exterior lights on campus are controlled by photosensors and astronomical time clocks

HVAC

Central Heating System

- Two (2) boilers generate steam for building heating
 - One (1) Cleaver Brooks packaged Scotch Marine natural gas-fired, fire tube boiler

- One (1) Hurst cast-iron sectional forced draft boiler
- Steam supplied to heating coils in heating and ventilating units, unit heaters, and steam-to-hotwater converters
- One (1) steam-to-hot-water converter CV-1 generates heating hot water (HW) for finned tube radiation and cabinet unit heaters
 - Two (2) base-mounted hot water pumps circulate HW to building heating terminals
 - Pumps observed to be corroded and missing nameplates
 - Finned tube radiation loop supply temperature is reset based on outside air (OA) temperature

Condensate and Feedwater System

- One (1) condensate tank collects and stores condensate return
 - Three (3) condensate pumps
- One (1) deaerator tank removes dissolved gases from the feedwater loop and stores the treated feedwater

Central Cooling System

• No space cooling in this building

Air Handling Units

- Air handling unit AHU-1 serves the weight room
 - 100% OA unit
 - Steam heating coils and direct expansion (DX) coils for future cooling use
- 11 heating and ventilating units HV-1 through HV-11 serve the remainder of the building
 - HV-1 provides combustion air to the boiler mechanical room
 - 100% OA unit
 - Steam heating coils
 - HV-2, HV-4 through HV-7 serve locker rooms and gymnasiums
 - Each unit has one (1) HW heating coil
 - Constant speed supply fan motors
 - HV-3
 - Steam heating coils
 - HV-8 serves the natatorium
 - Supply fan motor controlled by variable frequency drive (VFD) with a temperature-based control scheme
 - Return fan motor controlled by VFD to track supply fan VFD
 - Glycol preheat coil and steam heating coil
 - Newer unit
 - HV-9 through HV-11
 - Each unit has one (1) steam heating coil with a pneumatic control valve
 - Two-way valves
 - Older units
- HRC-1
 - Heat recovery glycol coil
 - Unclear what this unit serves and source of glycol heat recovery

Exhaust Systems

- Four (4) exhaust fans serve the building
 - EF-2 controls integrated with HV-2
 - EF-3 has VFD control of fan motor speed, controls integrated with HV-8
 - EF-5 and EF-6 controls integrated with HV-9

Zone Heating/Cooling

- HW finned tube radiation provides perimeter heating
- HW cabinet unit heaters
- Steam unit heaters

HVAC Controls

Building Automation System

- Carrier i-Vu® 8.0 building automation system (BAS) used for monitoring, direct digital control (DDC), and energy management of the majority of building HVAC systems
 - Includes CV-1 and the heating and ventilating units
- Trane Tracer® Ensemble[™] BAS used for monitoring, DDC, and energy management of AHU-1
- Domestic hot water (DHW) system is not on either BAS

Operating Schedules

• HVAC equipment is scheduled to operate in occupied mode 24/7

Domestic/Service Water Heating

Domestic Water Heaters

- Two (2) steam bundle storage tanks
 - 1/3 & 2/3 pneumatic control valves with receiver-controllers
 - Pneumatic thermostats in tanks
 - Condensate return unit
 - Only one (1) tank operates at a time, tank in use alternates every year

DHW Load

- Bathroom hand sinks
- Locker room showers

Piping and Ductwork

Piping Systems/Insulation

- Some piping to the heating and ventilating units is missing insulation
- Substantial corrosion observed on some older heating and ventilating units
- Spot observations of DHW piping and ductwork insulation revealed no remarkable deficiencies

Equipment Insulation

• The deaerator and some of the older heating and ventilating units are missing insulation

Piping and Ductwork Leaks

• Spot observations revealed no leakage issues

Miscellaneous Loads

Plug loads

- Offices: computers or laptops, desk phones, desk lamps, etc.
- Gyms and pool: athletic equipment (i.e., speakers, ball machine, etc.)
- Corridors: vending machines

Elevators

• One (1) elevator serves the building

Specialty Systems

Air Compressors

• One (1) air compressor generates compressed air for pneumatic controls

Swimming Pool

- One (1) steam-to-hot-water converter generates hot water for pool heating
 - One (1) pneumatic control valve

Potential Energy Efficiency Measures (EEMs)

No Cost/Low Cost Measures

- Install automatic interior lighting controls on existing LED fixtures
- Implement automatic lighting schedules through BAS
- Retro-commissioning of HVAC systems and controls
 - Optimize HW supply temperature reset control
 - Scheduling of HVAC equipment and space temperature setbacks
- If not already implemented, install interlock controls on HV-1 to turn on when boilers are operating
- Setback equipment during academic breaks
- Install low-flow or ultra low-flow showerheads

Capital Measures

- Upgrade roof insulation to at least code levels during roof replacement project
- Replace single glazed windows with high performance windows
- Replace interior fluorescent light fixtures with LED fixtures
 - Consider onboard occupancy sensor control for individual fixture dimming/staging, or on/off control based on occupancy for public spaces, especially for larger spaces such as the gymnasium
 - Consider onboard daylight sensor control for individual fixture dimming/staging based on sensed daylight for public spaces that have adequate daylight harvesting opportunity
- Install VFDs on the HW pump motors and implement pump differential pressure reset controls
- Replace pump and fan motors with beyond premium efficiency motors at end of useful life

- Convert AHU-1, HV-1 through HV-7, and HV-9 through HV-11 to single-zone variable air volume (VAV) systems by installing VFDs on systems and implementing temperature-based control schemes to modulate airflow
- Install occupancy-based HVAC controls
- Install mechanical cooling on HV-8 (serving natatorium) to provide dehumidification to the space
- Consider installing an exhaust air energy recovery system on AHU-1
- Add hot water zone valves for controlling individual spaces served by fin tube radiation
- Install destratification fans in gymnasium
- Replace pneumatic actuators with electric actuators
- Consider implementing demand control ventilation in Zeil gymnasium and the auxiliary gymnasium
- · Connect remaining building systems to BAS
- Replace DHW heater with semi-instantaneous water heater

O&M Measures

- Change v-belt fan drives to cogged belt fan drives
- Repair missing piping and equipment insulation

SUNY OSWEGO | LANIGAN HALL BUILDING ASSESSMENT

Building Description

Building Name:	Lanigan Hall
Year Constructed:	1967
No. of Floors:	2 + Projector Room
Est. GSF:	88,200

Recent Building Upgrades

None

Functional Description

Lanigan Hall is an academic building in the center of campus housing the departments of communications, art, campus technology services, and auxiliary services. The upper floor consists of seven lecture halls, three classrooms, and a café, arranged in a circle around a central staircase. The basement is comprised of offices, workrooms, classrooms, and main electrical and mechanical rooms. A small projector room serving the lecture halls is located on an upper level in the center of the building.

Occupancy Patterns

Lanigan Hall is occupied 24/7 during the academic year.

Building Envelope

Roof

- Flat roof; no roof access during walk-through
- Insulation type and levels not accessible during walk-through

Exterior Walls

- Concrete masonry with a stone façade
- Insulation type and levels not accessible during walk-through

Windows

• Tinted, single glazed, fixed, aluminum frame floor-to-ceiling windows

Doors

• Building entryway doors are clear, double glazed, aluminum frame doors

Air Infiltration/Leakage

No excessive infiltration was observed

Utilities

Electricity

• Electricity is fed to the building from the National Grid electric substation on Washington Boulevard

Natural Gas

- Natural gas is delivered to the building from the main campus gas service
 - Used for domestic water heating

District Steam

• Steam is distributed to the campus at 50 psig and is reduced to 12-13 psig within the building

Submeters

• This building has a campus-managed Electro Industries revenue grade electricity submeter

Lighting

Interior Fixture Types

- Predominant lighting types as follows:
 - Basement corridors: Recessed fixtures with LED bulbs
 - Upper floor corridors: Recessed fixtures with linear T8 fluorescent lamps
 - Lecture halls: Prismatic fixtures with linear T8 fluorescent lamps

Interior Lighting Controls

- Manually switched lighting in offices, classrooms, and lecture halls
- Occupancy sensors in basement corridors

Exterior Lighting and Controls

- Predominant exterior lighting type is high-intensity discharge (HID)
- Exterior lights on campus are controlled by photosensors and astronomical time clocks

HVAC

Central Heating System

- One (1) shell & tube steam-to-hot-water converter CV-1 generates heating hot water (HW) for radiation heaters and air handler reheat coils
 - Two (2) pneumatic steam valves modulate HW supply temperature at the outlet of the converter
 - Hot water pumps P-7 and P-8 serve the radiation loop. P-9 and P-10 serve the reheat coils. All four
 (4) pump motors are constant speed.
 - P-7 and P-8 are Worthington base-mounted centrifugal pumps with 7.5 horsepower (hp) motors, rated for 135 gallons per minute (gpm) at 110 feet of head
 - P-9 and P-10 are Worthington base-mounted centrifugal pumps with 3 hp motors, rated for 73 gpm at 60 feet of head
 - Supply temperature of 128°F observed during walk-through
- A second shell & tube steam-to-hot-water converter CV-2 generates HW for air handler heating coils
 - One (1) pneumatic steam valve modulates HW supply temperature at the outlet of the converter
 - Hot water pumps P-5 and P-6 serve the heating coils. Both pump motors are constant speed.
 - P-5 is a newer Goulds vertical multi-stage pump with a 15 hp motor
 - P-6 is an original Worthington base-mounted centrifugal pump with a 10 hp motor, rated for 411 gpm at 60 feet of head
- Appear to utilize reset of HW supply temperature based on outside air temperature

Central Cooling System

- Steam absorption chiller located in Lanigan Hall abandoned in place
 - Last used in the 1980s
- 535-ton water-cooled chiller located in Penfield Library generates chilled water (CHW) for building cooling in both Penfield Library and Lanigan Hall
 - Chilled water pumps P-1 and P-2 serve the Lanigan air handler cooling coils. Both pump motors are constant speed.
 - Worthington base-mounted centrifugal pumps with 40 hp motors, rated for 848 gpm at 100 feet of head

Air Handling Units

- Air handling unit AC-1 serves the basement and prep. area
 - Constant volume dual-duct multi-zone unit
 - Pneumatic damper actuators
 - 20 hp supply air fan motor; 5 hp return air fan motor
 - HW heating and terminal reheat coils; CHW cooling coil
- Air handling unit AC-2 serves the television control and projection spaces
 - Constant volume multi-zone unit
 - 20 hp supply air fan motor; 7.5 hp return air fan motor
 - No heating or cooling coils in the unit; HW and CHW coils at each zone terminal
- Air handling unit AC-3 serves lecture room 101
 - Constant volume single-zone unit
 - 10 hp supply air fan motor; 3 hp return air fan motor
 - HW and CHW coils
- Air handling unit AC-4 serves the northeastern section of the upper floor
 - Constant volume dual-duct multi-zone unit
 - 15 hp supply air fan motor; 3 hp return air fan motor
 - HW and CHW coils
- Air handling unit AC-5 serves the northwestern section of the upper floor
 - Constant volume dual-duct multi-zone unit
 - 15 hp supply air fan motor; 3 hp return air fan motor
 - HW and CHW coils
- Air handling unit AC-6 serves the southeastern section of the upper floor
 - Constant volume dual-duct multi-zone unit
 - 15 hp supply air fan motor; 5 hp return air fan motor
 - HW and CHW coils
- Air handling unit AC-7 serves the southwestern section of the upper floor
 - Constant volume dual-duct multi-zone unit
 - 20 hp supply air fan motor; 5 hp return air fan motor
 - HW and CHW coils
- Heating and ventilating unit HV-1 serves the basement
 - Constant volume unit
 - 10 hp supply air fan motor; 5 hp return air fan motor
 - HW coil
- One (1) split system air conditioner serves the radio station

Exhaust Systems

• Five (5) general exhaust fans with constant speed motors serve the building

Zone Heating/Cooling

- Finned tube radiation provides perimeter heating in corridors, offices, classrooms, and studios; temperature control is limited to HW supply temperature reset control
- HW cabinet unit heaters serve the main entryways

HVAC Controls

Building Automation System

- Carrier i-Vu® 8.0 building automation system (BAS) used for monitoring, direct digital control (DDC), and energy management of HVAC systems
 - Only air handling units and exhaust fans are on the BAS

Operating Schedules

• HVAC systems are scheduled to operate in occupied mode 24/7

Domestic/Service Water Heating

Domestic Water Heaters

One (1) natural draft, gas-fired tank water heater with an additional external storage tank
Small in-line circulating pumps

Domestic Hot Water (DHW) Load

Bathroom hand sinks

Piping and Ductwork

Piping Systems/Insulation

- Some steam piping is missing insulation in several areas
- · Spot observations of ductwork insulation revealed no remarkable deficiencies

Equipment Insulation

· Spot observations of equipment insulation revealed no remarkable deficiencies

Piping and Ductwork Leaks

• Spot observations revealed no leakage issues

Miscellaneous Loads

Plug Loads

- Offices: computers or laptops, desk phones, desk lamps, etc.
- · Workrooms and classrooms: computers, monitors, projectors, printers, etc.
- Café: one (1) beverage vending machine, cold food holding cabinet, coffee makers, etc.

Elevators

• One (1) elevator serves the building

Specialty Systems

Air Compressors

• Two (2) air compressors generate compressed air for pneumatic controls

Potential Energy Efficiency Measures (EEMs)

No Cost/Low Cost Measures

- Retro-commissioning of HVAC systems and controls
 - Optimize HW supply temperature reset control
 - Scheduling of HVAC equipment and space temperature setbacks
- Implement CHW supply temperature reset
- Setback equipment during academic breaks

Capital Measures

- Replace single glazed windows with high performance windows
- Install building-level gas and steam submeters
- Replace interior fluorescent light fixtures with LED fixtures
 - Consider onboard occupancy sensor control for individual fixture dimming/staging, or on/off control based on occupancy for public spaces
 - Consider onboard daylight sensor control for individual fixture dimming/staging based on sensed daylight for public spaces that have adequate daylight harvesting opportunity
- Replace exterior light fixtures with LED fixtures
- Install variable frequency drives (VFD) on the motors of HW pumps P-5, P-6, P-7, and P-8 and Lanigan CHW pumps P-1 and P-2
- · Replace pump and fan motors with beyond premium efficiency motors at end of useful life
- Replace constant volume dual duct AHUs with VAV systems during gut rehab project
- Convert AC-3 to single-zone variable air volume (VAV) system by installing VFD on fan motors and implementing a temperature-based control scheme to modulate airflow
- Install occupancy-based HVAC controls
- Add hot water zone valves for controlling individual spaces served by fin tube radiation
- Install destratification fans in lecture halls
- Replace pneumatic actuators with electric actuators
- · Consider implementing demand control ventilation in lecture halls and workrooms
- Connect remaining building systems to BAS
- Replace DHW heater with semi-instantaneous water heater
- Replace DHW circulating pumps and motors with electronically commutated motors

O&M Measures

- Change v-belt fan drives to cogged belt fan drives
- Repair missing and damaged piping insulation

SUNY OSWEGO | LEE HALL BUILDING ASSESSMENT

Building Description

Building Name:	Lee Hall	
Year Constructed:	1958	
No. of Floors:	3 + Basement	
Est. GSF:	65,000	

Recent Building Upgrades

• Exterior renovation – 2017

Functional Description

Lee Hall is a recreation center located in the center of campus which houses athletic offices, racquetball courts, a gymnasium, a pool, locker rooms, storage spaces, and mechanical spaces. Lee Hall also houses the campus central heating plant, which is addressed in a separate building assessment.

Occupancy Patterns

Lee Hall is open from 6 a.m. to 9 p.m. daily during the academic year. The gymnasiums are open from 11:30 a.m. to 10 p.m. daily. The pool is open from 11:30 a.m. to 9 p.m. on weekdays and from 12 p.m. to 5 p.m. on weekends.

Building Envelope

Roof

- Flat roof; no roof access during walk-through
- Insulation type and levels not accessible during walk-through

Exterior Walls

- Concrete masonry with a brick façade
- Insulation type and levels not accessible during walk-through

Windows

• Double glazed, hopper, aluminum frame windows with aluminum spacers

Doors

• Building entryway doors are metal framed, glass doors

Air Infiltration/Leakage

• No excessive infiltration was observed

Utilities

Electricity

• Electricity is fed to the building from the National Grid electric substation on Washington Boulevard

Natural Gas

• Natural gas is delivered to the Central Heating Plant from the main campus gas service

District Steam

• Steam is distributed to the campus at 50 psig and is reduced to 12-13 psig within the building

Submeters

None observed during walk-through

Lighting

Interior Fixture Types

- Predominant lighting types as follows:
 - Pool: Compact fluorescent lamp (CFL) fixtures
 - Gymnasium: LED bulbs have been installed in old fixtures
 - Racquetball/Squash courts: Canned CFL fixtures
 - Mechanical rooms: 2F32 T8 fixtures

Interior Lighting Controls

• Manually switched lighting

Exterior Lighting and Controls

- High intensity discharge (HID) wall pack fixtures above entryway doors
- Exterior lights are controlled by photosensors

HVAC

Central Heating System

• Heating hot water (HW) system is the steam-to-hot-water converter CV-1 located in the Central Heating Plant

Central Cooling System

• No space cooling in this building

Air Handling Units

- Eight (8) heating and ventilating units HV-1 through HV-8 serve the building
 - Single-zone units
 - HV-3 through HV-8 are 100% outside air (OA) units
 - Constant speed supply fan motors
 - · Steam preheat and reheat coils with pneumatic control valves
 - HV-1 serves the natatorium

- HV-2 serves the gymnasiums
- HV-4 serves the women's locker room
- HV-5 and HV-6 serve squash and handball courts
- HV-7 serves the men's locker room
- HV-8 serves the basement

Exhaust Systems

- One (1) large exhaust fan EF-1 serves the main gym
 - Inlet observed to be in need of repair tears in connection
- Six (6) smaller exhaust fans serve the remainder of the building
 - EF-3 controls integrated with HV-3
 - EF-4 serves the auxiliary gym
 - EF-6 serves the natatorium
 - EF-7 controls integrated with HV-7
 - EF-8 controls integrated with HV-8
 - EF-10 controls integrated with HV-4, HV-5, and HV-6

Zone Heating/Cooling

- HW finned tube radiators located under windows provide heating in corridors
- · Ceiling diffusers and return air vents serve natatorium and gym

HVAC Controls

Building Automation System

- Carrier i-Vu® 8.0 building automation system (BAS) used for monitoring, direct digital control (DDC), and energy management of HVAC systems
 - Heating and ventilating unit steam coil setpoints, CV-1, and exhaust fans EF-3 and EF-10 are on the BAS

Operating Schedules

• Operating schedules could not be verified during walk-through

Domestic/Service Water Heating

Domestic Water Heaters

 Domestic hot water (DHW) system is the steam bundle storage tank located in the Central Heating Plant

DHW Load

- Bathroom hand sinks
- Locker room showers

Piping and Ductwork

Piping Systems/Insulation

· Spot observations of piping and ductwork insulation revealed no remarkable deficiencies

Equipment Insulation

• Spot observations of equipment insulation revealed no remarkable deficiencies

Piping and Ductwork Leaks

- Some steam piping leaks observed near HV-2 and HV-3
- Spot observations revealed no ductwork leakage issues

Miscellaneous Loads

Plug loads

- Offices: computers or laptops, desk phones, desk lamps, etc.
- Break room: microwaves, mini fridges, etc.
- Gyms and pool: athletic equipment (i.e., speakers, ball machine, etc.)
- Corridors: vending machines

Specialty Systems

Air Compressors

• Air compressors located in the Central Heating Plant generate compressed air for pneumatic controls

Swimming Pool

- One (1) steam-to-hot-water converter generates hot water for pool heating
 - One (1) pneumatic control valve
 - Pool filter with one (1) filter pump cleans and circulates water to the pool. Pump has variable frequency drive (VFD) control of pump motor speed.
 - Base-mounted pump with a 10 horsepower (hp) motor

Potential Energy Efficiency Measures (EEMs)

No Cost/Low Cost Measures

- Retro-commissioning of HVAC systems and controls
- Schedule HVAC equipment and space temperature setbacks
- · Setback equipment during academic breaks
- Install low-flow or ultra low-flow showerheads
- If not already implemented, implement HW supply temperature reset control

Capital Measures

- Install window film for solar heat gain reduction
- Replace interior fluorescent light fixtures and old fixtures retrofit with LED bulbs with new LED fixtures
 - Consider onboard occupancy sensor control for individual fixture dimming/staging, or on/off control based on occupancy for public spaces
 - Consider onboard daylight sensor control for individual fixture dimming/staging based on sensed daylight for public spaces that have adequate daylight harvesting opportunity
- Replace exterior light fixtures with LED fixtures
- · Replace pump and fan motors with beyond premium efficiency motors at end of useful life

- Convert heating and ventilating units to single-zone variable air volume (VAV) systems by installing VFDs on systems and implementing temperature-based control schemes to modulate airflow, or consider replacing existing units with new VAV systems, as most equipment is original and past endof-life
- Install mechanical cooling on HV-1 (serving natatorium) to provide dehumidification to the space
- Consider installing an exhaust air energy recovery system on HV-3 through HV-8
- Add hot water zone valves for controlling individual spaces served by fin tube radiation
- Replace pneumatic actuators with electric actuators
- Consider implementing demand control ventilation in the gymnasiums
- Consider implementing occupancy-based HVAC controls on HV-3 through HV-7
- Connect remaining exhaust fans to BAS

O&M Measures

- Change v-belt fan drives to cogged belt fan drives
- Repair piping to stop steam leakage

SUNY OSWEGO | MAHAR HALL BUILDING ASSESSMENT

Building Description

Building Name:	Mahar Hall	
Year Constructed:	1966	
No. of Floors:	5 + Penthouse	
Est. GSF:	91,530	

Recent Building Upgrades

• None

Functional Description

Mahar Hall is an academic building in the center of campus housing the department of social sciences. The upper floor consists of faculty offices and a lounge. The first, second, and third floors are comprised of classrooms, offices, workrooms, and storage spaces. Additional classrooms, offices, storage spaces, and main electrical and mechanical rooms are located in the basement.

Occupancy Patterns

During the academic year, Mahar Hall is occupied from 8 a.m. to 9 p.m. Monday through Thursday, 8 a.m. to 4 p.m. on Fridays, and closed on weekends.

Building Envelope

Roof

- Built-up flat roof with concrete deck
- Insulation type and levels not accessible during walk-through

Exterior Walls

- Concrete masonry with a concrete façade
- Insulation type and levels not accessible during walk-through

Windows

• Double glazed, fixed and awning, aluminum frame windows

Doors

• Building entryway doors are clear, double glazed, aluminum frame doors

Air Infiltration/Leakage

No excessive infiltration was observed

Utilities

Electricity

• Electricity is fed to the building from the National Grid electric substation on Washington Boulevard

Natural Gas

• This building does not receive natural gas

District Steam

• Steam is distributed to the campus at 50 psig and is reduced to 12-13 psig within the building

Submeters

• No submeters observed during walk-through

Lighting

Interior Fixture Types

- Predominant lighting types as follows:
 - Classrooms, labs, and offices: Surface mount fixtures with linear T8 fluorescent lamps
 - Corridors and common spaces: Surface mount fixtures with linear T8 fluorescent lamps

Interior Lighting Controls

- Manually switched lighting in classrooms, labs, and offices
- Some lighting is controlled with occupancy sensors

Exterior Lighting and Controls

- Predominant exterior lighting type is high-intensity discharge (HID)
- Exterior lights on campus are controlled by photosensors and astronomical time clocks

HVAC

Central Heating System

- One (1) shell & tube steam-to-hot-water converter generates heating hot water (HW) for building heating
 - One (1) direct digital control (DDC), pneumatically actuated steam valve modulates HW supply temperature at the outlet of the converter. Mixing valves control supply temperatures to each of two (2) HW distribution zones.
 - Hot water pumps P-5 and P-6 operate as lead/standby. Both HW pump motors are constant speed.
 - Worthington base-mounted centrifugal pumps with 15 horsepower (hp) motors, rated for 450 gallons per minute (gpm) at 85 feet of head
- Appears to utilize reset of HW supply temperature based on outside air (OA) temperature

Central Cooling System

- Trane 120-ton chiller generates chilled water (CHW) for building cooling
 - Air-cooled chiller with remote condensing unit
 - Chilled water pumps P-1 and P-2 operate as lead/standby. Both CHW pumps have variable frequency drive (VFD) control of pump motor speed based on differential pressure.
 - Bell & Gossett base-mounted centrifugal pumps with 10 hp motors, rated for 322 gpm at 76 feet of head
- Appears to utilize reset of CHW supply temperature based on OA temperature

Air Handling Units

- Air handling unit AC-1 serves classrooms
 - Multi-zone variable air volume (VAV) unit
 - 15 hp supply air fan motor controlled by VFD to maintain duct static pressure
 - Steam heating coil; CHW cooling coil with 3-way pneumatic control valve
- Air handling unit AC-2 serves three classrooms that were formerly animal labs
 - 100% OA dual-duct multi-zone VAV unit
 - 3 hp supply air fan motor controlled by VFD
 - Control of the VFD is unknown. 100% speed observed during walk-through.
 - Steam preheat and heating coils; CHW cooling coil with two-way pneumatic control valve
- Heating and ventilating unit HV-1 provides ventilation air to classrooms
 - Constant volume unit
 - 25 hp constant speed supply air fan motor
 - Steam heating coil with two-way pneumatic control valve

Exhaust Systems

- Four (4) exhaust fans with constant speed motors serve the building
 - EF-2 is a dedicated "lab" exhaust fan
 - EF-4 is a dedicated mechanical room exhaust fan and can operate on a timer

Zone Heating/Cooling

- Finned tube radiation provides perimeter heating; temperature control is limited to HW supply temperature control of two (2) building zones
- Steam and hot water unit heaters serve the entryways, basement storage spaces, and electrical and mechanical rooms
- Two-pipe and 4-pipe fan coil units (FCU) provide heating and cooling to all rooms on the fourth floor and some rooms on the second floor
 - Heating coil capacities range from 13.3 to 58 thousand Btus per hour (MBH)
 - Cooling coil capacities range from 4.6 to 45.6 MBH

HVAC Controls

Building Automation System

• Carrier i-Vu® 8.0 building automation system (BAS) used for monitoring, DDC, and energy management of HVAC systems

Operating Schedules

• HVAC systems are assumed to operate in occupied mode from 7 a.m. to 10 p.m. on weekdays, based on building occupancy schedule

Domestic/Service Water Heating

Domestic Water Heaters

- One (1) steam bundle storage tank
 - Manufactured 1960

Domestic Hot Water (DHW) Load

- Bathroom hand sinks
- Common area kitchenette sink
- Lab sinks

Piping and Ductwork

Piping Systems/Insulation

· Spot observations of piping and ductwork insulation revealed no remarkable deficiencies

Equipment Insulation

• Spot observations of equipment insulation revealed no remarkable deficiencies

Piping and Ductwork Leaks

• Spot observations revealed no leakage issues

Miscellaneous Loads

Plug Loads

- Offices: computers or laptops, desk phones, desk lamps, printers, etc.
- Classrooms: computers, projectors, etc.
- Corridors: two (2) snack and beverage vending machines on the fourth floor

Elevators

• One (1) elevator serves the building

Specialty Systems

Air Compressors

• One (1) air compressor generates compressed air for pneumatic controls

Potential Energy Efficiency Measures (EEMs)

No Cost/Low Cost Measures

- Retro-commissioning of HVAC systems and controls
 - Optimize HW supply temperature reset control
 - Optimize CHW supply temperature reset control
 - Scheduling of HVAC equipment and space temperature setbacks
- Implement pump differential pressure reset controls on the CHW pumps
- Implement duct static pressure reset controls on AC-1
- · Setback equipment during academic breaks

Capital Measures

- Upgrade roof insulation to at least code levels during gut rehab project
- Upgrade exterior wall insulation to at least code levels during gut rehab project
- Install window film for solar heat gain reduction

- Install building-level steam submeter
- Replace interior fluorescent light fixtures with LED fixtures
 - Consider onboard occupancy sensor control for individual fixture dimming/staging, or on/off control based on occupancy for public spaces
 - Consider onboard daylight sensor control for individual fixture dimming/staging based on sensed daylight for public spaces that have adequate daylight harvesting opportunity
- Replace exterior light fixtures with LED fixtures
- Install VFDs on the HW pump motors
- · Replace pump and fan motors with beyond premium efficiency motors at end of useful life
- Replace existing chiller with high-efficiency air-cooled variable speed magnetic bearing chiller
- Replace AC-2 and HV-1 with new VAV systems during gut rehab project
- Install occupancy-based HVAC controls
- Consider installing an exhaust air energy recovery system
- Replace FCUs and include electronically commutated motors
- Add hot water zone valves for controlling individual spaces served by fin tube radiation
- Replace pneumatic actuators with electric actuators
- Consider implementing demand control ventilation in classrooms and workrooms
- Replace DHW heater with new semi-instantaneous water heater

O&M Measures

• Change v-belt fan drives to cogged belt fan drives

SUNY OSWEGO | MARANO CAMPUS CENTER BUILDING ASSESSMENT

Building Description

Building Name:	Marano Campus Center
Year Constructed:	1963
No. of Floors:	3 + 2 Penthouses
Est. GSF:	225,604

Recent Building Upgrades

- Student activity center construction 2019
- Arena concourse-level flooring replacement Ongoing
- Arena ice compressor replacement Ongoing

Functional Description

Marano Campus Center is an "E"-shaped building in the center of campus. The west wing is known as the Deborah F. Stanley Arena & Convocation Hall and the east wing is referred to as Poucher Hall. The building houses administrative and athletic offices, and the departments of philosophy, modern languages and literatures, and English and creative writing. A complete summary of space functions is given in the table below.

	Arena & Convocation Hall	Marano Campus Center	Poucher Hall
Location in Building	West Wing	Central Wing	East Wing
Lower Level	N/A	Main Electrical & Mechanical Rooms, Student Activity Center	N/A
First Floor	Food Court, Hockey Arena, Locker Rooms, Main Electrical & Mechanical Rooms	Auditorium, Classrooms, Compass Credit Union, Meeting Rooms, Offices, Radio Station, Storage Spaces, Swetman Gym, Work Rooms	Computer Labs, Lounges, Main Mechanical Room, Meeting Rooms, Offices, Work Rooms
Second Floor	Box Office, Café, College Store, Hockey Arena, Lounge, Meeting Room, Welcome Center	Café, Classrooms, Computer Labs, Lounges, Meeting Rooms, Offices	Classrooms, Lounges, Offices
Third Floor	N/A	N/A	Classrooms, Meeting Rooms, Offices

Table 1. Space Function Summary

Occupancy Patterns

The building is occupied from 6:30 a.m. to 1:30 a.m. daily during the academic year and from 6:30 a.m. to 9 p.m. on weekdays only during the summer break.

Building Envelope

Roof

- Flat roof; no roof access during February 2022 walk-through
- Insulation type and levels not accessible during February 2022 walk-through

Exterior Walls

- · Concrete masonry with brick and stone façades
- Insulation type and levels not accessible during February 2022 walk-through

Windows

- Arena & Convocation Hall
 - Clear, double glazed, fixed, aluminum frame windows with interior shades
 Large, nearly floor-to-ceiling
- Campus Center
 - Clear, double glazed, fixed, aluminum frame windows
- Poucher Hall
 - Clear, double glazed, fixed and single-hung, aluminum frame windows

Doors

• Building entryway doors are clear, double glazed, aluminum frame doors

Air Infiltration/Leakage

• No excessive infiltration was observed

Utilities

Electricity

• Electricity is fed to the building from the National Grid electric substation on Washington Boulevard

Natural Gas

- Natural gas is delivered to the building from the main campus gas service
 - Used for desiccant dehumidification in the Arena & Convocation Hall, domestic hot water (DHW) heating, ice making, and backup generator

District Steam

- Steam is distributed to the campus at 50 psig and is reduced to 12-13 psig within the building
 - One (1) condensate receiver with two (2) condensate pumps returns condensate from the Campus Center to the Central Heating Plant

Submeters

• This building has a campus-managed Electro Industries revenue grade electricity submeter

Lighting

Interior Fixture Types

- Predominant lighting types as follows:
 - Arena & Convocation Hall
 - Corridors: Recessed fixtures with compact fluorescent lamps (CFL) and surface mount fixtures with linear T8 fluorescent lamps
 - Kitchen: Surface mount fixtures with LED lamps
 - First-floor food court: High bay surface mount fixtures with high-intensity discharge (HID) lamps
 - Second-floor café: Surface mount fixtures with linear T5 fluorescent lamps
 - Hockey arena: Surface mount fixtures with LED lamps
 - Campus Center
 - Corridors: Pendant fixtures with linear T8 fluorescent lamps
 - Poucher Hall
 - Corridors: Surface mount and recessed fixtures with LED lamps

Interior Lighting Controls

- Primarily manually switched lighting; some occupancy sensors located across building
- Arena & Convocation Hall lighting can be scheduled off and on at set times of day
 - Scheduling not enabled during February 2022 walk-through
- Poucher Hall lighting is scheduled on at 6:30 a.m. and off at 12 a.m. daily

Exterior Lighting and Controls

- Predominant exterior lighting type is HID
- Exterior lights on campus are controlled by photosensors and astronomical time clocks
 - Some exterior lighting on the northern side of the building was observed to be on during February 2022 walk-through, despite ample daylight

HVAC

Central Heating System

- One (1) shell & tube steam-to-hot-water converter HX-1, located in MCC Rm. 42, generates heating hot water (HW) for building heating in the Arena & Convocation Hall
 - Armstrong Type WS heat exchanger, manufactured 2005
 - 1/3 & 2/3 direct digital control (DDC), pneumatically actuated steam valves modulate HW supply temperature at the outlet of the converter. A mixing valve controls supply temperature to the primary HW pumps.
 - Hot water pumps P-1 and P-2 operate as lead/standby for the HW return. Hot water pumps P-3 and P-4 operate as lead/standby for the HW supply. All four (4) HW pumps have variable frequency drive (VFD) control of pump motor speed based on differential pressure.
 - P-1 and P-2 are Armstrong in-line centrifugal pumps with 15 horsepower (hp) motors, rated for 384 gallons per minute (gpm) at 75 feet of head
 - P-3 and P-4 are Armstrong in-line centrifugal pumps with 20 hp motors, rated for 384 gpm at 110 feet of head
 - System is enabled when outside air (OA) temperature is below 70°F, or when more than two (2) heating calls are active

- HW supply temperature is reset based on OA temperature
 - 180°F supply temperature at OA temperature below 45°F
 - 140°F supply temperature at OA temperature above 45°F
- One (1) shell & tube steam-to-hot-glycol converter, located in MCC Rm. 42, generates hot glycol for building heating in the Arena & Convocation Hall
 - Armstrong Type WS heat exchanger, manufactured 2005
 - 1/3 & 2/3 DDC controlled, pneumatically actuated steam valves modulate glycol supply temperature at the outlet of the converter
 - Hot glycol pumps P-5 and P-6 operate as lead/standby for the glycol loop. Both glycol pumps have VFD control of pump motor speed based on differential pressure.
 - Armstrong in-line centrifugal pumps with 15 hp motors, rated for 500 gpm at 69 feet of head
 - System is disabled when outside air (OA) temperature is above 65°F
 - System is enabled when the glycol valve on AHU-1 or AHU-2, both located in MCC Rm. PH1, is open greater than 5% for five minutes
 - Glycol supply temperature is reset based on OA temperature
 - 180°F supply temperature at 10°F OA temperature
 - 110°F supply temperature at 60°F OA temperature
- One (1) plate & frame steam-to-hot-glycol converter HX-1, located in the MCC basement, generates hot glycol for building heating in the Campus Center and Poucher Hall
 - Bell & Gossett heat exchanger, manufactured 2006
 - 1/3 & 2/3 DDC controlled, pneumatically actuated steam valves modulate glycol supply temperature at the outlet of the converter
 - Hot glycol pumps P-2A and P-2B, located in the MCC basement, operate as lead/standby for the glycol loop. Both glycol pumps have VFD control of pump motor speed based on differential pressure.
 - Bell & Gossett base-mounted centrifugal pumps with 10 hp motors, rated for 238 gpm at 65 feet of head
 - Hot glycol pumps P-3 and P-4, located in Poucher Rm. 163, circulate hot glycol to Poucher Hall. Both Poucher glycol pumps have VFD control of pump motor speed based on differential pressure.
 - Bell & Gossett in-line pumps with 1.5 hp motors, rated for 90 gpm at 30 feet of head
- One (1) plate & frame steam-to-hot-water converter HX-2, located in the MCC basement, generates heating HW for variable air volume (VAV) terminal reheat coils and the finned tube radiation loop in the Campus Center and building heating in Poucher Hall
 - Bell & Gossett heat exchanger, manufactured 2006
 - 1/3 & 2/3 DDC controlled, pneumatically actuated steam valves modulate HW supply temperature at the outlet of the converter
 - Hot water pumps P-3A and P-3B operate as lead/standby for the HW loop. Both HW pumps have VFD control of pump motor speed based on differential pressure.
 - Bell & Gossett base-mounted centrifugal pumps with 15 hp motors, rated for 280 gpm at 65 feet of head
 - Hot water pumps P-1 and P-2, located in Poucher Rm. 163, circulate HW to Poucher Hall. Both Poucher HW pumps have VFD control of pump motor speed based on differential pressure.
 - Bell & Gossett in-line pumps with 5 hp motors, rated for 100 gpm at 60 feet of head

Central Cooling System

- Trane nominal 300-ton chiller CH-1, located in MCC Rm. 42, generates chilled water (CHW) for building cooling in the Arena & Convocation Hall
 - Trane Model RTHD water-cooled rotary screw chiller
 - R-134A refrigerant
 - Chilled water pumping arrangement is constant flow primary/variable flow secondary. Chilled water pump P-8 serves the primary CHW loop. Chilled water pumps P-7 and P-9 operate as lead/standby for the secondary CHW loop. Both secondary pumps have VFD control of pump motor speed based on differential pressure.
 - P-8 is an Armstrong centrifugal pump with a 10 hp motor
 - P-7 and P-9 are Armstrong centrifugal pumps with 25 hp motors
 - Condenser water pumps P-10 and P-11 operate as lead/standby and circulate condenser water between the chiller condenser and the cooling tower. Both condenser water pumps have VFD control of pump motor speed.
 - Armstrong centrifugal pumps with 40 hp motors, rated for 900 gpm at 99 feet of head
 - Cooling tower fan has VFD control of fan motor speed to maintain leaving water temperature
 - One (1) CHW-glycol converter HX-3 provides free cooling in the winter
 - One (1) CHW valve modulates supply temperature at the outlet of the converter
 - Chilled glycol pump P-12 and CHW pump P-13 serve the free cooling loop
 - Armstrong pumps with 2 hp motors, rated for 150 gpm at 20 feet of head
 - System is enabled when OA temperature is above 50°F
- Two (2) Carrier 146-ton chillers CH-1A and CH-1B, located in the MCC basement, generate CHW for building cooling in the Campus Center and Poucher Hall
 - Carrier Model 30HX rotary screw chillers with remote air-cooled condensers
 - R-134A refrigerant
 - Chilled water pump P-4 serves CH-1A and chilled water pump P-5 serves CH-1B. Both pump motors are constant speed.
 - Bell & Gossett base-mounted centrifugal pumps with 3 hp motors, rated for 250 gpm at 30 feet of head
 - Chilled water pumps P-1A and P-1B, located in the MCC basement, circulate CHW to the Campus Center air handlers and cooling terminal equipment and to the Poucher CHW system. Both CHW pumps have VFD control of pump motor speed based on differential pressure.
 - Bell & Gossett base-mounted centrifugal pumps with 25 hp motors, rated for 647 gpm at 75 feet of head
 - Chilled water pumps P-5 and P-6, located in Poucher Rm. 163, operate as lead/standby and circulate CHW to Poucher Hall air handlers and cooling terminal equipment. A CHW valve modulates supply temperature from the CHW system in the MCC basement to maintain the Poucher Hall CHW supply temperature setpoint. Both Poucher CHW pumps have VFD control of pump motor speed based on differential pressure.
 - Bell & Gossett base-mounted centrifugal pumps with 7.5 hp motors, rated for 275 gpm at 60 feet of head

Air Handling Units

- Air handling unit AHU-1, located in MCC Rm. PH1, serves the food court and smaller spaces around the hockey arena in the Arena & Convocation Hall
 - Multi-zone VAV unit with economizer control

- Supply fan motor controlled by VFD to maintain duct static pressure
- Return fan motor controlled by VFD to track supply fan VFD
- Hot glycol preheat coil; CHW cooling coil; terminal reheat coils
- Discharge air temperature is reset based on OA temperature and voting system
- 55°F discharge air temperature at 80°F OA temperature
- 65°F discharge air temperature at 40°F OA temperature
- "If cooling votes are greater than one (1), discharge air will subtract down to 55°F, if heating votes are greater than three and cooling votes are less than two (2), discharge air will add up to 80°F due to reheat system"
- OA flow is reset based on the number of exhaust fans running
- Air handling unit AHU-2, located in MCC Rm. PH1, serves the hockey arena in the Arena & Convocation Hall
 - Single-zone VAV unit with economizer control
 - Supply fan motor controlled by VFD with a temperature-based control scheme
 - Return fan motor controlled by VFD to track supply fan VFD
 - Hot glycol preheat coil; CHW cooling coil; HW heating coil
 - OA flow is varied based on the amount of carbon dioxide sensed in the hockey arena
 - Return airflow is varied based on event type
 - 60,000 cubic feet per minute (cfm) for ice event
 - 40,000 cfm for non-ice event
- Two (2) air handling units AHU-3 and AHU-4, located in MCC Rm. PH1, provide humidity control in the hockey arena in the Arena & Convocation Hall, either directly or in conjunction with AHU-2, also located in MCC Rm. PH1
 - Single-zone units with desiccant dehumidification
 - Constant speed supply and exhaust fan motors
 - CHW cooling coils; natural gas reactivation
 - Units are enabled when ice event is occurring and space humidity is above the setpoint
 - Units can operate as lead/standby based on percent relative humidity and amount of carbon dioxide sensed in the hockey arena
 - Discharge air dampers open to the hockey arena and close to AHU-2 when AHU-2 is not running; dampers close to the hockey arena and open to AHU-2 when AHU-2 is running
 - Discharge air is reset
- Five (5) air handling units AHU-1 through AHU-5, located in Poucher Rm. 163, serve Poucher Hall
 - AHU-1 and AHU-5 are multi-zone VAV units; AHU-2 through AHU-4 are single zone units
 - AHU-1 and AHU-5 supply fan motors controlled by VFDs to maintain duct static pressure; AHU-2 through AHU-4 have constant speed supply fan motors
 - AHU-1 supply fan motor was operating at 93% speed and AHU-5 supply fan motor was operating at 100% speed during October 2022 walk-through
 - AHU-1 has a CHW cooling coil with a 3-way electronic control valve and a hot glycol heating coil with a 3-way electronic control valve
 - AHU-2, AHU-3, and AHU-4 have CHW cooling coils and HW heating coils
 - AHU-5 has hot glycol preheat and heating coils with 3-way electronic control valves and a CHW cooling coil with a 3-way electronic control valve
 - One (1) rooftop heat recovery unit HRU-1 provides 100% of the process air for AHU-1
 - Constant speed supply and exhaust fan motors
 - Heat wheel with VFD recovers heat from the exhaust airstream

- AHU-1 and HRU-1 discharge air temperature is reset based on OA temperature
 - 55°F discharge air temperature at 62°F OA temperature
 - 72°F discharge air temperature at 20°F OA temperature
- One (1) split-system air conditioner serves the telecommunications room in Poucher Hall
- Two (2) heating and ventilating (HV) units S-3 and S-4 serve Swetman Gym
 - Constant volume single-zone units
 - Constant speed supply and return fan motors
 - Supply fan belt on S-4 not connected during February 2022 walk-through
 - Steam heating coils with two-way pneumatic control valves
- One (1) air handling unit AHU-1 serves "The Space", a newly renovated student organization event venue in the MCC basement, and some spaces on the first floor of the Campus Center
 - Multi-zone VAV unit
 - Supply fan motor controlled by VFD to maintain duct static pressure
 - Return fan motor controlled by VFD to track supply fan VFD
 - Hot glycol preheat coil with a 3-way electronic control valve; CHW cooling coil with a 3-way electronic control valve; terminal reheat coil at each of three VAV boxes
 - Two (2) high-efficiency electronically commutated motors circulate hot glycol to the preheat coil. Two (2) additional high-efficiency electronically commutated motors circulate CHW to the cooling coil.
 - Heat wheel with OA and exhaust bypass dampers recovers heat from the exhaust airstream
- Seven air handling units AHU-1A, AHU-1B, AHU-1C, AHU-2, AHU-3, AHU-5, and AHU-6 serve the remaining spaces on the first and second floors of the Campus Center, as well as a few spaces in the Arena & Convocation Hall and Poucher Hall
 - Multi-zone VAV units
 - Supply fan motors controlled by VFDs to maintain duct static pressure
 - AHU-1B supply fan motor VFD was operating at 60 Hertz (Hz) during October 2022 walk-through
 - Return fan motors controlled by VFDs to track supply fan VFDs
 - · Hot glycol preheat coils; CHW cooling coils; HW terminal reheat coils at the VAV boxes
 - AHU-6 does not have a cooling coil

Exhaust Systems

- Arena & Convocation Hall
 - Seven (7) exhaust fans serve locker rooms, bathrooms, an electric room, and the concourse
 - Time-of-day scheduling controls
 - Four (4) exhaust fans serve elevator rooms and janitorial closets
 - Space temperature controls
 - Four (4) exhaust fans serve the kitchen and hockey arena
 - Manual and time-of-day scheduling controls
 - One (1) exhaust fan serves the garbage room
 - Manual control
 - Three (3) exhaust fans serve the main electrical room, the Zamboni room, and the penthouse
 Space temperature and carbon monoxide controls
- Campus Center and Poucher Hall
 - Two (2) exhaust fans serve the mechanical space in the MCC basement
 - Two (2) exhaust fans serve the bathrooms
 - One (1) exhaust fan serves a janitorial closet

- Two (2) exhaust fans serve the crawlspace
- Five (5) general exhaust fans serve the building

Zone Heating/Cooling

- Arena & Convocation Hall
 - VAV boxes with HW reheat coils provide airflow to nearly all rooms and common spaces
 - Finned tube radiation provides heating in the food court, locker rooms, and bathrooms; HW zone control valves modulate to maintain space temperature setpoints
 - One (1) unit heater serves the Zamboni room
 - Cabinet unit heaters serve the entryways, stairwells, and mechanical rooms
 - Two-pipe fan coil units (FCU) provide heating and cooling to the kitchen and café, locker rooms, coaching offices, telecommunications room, and sports medicine room
- Campus Center
 - VAV boxes with HW reheat coils provide airflow to nearly all rooms and common spaces
 - Finned tube radiation provides heating in the eastern part of the second floor; HW zone control valves modulate to maintain space temperature setpoints
 - Unit heaters serve basement storage spaces and the penthouse
 - Cabinet unit heaters serve the entryways
 - Two-pipe and 4-pipe FCUs provide heating and cooling to mechanical spaces, the Al Roker TV Studio, and second-floor classrooms, offices, and meeting rooms
- Poucher Hall
 - VAV boxes with HW reheat coils provide airflow to some rooms and common spaces on the southern side of the building
 - Finned tube radiation provides heating in the basement, lobby, stairwells, and bathrooms
 - Cabinet unit heaters serve the entryways
 - 4-pipe FCUs provide heating and cooling on the first, second, and third floors
 - Cooling availability based on Poucher CHW supply temperature
 - FCU cooling is available when CHW temperature is less than 60°F
 - Poucher Hall receives HW from the Campus Center for radiant floor heating system
 - One (1) DDC controlled HW valve modulates to maintain return temperature setpoint
 - One (1) in-line hot water pump P-7 circulates HW to the radiant floor heating loop
 - Supply setpoint of 90°F observed

HVAC Controls

Building Automation System

- Trane Tracer® Ensemble[™] building automation system (BAS) used for monitoring, DDC, and energy management of HVAC systems located in the Arena & Convocation Hall and Poucher Hall, and a few systems located in the Campus Center
- Carrier i-Vu® 8.0 BAS used for monitoring, DDC, and energy management of the majority of HVAC systems located in the Campus Center

Operating Schedules

- Arena & Convocation Hall
 - AHU-1 is scheduled to operate in occupied mode from 7 a.m. to 11 p.m. daily

- Locker room exhaust systems are scheduled to operate in occupied mode from 5 a.m. to 12 a.m. daily
- Café kitchen exhaust hoods are on 24/7; main kitchen exhaust hoods are on from 8 a.m. to 9 p.m. daily
- Other HVAC systems are scheduled to operate in occupied mode 24/7
- Campus Center
 - HVAC systems are scheduled to operate in occupied mode 24/7
- Poucher Hall
 - HVAC systems are scheduled to operate in occupied mode 24/7

Domestic/Service Water Heating

Domestic Water Heaters

- Two (2) direct-vent, natural gas-fired tank water heaters with a shared additional external storage tank serve the Arena & Convocation Hall
 - 1,000 thousand Btus per hour (MBH) input each
 - Storage setpoint of 120°F observed
 - Two (2) small in-line pumps circulate DHW through the water heaters
 - Storage tank has a 900-gallon capacity
- Two (2) direct-vent, natural gas-fired condensing water heaters with a shared additional external storage tank serve the Campus Center and Poucher Hall
 - 400 MBH input each
 - 470 gal/hour recovery rates
 - Storage setpoint of 120°F observed
 - Three (3) small in-line pumps circulate DHW through the water heaters and storage tank
 - Storage tank has a 400-gallon capacity
 - Manufactured 1986

DHW Load

- Bathroom and locker room hand sinks and showers
- Kitchen and café sinks
- Faculty/staff break room kitchenette sinks

Piping and Ductwork

Piping Systems/Insulation

- Some DHW piping is missing insulation in the Arena & Convocation Hall second-floor mechanical room
- Spot observations of HW piping and ductwork insulation revealed no remarkable deficiencies

Equipment Insulation

• Spot observations of equipment insulation revealed no remarkable deficiencies

Piping and Ductwork Leaks

- Some piping leaks observed near HX-1 in the Arena & Convocation Hall first-floor mechanical room
- Some HW piping leaks observed in the Poucher Hall first-floor mechanical room
- Spot observations revealed no ductwork leakage issues

Miscellaneous Loads

Plug Loads

- Offices: computers or laptops, desk phones, desk lamps, printers, etc.
- Classrooms: computers, monitors, projectors, etc.
- Kitchen and café: freezers, coolers, dishwashers, blenders, food processors, fountain drink machines, griddles, holding cabinets, coffee makers, etc.
- Corridors: ATMs, monitors, vending machines, etc.
- Arena: four-sided scoreboard, speakers, microphones, etc.

Elevators

- Two (2) elevators serve the Arena & Convocation Hall
- Two (2) elevators serve the Campus Center
- One (1) elevator serves Poucher Hall

Specialty Systems

Air Compressors

• Two (2) air compressors generate compressed air for pneumatic controls

Ice Rink

- One (1) CIMCO 158-ton chiller generates chilled brine for the ice rink
 - Outside skid packaged chiller
 - R-717A (ammonia) refrigerant
 - Three (3) compressors
 - Two (2) glycol pumps have VFD control of pump motor speed based on differential pressure
 - Ice temperature of 17.1°F observed during February 2022 walk-though
- One (1) direct-vent, gas-fired tank water heater
 - 800 MBH input
 - 800 gal/hour recovery rate
 - 150-gallon capacity
 - 83% thermal efficiency
 - 1/3 hp blower motor
 - Storage setpoint of 156°F observed
 - Manufactured 2019

Snow Melt Systems

- One (1) shell & tube HW-to-hot-glycol converter generates hot glycol for Zamboni room snow melt pit in the Arena & Convocation Hall
 - 1/3 DDC controlled HW valve modulates glycol supply temperature at the outlet of the converter
 - One (1) in-line glycol pump circulates hot glycol between the converter and the snow melt pit
 - Pit setpoint of 70°F observed
- Poucher Hall receives hot glycol from the Campus Center for east entryway snow melt system
 - System is disabled; 2005 project never completed
 - One (1) DDC controlled glycol valve modulates to maintain return temperature setpoint
 - One (1) in-line glycol pump P-8 circulates hot glycol to the snow melt system

• Supply setpoint of 45°F observed

Potential Energy Efficiency Measures (EEMs)

No Cost/Low Cost Measures

- Install automatic interior lighting controls on existing LED fixtures where not already installed
- Turn off exterior light fixtures during the day
- Retro-commissioning of HVAC systems and controls
 - Optimize HW supply temperature reset control
 - Optimize hot glycol supply temperature reset control
 - Optimize cooling tower water temperature control
 - Optimize VFD control of supply and return fan motors
 - Scheduling of HVAC equipment and space temperature setbacks
 - Scheduling of kitchen exhaust fan operation
- Implement pump differential pressure reset controls on the HW pumps, glycol pumps, Arena & Convocation Hall CHW pumps P-7 and P-9, Campus Center CHW pumps P-1A and P-1B, and Poucher Hall CHW pumps P-5 and P-6
- Implement CHW supply temperature reset control
- Implement duct static pressure reset controls on the multi-zone VAV systems
- · Setback equipment during academic breaks
- Install low-flow or ultra low-flow showerheads

Capital Measures

- Install window film for solar heat gain reduction
- Install building-level gas and steam submeters
- Replace interior fluorescent light fixtures with LED fixtures
 - Consider onboard occupancy sensor control for individual fixture dimming/staging, or on/off control based on occupancy for public spaces
 - Consider onboard daylight sensor control for individual fixture dimming/staging based on sensed daylight for public spaces that have adequate daylight harvesting opportunity, such as the corridor connecting the Campus Center and Poucher Hall
- Replace exterior light fixtures with LED fixtures
- · Replace pump and fan motors with beyond premium efficiency motors at end of useful life
- Replace existing space cooling chillers with high-efficiency variable speed magnetic bearing chillers at end of useful life
 - R-134A refrigerant is being phased out starting January 1, 2024
 - Once manufacturing of R-134A is eliminated, the price of R-134A stock is expected to rise substantially
- Install occupancy-based HVAC controls
- Consider installing an exhaust air energy recovery system in Swetman Gym
- Replace FCUs and include electronically commutated motors
- Replace pneumatic actuators with electric actuators
- Consider installing destratification fans in the Arena & Convocation Hall hockey arena and food court, and in Swetman Gym
- Consider implementing demand control ventilation in the kitchens, the food court, Swetman Gym, "The Space", the auditorium, conference rooms, meeting rooms, and workrooms

- Connect remaining building systems to BAS
- Replace storage tank DHW heaters with semi-instantaneous water heaters
- Replace DHW and snow melt system circulating pumps and motors with electronically commutated motors

O&M Measures

- Change v-belt fan drives to cogged belt fan drives
- Repair piping to stop water leakage
- Repair missing insulation
- Calibrate/replace/reposition temperature sensor for DHW storage tank in the MCC basement mechanical room
 - During February 2022 walk-through, the setpoint was 120°F and the water heater was reading 127°F, but thermometers were reading 176°F

SUNY OSWEGO | PARK HALL BUILDING ASSESSMENT

Building Description

Building Name:	Park Hall	
Year Constructed:	1933	
No. of Floors:	4 + Basement	
Est. GSF:	66,979	

• Full building renovation – 2014

Functional Description

Park Hall is an academic building connected to Shineman Center and Wilber Hall as part of the campus' science and engineering complex. Park Hall houses classrooms, study spaces, offices, a welding room, and a transportation lab.

Occupancy Patterns

Park Hall has fluctuating levels of occupancy throughout the day. The building has higher occupancy on weekdays during the day when classes are taking place.

Building Envelope

Roof

- Built-up flat roof; no roof access during walk-through
- Insulation type and levels not accessible during walk-through

Exterior Walls

- Concrete and brick façades
- Insulation type and levels not accessible during walk-through

Windows

• Double glazed, operable, metal frame windows with aluminum thermal breaks

Doors

• Building entryway doors are two (2) sets of glass double doors

Air Infiltration/Leakage

No excessive infiltration was observed

Utilities

Electricity

• Electricity is fed to the building from the National Grid electric substation on Washington Boulevard

Natural Gas

- Natural gas is delivered to the building from the main campus gas service
 - Used for makeup air unit with gas-fired furnace section

District Steam

• Steam is distributed to the campus at 50 psig and is reduced to 12-13 psig within the building

Submeters

• This building has a campus-managed Electro Industries revenue grade electricity submeter

Lighting

Interior Fixture Types

- Predominant lighting types as follows:
 - Corridors: Linear T5 fluorescent lighting
 - Classrooms and lecture halls: Linear T5 fluorescent lighting

Interior Lighting Controls

- Daylighting controls in main lobby
- Lobby lights are turned off when building is not in use

Exterior Lighting and Controls

- Predominant exterior lighting type is high-intensity discharge (HID)
- Exterior lights on campus are controlled by photosensors and astronomical time clocks

HVAC

Central Heating System

- Two (2) steam-to-hot-water converters HX-3 and HX-4, located in the Wilber Hall basement, generate heating hot water (HW) for building heating
 - Hot water pumps HWP-1 and HWP-2 circulate HW to the building. HW pumps have variable frequency drive (VFD) control of pump motor speed based on differential pressure.
- Two (2) steam-to-hot-water converters HX-1 and HX-2 generate hot glycol for building heating in Wilber Hall and Park Hall. Only one (1) converter operates at a time, while the other serves as backup.
 - 1/3 & 2/3 pneumatically actuated steam valves modulate hot glycol supply temperature at the outlet of the converter
 - Hot glycol pumps P-7 and P-8 circulate hot glycol to Park Hall air handler heating coils. Both glycol pumps have VFD control of pump motor speed based on differential pressure.
 - Bell & Gossett pumps with 3 horsepower (hp) motors and suction diffusers
 - System is enabled when the glycol valve on any air handler is open greater than 5%
 - Hot glycol supply temperature is reset based on outside air (OA) temperature
 - 180°F supply temperature at OA temperature of 0°F and below
 - 160°F supply temperature at OA temperature of 20°F and above

Central Cooling System

- Two (2) Trane chillers CH-1 and CH-2 generate chilled water (CHW) for building cooling in Wilber Hall and Park Hall
 - Water-cooled screw chillers
 - R-134A refrigerant
 - Two (2) compressors each
 - Chilled water pumping arrangement is variable flow primary. Two (2) chilled water pumps circulate CHW to Park Hall. Both CHW pumps have VFD control of pump motor speed based on differential pressure.
 - Bell & Gossett pumps with 30 hp motors
 - Condenser water pumps CTP-1 and CTP-2, located in the Wilber Hall basement, circulate condenser water between the chiller condenser and the cooling tower. Both condenser water pumps have VFD control of pump motor speed.
 - Bell & Gossett pumps with 15 hp motors
 - Cooling tower fan has VFD control of fan motor speed to maintain leaving water temperature

Air Handling Units

- Nine (9) air handling units AHU-1 through AHU-9 serve the building
 - Multi-zone variable air volume (VAV) units with economizer controls
 - Economizer enable setpoints are maintained through the building automation system (BAS)
 - Supply fan motors controlled by VFDs to maintain duct static pressure
 - Return fan motors controlled by VFDs to track supply fan VFDs
 - Hot glycol heating coils; CHW cooling coils
 - Discharge air temperature is reset based on average space temperature
 - Duct static pressure is reset
- One (1) air handling unit MAU-1 provides make-up air to the transportation lab
 - Gas-fired furnace section
 - Controls integrated with exhaust fans EF-1, EF-3, and EF-4
 - Unit runs when any of the above exhaust fans are on
- One (1) energy recovery unit ERU-1 serves fan coil units (FCU)
 - Enthalpy wheel recovers energy from general building exhaust airstreams to condition outdoor air supplied to the FCUs
 - Supply and return fan motors have VFDs for balancing, and run at a fixed speed

Exhaust Systems

- Multiple exhaust fans serve the building
 - EF-1 serves the transportation lab
 - EF-2 serves electrical and mechanical rooms
 - EF-3 serves emergency exhaust for the transportation lab
 - EF-4 serves the welding room in the transportation lab
 - EF-5 serves the laser printer

Zone Heating/Cooling

- FCUs provide additional heating in labs, studios, and common spaces
- Hydronic baseboard heaters serve the connector hallway, Lecture Hall 315, and some first-floor classrooms
- Unit heaters serve the transportation lab and attic
- Cabinet unit heaters serve stairwells and entry vestibules

HVAC Controls

Building Automation System

- Trane Tracer® Ensemble[™] BAS used for monitoring, DDC, and energy management of HVAC systems
 - Includes HW system, glycol system, and air handling units
 - Chillers are not on the BAS

Operating Schedules

HVAC systems are scheduled to operate in occupied mode 24/7

Domestic/Service Water Heating

Domestic Water Heaters

• Domestic hot water (DHW) system was not observed during walk-through

DHW Load

• Bathroom hand sinks

Piping and Ductwork

Piping Systems/Insulation

Spot observations of piping and ductwork insulation revealed no remarkable deficiencies

Equipment Insulation

Spot observations of equipment insulation revealed no remarkable deficiencies

Piping and Ductwork Leaks

• Spot observations revealed no leakage issues

Miscellaneous Loads

Plug loads

- Classrooms: Laptops, charger, desktop computers, printers, projectors, etc.
- Data closet: computer equipment, servers, etc.
- Computer room: computers, etc.

Elevators

• One (1) elevator serves the building

Specialty Systems

Air Compressors

• Two (2) Ingersol-Rand air compressors generate compressed air for pneumatic controls

Potential Energy Efficiency Measures (EEMs)

No Cost/Low Cost Measures

- Retro-commissioning of HVAC systems and controls
- Optimize HW, glycol, and CHW supply temperature reset controls
- Optimize cooling tower water temperature control
- Scheduling of HVAC equipment and space temperature setbacks
- Scheduling of lab exhaust fan operation
- Implement pump differential pressure reset controls on the HW pumps, hot glycol pumps P-5 and P-6, CHW pumps, and chilled glycol pumps
- Implement duct static pressure reset controls on multi-zone VAV systems
- Implement HW and CHW supply temperature reset
- Setback equipment during academic breaks

Capital Measures

- Install window film for solar heat gain reduction
- Install building-level gas and steam submeters
- Replace interior fluorescent light fixtures with LED fixtures
 - Consider onboard occupancy sensor control for individual fixture dimming/staging, or on/off control based on occupancy for public spaces, especially for Lecture Hall 315
 - Consider onboard daylight sensor control for individual fixture dimming/staging based on sensed daylight for public spaces that have adequate daylight harvesting opportunity, such as the corridors
- Replace exterior light fixtures with LED fixtures
- Replace existing chillers with high-efficiency water-cooled variable speed magnetic bearing chillers at end of useful life
 - R-134A refrigerant is being phased out starting January 1, 2024
 - Once manufacturing of R-134A is eliminated, the price of R-134A stock is expected to rise substantially
- If not already implemented, install a VFD on MAU-1 supply fan motor and vary speed based on number of transportation lab exhaust fans running
- Install occupancy-based HVAC controls
- Implement individual zone control on hydronic baseboard heaters
- Replace any remaining pneumatic actuators with electric actuators
- Consider implementing demand control ventilation in Lecture Hall 315
- Connect remaining building systems to BAS

O&M Measures

• Change v-belt fan drives to cogged belt fan drives

SUNY OSWEGO | PENFIELD LIBRARY BUILDING ASSESSMENT

Building Description

Building Name:	Penfield Library
Year Constructed:	1968
No. of Floors:	4
Est. GSF:	192,298

Recent Building Upgrades

- Basement and first floor renovations 2016-18
- Chiller replacement Ongoing

Functional Description

Penfield Library is an academic building in the center of campus. The upper two floors consist of bookstacks, offices, and study spaces arranged around a central staircase. The first floor is comprised of classrooms, offices, workrooms, conference rooms, a 24-hour study room, a broadcast studio, and a café. Staff lounges, offices, an archive, storage spaces, and main electrical and mechanical rooms are located in the basement.

Occupancy Patterns

The building is occupied 24/7 during the academic year. Typical hours of operation for the library and café are listed in the table below. This schedule is extended during exam periods and reduced on holidays.

Table 1. Penfield Library Hours of Operation

Area	Monday- Thursday	Friday	Saturday	Sunday
Main Library	8:00 a.m. to 11:00 p.m.	8:00 a.m. to 7:00 p.m.	11:00 a.m. to 7:00 p.m.	11:00 a.m. to 11:00 p.m.
Lake Effect Café	7:30 a.m. to 6:00 p.m.	7:30 a.m. to 5:00 p.m.	Closed	11:00 a.m. to 6:00 p.m.

Building Envelope

Roof

- Flat roof with concrete deck; no roof access during walk-through
- One (1) layer of 4" rigid insulation; insulation type and levels not accessible during walk-through

Exterior Walls

- Concrete masonry with a concrete façade
- Insulation type and levels not accessible during walk-through

Windows

• Tinted, single glazed, fixed, aluminum frame floor-to-ceiling windows with sheer curtains

Doors

• Building entryway doors are clear, double glazed, aluminum frame doors

Air Infiltration/Leakage

• No excessive infiltration was observed

Utilities

Electricity

• Electricity is fed to the building from the National Grid electric substation on Washington Boulevard

Natural Gas

- Natural gas is delivered to the building from the main campus gas service
 - Used for backup generator

District Steam

- Steam is distributed to the campus at 50 psig and is reduced to 12-13 psig within the building
 - One (1) condensate receiver returns condensate from Penfield Library to the Central Heating Plant

Submeters

- This building has a campus-managed Electro Industries revenue grade electricity submeter
- This building has a campus-managed steam submeter to measure pressure, flow, and temperature of medium pressure steam entering building

Lighting

Interior Fixture Types

- Predominant lighting types as follows:
 - Corridors, bookstacks, and common spaces: Recessed prismatic fixtures with linear and U-tube T8 fluorescent lamps
 - Central stairwell: LED lamps
 - First floor circulation area: Square recessed fixtures with LED lamps
 - First floor café: Recessed parabolic fixtures with linear T8 fluorescent lamps and round recessed fixtures with compact fluorescent lamps (CFL)
 - First floor corridor: Pendant fixtures with linear T8 fluorescent lamps
 - Basement: Industrial fixtures with linear T8 fluorescent lamps

Interior Lighting Controls

No automatic controls observed during walk-through

Exterior Lighting and Controls

- Predominant exterior lighting type is high-intensity discharge (HID)
- Exterior lights on campus are controlled by photosensors and astronomical time clocks

HVAC

Central Heating System

- One (1) shell & tube steam-to-hot-water converter HC-1 generates heating hot water (HW) for zone heating equipment
 - One (1) direct digital control (DDC), pneumatically actuated steam valve modulates HW supply temperature at the outlet of the converter
 - Hot water pumps P-5 and P-6 serve the zone heating equipment loop. Both pump motors are constant speed.
 - One (1) original Weinman double suction base-mounted centrifugal pump with a 7.5 horsepower (hp) motor, rated for 225 gallons per minute (gpm) at 75 feet of head
 - One (1) newer Bell & Gossett vertical in-line centrifugal pump with a 7.5 hp motor, rated for 225 gpm at 75 feet of head
- One (1) shell & tube steam-to-hot-water converter HC-2 generates heating HW for air handler coils
 - One (1) DDC controlled, pneumatically actuated steam valve modulates HW supply temperature at the outlet of the converter
 - Hot water pumps P-3 and P-4 operate as lead/standby for the air handler coils loop. Both pump motors are constant speed.
 - Weinman double suction base-mounted centrifugal pumps with 5 hp motors, rated for 280 gpm at 35 feet of head
- Appear to utilize reset of HW supply temperature based on outside air temperature

Central Cooling System

- Trane 535-ton chiller generates chilled water (CHW) for building cooling in both Penfield Library and Lanigan Hall
 - Trane Model CVHE water-cooled centrifugal chiller
 - R-123 refrigerant
 - Vane guides modulate chiller capacity
 - Chilled water pumps P-1 and P-2 serve the Penfield CHW loop. Both pump motors are constant speed.
 - Weinman double suction base-mounted centrifugal pumps with 40 hp motors, rated for 1,510 gpm at 80 feet of head
 - Cooling tower fan has variable frequency drive (VFD) control of fan motor speed to maintain leaving water temperature
 - Condenser water pump with 75 hp motor, rated for 1,600 gpm at 120 feet of head

Air Handling Units

- One (1) heating and ventilating unit HV-1
 - Constant volume multi-zone unit
 - Constant speed 15 hp supply fan motor
 - Return fan RF-4 with a constant speed 10 hp motor
 - HW preheat and heating coils with pneumatic control valves
- One (1) air handling unit AHU-1 serves the radio station
 - Constant volume multi-zone unit
 - Constant speed 1 hp supply fan motor
 - HW preheat coil; direct expansion (DX) cooling coil

- Remote air-cooled condensing unit with 26.5 thousand Btus per hour (MBH) capacity
- Humidifier not in service
- Added in the late 1980's
- Seven (7) air handling units AC-1 through AC-7 serve the remainder of the building
 - Constant volume dual-duct multi-zone units with economizer controls
 - AC-1 through AC-6 each serve 6-8 zones; AC-7 serves 3 zones
 - AC-1 through AC-6 have constant speed 30 hp supply fan motors; AC-7 has a constant speed 10 hp supply fan motor
 - Return fan RF-1 with a constant speed 40 hp motor serves AC-1 through AC-3; return fan RF-2 with a constant speed 40 hp motor serves AC-4 through AC-6; return fan RF-3 with a constant speed 5 hp motor serves AC-7
 - HW preheat and heating coils with pneumatic control valves; CHW cooling coils with pneumatic control valves; electric terminal reheat coils
 - Electric duct heaters utilize discharge air temperature reset based on OA temperature
 - Minimum discharge air temperature setpoint at 55°F OA temperature
 - Maximum discharge air temperature setpoint at 85°F OA temperature

Exhaust Systems

- Five (5) rooftop exhaust fans with constant speed ¹/₈ to 1.5 hp motors serve the bathrooms
- One (1) exhaust fan with a constant speed 1.5 hp motor serves the main mechanical room

Zone Heating/Cooling

- Finned tube radiation provides perimeter heating; temperature control is limited to HW supply temperature reset control
- HW unit heaters serve the main mechanical room
- HW cabinet unit heaters serve the entryways and stairwells

HVAC Controls

Building Automation System

- Carrier i-Vu® 8.0 and Trane Tracer® Ensemble[™] building automation systems (BAS) used for monitoring, DDC, and energy management of HVAC systems
 - Only HC-1, HC-2, AHU-1, AC-1, electric reheat coils, and exhaust fans are on the BAS

Operating Schedules

• HVAC systems are scheduled to operate in occupied mode 24/7

Domestic/Service Water Heating

Domestic Water Heaters

- One (1) electric storage tank water heater
 - 47 gal/hour recovery rate
 - 80-gallon capacity

Domestic Hot Water (DHW) Load

• Bathroom hand sinks

• Staff lounge and café kitchenette sinks

Piping and Ductwork

Piping Systems/Insulation

- Some steam piping is missing insulation in several areas
- · Some condensate piping is missing insulation in several areas
- Spot observations of ductwork insulation revealed no remarkable deficiencies

Equipment Insulation

· Spot observations of equipment insulation revealed no remarkable deficiencies

Piping and Ductwork Leaks

- Some piping leaks observed in basement mechanical room
 - Steam leak at pressure reducing valve (PRV)
 - Water leak in AC-7 HW return line
- Spot observations revealed no ductwork leakage issues

Miscellaneous Loads

Plug Loads

- Offices: computers or laptops, desk phones, desk lamps, etc.
- Library and classrooms: computers, monitors, projectors, printers, etc.
- Café: one (1) beverage vending machine, cold food holding cabinet, coffee makers, etc.
- 24-hour room: two (2) beverage and snack vending machines

Elevators

• One (1) elevator serves the building

Specialty Systems

Air Compressors

• One (1) air compressor generates compressed air for pneumatic controls

Potential Energy Efficiency Measures (EEMs)

No Cost/Low Cost Measures

- Install automatic interior lighting controls on existing LED fixtures
- · Retro-commissioning of HVAC systems and controls
 - Optimize HW supply temperature reset control
 - Optimize cooling tower water temperature control
 - Scheduling of HVAC equipment and space temperature setbacks
- Implement CHW supply temperature reset
- Setback equipment during academic breaks

Capital Measures

- Upgrade roof insulation to at least code levels during gut rehab project
- Upgrade exterior wall insulation to at least code levels during gut rehab project
- Replace single glazed windows with high performance windows
- Replace interior fluorescent light fixtures with LED fixtures
 - Consider onboard occupancy sensor control for individual fixture dimming/staging, or on/off control based on occupancy for public spaces
 - Consider onboard daylight sensor control for individual fixture dimming/staging based on sensed daylight for public spaces that have adequate daylight harvesting opportunity
- Replace exterior light fixtures with LED fixtures
- Install VFDs on the motors of HW pumps P-5 and P-6 and CHW pumps P-1 and P-2
- · Replace pump and fan motors with beyond premium efficiency motors at end of useful life
- Replace existing Penfield/Lanigan chiller with high-efficiency water-cooled variable speed magnetic bearing chiller
 - R-123 refrigerant is being phased out starting January 1, 2020
 - Once manufacturing of R-123 is eliminated, the price of R-123 stock is expected to rise substantially
- Replace constant volume dual duct AHUs with VAV systems during gut rehab project
- Install occupancy-based HVAC controls
- Consider installing an exhaust air energy recovery system on AC-1 through AC-6
- Add hot water zone valves for controlling individual spaces served by fin tube radiation
- Replace pneumatic actuators with electric actuators
- Consider implementing demand control ventilation
- Connect remaining building systems to BAS

O&M Measures

- Change v-belt fan drives to cogged belt fan drives
- Repair piping to stop steam and water leakage
- Repair missing insulation

SUNY OSWEGO | RICE CREEK FIELD STATION BUILDING ASSESSMENT

Building Description

Building Name:	Rice Creek Field Station
Year Constructed:	2013
No. of Floors:	1
Est. GSF:	7,500

Recent Building Upgrades

• None

Functional Description

Rice Creek Field Station is a research facility located about 1.5 miles south of the college's main campus. The one-story building, housing research and instructional spaces for the study of natural sciences and the environment, consists of a main hallway joining offices, classrooms, and labs.

Occupancy Patterns

The building is occupied from 8 a.m. to 4:30 p.m. on weekdays, 9 a.m. to 3 p.m. on Saturdays, and closed on Sundays.

Building Envelope

Roof

- Pitched roof with photovoltaic (PV) system; no roof access during walk-through
- · Insulation type and levels not accessible during walk-through

Exterior Walls

- · Wood paneling with lap siding and brick façade
- High-rated foam insulation

Windows

- Tinted, double and triple glazed, fixed, aluminum frame windows with exterior louvers
 - Large, nearly floor-to-ceiling

Doors

• Building entryway doors are clear, double glazed, aluminum frame doors

Air Infiltration/Leakage

• No excessive infiltration was observed

Utilities

Electricity

 This building and the adjacent pavilion have a National Grid electric service separate from the rest of the campus

Natural Gas

• This building does not receive natural gas

Submeters

• This building has campus-managed PV electricity submeters

Lighting

Interior Fixture Types

- Predominant lighting types as follows:
 - Corridor: Surface mount fixtures with linear T8 fluorescent lamps and ringed pendant fixtures
 - Classrooms, labs, and mechanical room: Surface mount and recessed prismatic fixtures with linear T5 fluorescent lamps

Interior Lighting Controls

- Manually switched lighting in offices
- Photosensors and occupancy sensors in corridor, classrooms, and bathrooms

Exterior Lighting and Controls

- Streetlights with LED lamps
- · Exterior lights are controlled by astronomical time clocks

HVAC

Central Heating, Cooling, and Air Handling System

- A variable refrigerant flow (VRF) system serves the building
 - Two-pipe simultaneous heating and cooling system
 - Two (2) 12-ton outside air-cooled condensing units
 - R-410A refrigerant
 - 144 thousand Btus per hour (MBH) cooling capacities
 - 160 MBH heating capacities
 - One (1) inverter-driven scroll hermetic compressor per unit
 - Twelve indoor units
 - Ceiling cassette, wall-mounted, and ceiling concealed types
 - Rated for 200 to 2,100 cubic feet per minute (cfm)
 - 6 to 72 MBH coil capacities
 - Four (4) energy recovery ventilators (ERV) pre-condition the supply air
 - Supply fans rated for 300 to 1,200 cfm
 - Bypass and auto capabilities
 - ERV-1, ERV-2, and ERV-3 have carbon dioxide controls

- ERV-4 is turned off when outside air (OA) humidity is greater than lockout setpoint
- Six (6) electric heating coils maintain 40°F air temperature entering ERVs

Exhaust Systems

- Two small (350 cfm) in-line exhaust fans with variable speed motors serve the bathrooms
- One small (400 cfm) centrifugal exhaust fan with a constant speed motor serves the research lab
- One larger (1,350 cfm) centrifugal exhaust fan with a constant speed motor serves the wet lab

Zone Heating/Cooling

- Electric baseboard heaters provide perimeter heating
 - System enabled when OA temperature is below 55°F
- Electric unit heaters serve the entryway, corridor, bathrooms, and mechanical room
- Temperature control through electric wall thermostats

HVAC Controls

Building Automation System

• Trane Tracer® Ensemble[™] building automation system (BAS) used for monitoring, direct digital control (DDC), and energy management of HVAC systems

Operating Schedules

• HVAC systems are scheduled to operate in occupied mode 24/7

Domestic/Service Water Heating

Domestic Water Heaters

- One (1) electric storage tank water heater
 - Storage setpoint of 120°F observed
 - 50-gallon capacity

Domestic Hot Water (DHW) Load

- Bathroom hand sinks and showers
- · Lab sinks, emergency showers, and eyewash stations

Piping and Ductwork

Piping Systems/Insulation

• Spot observations of piping insulation revealed no remarkable deficiencies

Equipment Insulation

• Spot observations of equipment insulation revealed no remarkable deficiencies

Piping and Ductwork Leaks

• Spot observations revealed no leakage issues

Miscellaneous Loads

Plug Loads

- Offices: computers or laptops, desk phones, desk lamps, etc.
- Labs and classrooms: computers, projectors, printers, desk phones, space heaters, portable fans, fume hoods, etc.
- Break room and storage room: fridges, microwaves, coffee makers, etc.

Specialty Systems

PV Array

• 36-kW rooftop array

Potential Energy Efficiency Measures (EEMs)

No Cost/Low Cost Measures

- Retro-commissioning of HVAC systems and controls
 - Scheduling of HVAC equipment and space temperature setbacks
 - Scheduling of lab exhaust fan operation
- Install low-flow or ultra low-flow showerheads

Capital Measures

- Replace interior fluorescent light fixtures with LED fixtures
 - Consider onboard occupancy sensor control for individual fixture dimming/staging, or on/off control based on occupancy for public spaces
 - Consider onboard daylight sensor control for individual fixture dimming/staging based on sensed daylight for public spaces that have adequate daylight harvesting opportunity
- Consider implementing laboratory demand control ventilation
- Install a destratification fan in the welcome area

O&M Measures

• Change v-belt fan drives to cogged belt fan drives

SUNY OSWEGO | RICH HALL BUILDING ASSESSMENT

Building Description

Building Name:	Rich Hall	
Year Constructed:	1961	
No. of Floors:	3	
Est. GSF:	53,742	

Recent Building Upgrades

Roof replacement – 2016

Functional Description

Rich Hall is an academic building on the east side of campus housing the school of business and the departments of accounting, finance, & law and marketing & management. The top floor consists of classrooms, a computer lab, faculty suites, and a mechanical room. The second floor is comprised of classrooms, seminar rooms, faculty suites, a café, and a lounge. Additional faculty suites and the main electrical and mechanical rooms are located on the first floor.

Occupancy Patterns

During the academic year, Rich Hall is occupied from 8 a.m. to 9 p.m. Monday through Thursday, 8 a.m. to 4 p.m. on Fridays, and closed on weekends.

Building Envelope

Roof

- Flat roof with SBS modified bituminous membrane
- Insulation type and levels not accessible during walk-through

Exterior Walls

- Concrete masonry with a brick façade
- Insulation type and levels not accessible during walk-through

Windows

- Tinted, double glazed, fixed, aluminum frame windows
 - Interior window shades in most offices and classrooms
 - Eastern side of the building and main vestibule have some large, floor-to-ceiling windows

Doors

• Building entryway doors are tinted, double glazed, aluminum frame doors

Air Infiltration/Leakage

· Signs of excessive infiltration observed in main vestibule

Utilities

Electricity

• Electricity is fed to the building from the National Grid electric substation on Washington Boulevard

Natural Gas

- Natural gas is delivered to the building from the main campus gas service
 - Used for backup generator and makeup air unit with gas-fired furnace section

District Steam

- Steam is distributed to the campus at 50 psig and is reduced to 12-13 psig within the building
 - Two (2) condensate receivers, each with two (2) pumps, return condensate from Rich Hall to the Central Heating Plant

Submeters

• This building has a campus-managed Electro Industries revenue grade electricity submeter

Lighting

Interior Fixture Types

- Predominant lighting types as follows:
 - Faculty suites: Parabolic troffer fixtures with linear fluorescent lamps
 - Classrooms: Classrooms not accessible during walk-through
 - Café: Recessed and track fixtures with compact fluorescent lamps (CFL)
 - Corridors: Volumetric fixtures with linear T8 fluorescent lamps
 - Main entryway: Pendant fixtures with linear fluorescent lamps and surface mount fixtures with CFLs
 - Mechanical rooms: Surface mount fixtures with linear fluorescent lamps

Interior Lighting Controls

No automatic controls observed during walk-through

Exterior Lighting and Controls

- Predominant exterior lighting type is high-intensity discharge (HID)
- Exterior lights on campus are controlled by photosensors and astronomical time clocks

HVAC

Central Heating System

- One (1) shell & tube steam-to-hot-water converter generates heating hot water (HW) for building heating
 - One (1) two-way direct digital control (DDC), electronically actuated steam valve modulates HW supply temperature at the outlet of the converter. One (1) mixing valve controls supply temperature to the primary HW pumps.
 - Primary hot water pumps P-1 and P-2 circulate HW to AHU-1 and to the secondary HW pumps. Both primary HW pumps have variable frequency drive (VFD) control of pump motor speed based on differential pressure.

- Bell & Gossett base-mounted centrifugal pumps with 3 horsepower (hp) motors, rated for 300 gallons per minute (gpm) at 27 feet of head
- Secondary hot water pumps P-3 and P-4 circulate HW through the secondary HW loop. Both secondary HW pump motors are constant speed.
 - Bell & Gossett in-line centrifugal pumps with 7.5 hp motors, rated for 240 gpm at 60 feet of head
- System is enabled when outside air (OA) temperature is below 90°F
 - HW supply temperature is reset based on OA temperature
 - 180°F supply temperature at 0°F OA temperature
 - 100°F supply temperature at 60°F OA temperature

Central Cooling System

- Trane 130-ton chiller generates chilled water (CHW) for building cooling
 - Trane Model RTAA air-cooled rotary screw chiller
 - R-22 refrigerant
 - Two (2) compressors; remote condenser
 - Two (2) chilled water pumps circulate CHW through the CHW loop. CHW pump motors are constant speed.
 - Bell & Gossett base-mounted centrifugal pumps with 5 hp motors, rated for 305 gpm at 35 feet of head
 - System is enabled when OA temperature is above 55°F

Air Handling Units

- One (1) rooftop heating and ventilating unit MU-1 provides make-up air to the third-floor mechanical room
 - Trane 100% OA unit
 - Blower with constant speed 1 hp motor
 - Power vented, gas-fired furnace section
 - 150 thousand Btus per hour (MBH) input
 - Time-of-day scheduling controls, integrated with exhaust fan EF-13
- Two (2) ventilating units AHU-3 and AHU-4 provide make-up air to the two (2) electrical rooms
 - Constant volume single-zone units
 - Constant speed supply fan motors
 - Controls integrated with exhaust fans and unit heaters serving the two (2) spaces
- Two (2) air handling units AHU-1 and AHU-2 serve the remainder of the building
 - Multi-zone variable air volume (VAV) units with economizer controls
 - Supply fan motors controlled by VFDs to maintain duct static pressure
 - Return fan motors controlled by VFDs to track supply fan VFDs
 - HW heating coils with 3-way electronic control valves; CHW cooling coils with 3-way electronic control valves
 - Two (2) parallel in-line circulating pumps with fractional hp motors operate as lead/standby for the HW coil on each unit and protect the coil from freezing
 - CHW valve position setpoints overridden to 50% open during walk-through
 - Economizers are enabled when OA temperature is below 70°F
 - Discharge air temperature is reset based on OA temperature
 - 65°F discharge air temperature at 40°F OA temperature

• 55°F discharge air temperature at 65°F OA temperature

Exhaust Systems

- Two (2) exhaust fans with constant speed motors serve the electrical rooms
- Controls integrated with AHU-3, AHU-4, and electrical room unit heaters
- Four (4) exhaust fans with constant speed motors serve the mechanical rooms
 - EF-13 has time-of-day scheduling controls, integrated with MU-1
- Eight (8) general exhaust fans with constant speed motors serve the building

Zone Heating/Cooling

- VAV boxes provide airflow to nearly all rooms and common spaces
- Unit heaters serve the electrical and mechanical rooms; HW zone control valves modulate to maintain space temperature setpoints
- Cabinet unit heaters serve the entryways and stairwells; HW zone control valves modulate to maintain space temperature setpoints

HVAC Controls

Building Automation System

• Trane Tracer® Ensemble[™] building automation system (BAS) used for monitoring, direct digital control (DDC), and energy management of HVAC systems

Operating Schedules

• Air handling units and unit heaters are scheduled to operate in occupied mode 24/7. Exhaust fans are scheduled to operate in occupied mode from 6 a.m. to 11 p.m. daily.

Domestic/Service Water Heating

Domestic Water Heaters

- Primary domestic hot water (DHW) system is one (1) steam bundle storage tank
 - One (1) two-way electric control valve
 - One (1) small in-line pump circulates DHW
 - Manufactured 2002
 - Storage setpoint of 120°F observed
- Alternate DHW system is one (1) electric storage tank water heater
 - 80-gallon capacity
 - One (1) small in-line pump circulates DHW

DHW Load

- Bathroom hand sinks
- Café sink

Piping and Ductwork

Piping Systems/Insulation

• Condensate piping is missing insulation in the first-floor mechanical room

- · Steam piping is missing insulation in the first-floor mechanical room
- Spot observations of ductwork insulation revealed no remarkable deficiencies

Equipment Insulation

• Spot observations of equipment insulation revealed no remarkable deficiencies

Piping and Ductwork Leaks

Spot observations revealed no leakage issues

Miscellaneous Loads

Plug Loads

- Offices: computers or laptops, desk phones, desk lamps, etc.
- Classrooms: computers, monitors, projectors, etc.
- Café: cooler, holding cabinets, coffee makers, etc.

Elevators

• One (1) elevator serves the building

Potential Energy Efficiency Measures (EEMs)

No Cost/Low Cost Measures

- Retro-commissioning of HVAC systems and controls
 - Optimize HW supply temperature reset control
 - Revert overridden CHW valve setpoints on AHU-1 and AHU-2 to default values
 - Scheduling of HVAC equipment and space temperature setbacks
- Implement pump differential pressure reset controls on the primary HW pumps
- Implement CHW supply temperature reset
- Implement duct static pressure reset controls on AHU-1 and AHU-2
- Setback equipment during academic breaks

Capital Measures

- Install window film for solar heat gain reduction
- Replace interior fluorescent light fixtures with LED fixtures
 - Consider onboard occupancy sensor control for individual fixture dimming/staging, or on/off control based on occupancy for public spaces
 - Consider onboard daylight sensor control for individual fixture dimming/staging based on sensed daylight for public spaces that have adequate daylight harvesting opportunity
- Replace exterior light fixtures with LED fixtures
- Replace pump and fan motors with beyond premium efficiency motors at end of useful life
- Replace existing chiller with high-efficiency air-cooled variable speed magnetic bearing chiller
 R-22 refrigerant was phased out in 2020
- Replace AHU-1 and AHU-2 coil pumps and motors with electronically commutated motors
- Install occupancy-based HVAC controls
- Install a destratification fan in entrance landing/vestibule
- Replace steam bundle DHW heater with semi-instantaneous water heater

• Replace DHW circulating pumps and motors with electronically commutated motors

O&M Measures

- Repair or replace doors, windows, and weather seals in main vestibule to prevent air infiltration
- Change v-belt fan drives to cogged belt fan drives
- Repair missing insulation

SUNY OSWEGO | ROMNEY FIELD HOUSE BUILDING ASSESSMENT

Building Description

Building Name:	Romney Field House
Year Constructed:	1962
No. of Floors:	1
Est. GSF:	55,000

Recent Building Upgrades

• Full building renovation – 2013

Functional Description

Romney Field House is located next to the Laker Hall athletic facility on the southern side of Route 104 and serves SUNY Oswego athletics. Romney houses an indoor turf and track, offices, mechanical spaces, storage spaces, and bathrooms.

Occupancy Patterns

Romney Field House is open to the public from 11 a.m. to 12:30 p.m. Tuesday through Thursday. At other weekday times and on the weekends, the field house is used regularly for various sport practices.

Building Envelope

Roof

- Curved roof; no roof access during walk-through
- Insulation type and levels not accessible during walk-through

Exterior Walls

- Metal exterior skin
- Insulation type and levels not accessible during walk-through

Windows

• Large, single glazed windows at both ends of field house

Doors

• Building entryway doors are two (2) sets of metal framed, glass doors

Air Infiltration/Leakage

- Signs of excessive infiltration observed at the entryway
 - Result of a broken door latch

Utilities

Electricity

• The building has a National Grid electric service separate from the rest of the campus

Natural Gas

- The building has a National Grid gas service separate from the rest of the campus
 - Used for space heating and domestic hot water heating

District Steam

• This building does not receive steam from the Central Heating Plant

Submeters

• None observed during walk-through

Lighting

Interior Fixture Types

- Predominant lighting types as follows:
 - Main field house: High bay pendant fixtures and linear T8 fluorescent lighting
 - Entry vestibule: Fluorescent tri-tube lighting
 - Bathrooms: Linear T8 fluorescent lighting and T8 fluorescent vanity lights
 - Corridors: F32 T8 fluorescent lighting and compact fluorescent lamps (CFL)

Interior Lighting Controls

- Bi-level lighting in field house
- No other automatic controls observed during walk-through

Exterior Lighting and Controls

- LED wall pack fixtures
- Exterior lights on campus are controlled by photosensors and astronomical time clocks

HVAC

Central Heating System

- One (1) natural gas-fired boiler generates heating hot water (HW) used for building space heating
 HW supplied to air handler heating coil
- One (1) cast-iron sectional boiler
 - Abandoned in place; natural gas line is disconnected

Central Cooling System

• No space cooling in this building

Air Handling Units

- One (1) air handling unit AHU-1, located outside, serves the building
 - Constant speed supply fan motor

- HW heating coil
- Heating is enabled when the lowest space temperature falls below the minimum space temperature setpoint
- Long, perforated supply air ductwork runs along the interior sides of the building

Exhaust Systems

• None observed during walk-through

Zone Heating/Cooling

- HW unit heaters serve storage rooms, bathrooms, and the entry vestibule
 - Winter/summer zone control for heating terminal equipment HW loop

HVAC Controls

Building Automation System

- Carrier i-Vu® 8.0 building automation system (BAS) used for monitoring, direct digital control (DDC), and energy management of HVAC systems
 - Domestic hot water (DHW) system is not on the BAS

Operating Schedules

• Operating schedules could not be verified during walk-through

Domestic/Service Water Heating

Domestic Water Heaters

- One (1) boiler generates DHW and HW for the heating terminal equipment
 - Weil-McLain natural gas-fired hot water boiler
 - External DHW storage tank
 - Two (2) circulating pumps
- One (1) indirect, steam-fired tank water heater and one (1) electric water heater
 - Abandoned in place

DHW Load

• Bathroom hand sinks and showers

Piping and Ductwork

Piping Systems/Insulation

• Spot observations of piping and ductwork insulation revealed no remarkable deficiencies

Equipment Insulation

· Spot observations of equipment insulation revealed no remarkable deficiencies

Piping and Ductwork Leaks

Spot observations revealed no leakage issues

Miscellaneous Loads

Plug loads

- Offices: computers or laptops, desk phones, desk lamps, etc.
- Main field house: athletic equipment (i.e., speakers, ball machine, etc.)

Potential Energy Efficiency Measures (EEMs)

No Cost/Low Cost Measures

- Retro-commissioning of HVAC systems and controls
 - Scheduling of HVAC equipment and space temperature setbacks
- Implement HW supply temperature reset
- Setback equipment during academic breaks
- Install low-flow or ultra low-flow showerheads

Capital Measures

- Replace single glazed windows with high performance windows
- Install building-level gas submeter
- Replace interior fluorescent light fixtures with LED fixtures
 - Consider onboard occupancy sensor control for individual fixture dimming/staging, or on/off control based on occupancy for public spaces
 - Consider onboard daylight sensor control for individual fixture dimming/staging based on sensed daylight for public spaces that have adequate daylight harvesting opportunity
- Convert AHU-1 to single zone variable air volume (VAV) system by installing VFD on system and implementing a temperature-based control scheme to modulate airflow
- Consider installing an energy recovery system
- Consider implementing demand controlled ventilation of the field house
- Consider installing destratification fans in the main field house
- · Connect remaining building systems to BAS
- Replace DHW heater with semi-instantaneous water heater
- · Replace DHW circulating pumps and motors with electronically commutated motors

O&M Measures

- Repair door latch at main entryway to prevent air infiltration
- Remove equipment no longer in use (i.e., DHW heaters, gas-fired steam boiler)
- Change any v-belt fan drives to cogged belt fan drives

SUNY OSWEGO | SHELDON HALL BUILDING ASSESSMENT

Building Description

Building Name:	Sheldon Hall
Year Constructed:	1912
No. of Floors:	3 + Basement + Attic
Est. GSF:	119,211

Recent Building Upgrades

Exterior renovation – 2012

Functional Description

Sheldon Hall is a mixed-use academic building on the east side of campus that houses classrooms, offices (including the Admissions Office), guest rooms, a ballroom, a lecture hall, and a children's center. The ballroom is used as a meeting/event space and has a capacity of 350 people.

Occupancy Patterns

The building is occupied from 6 a.m. to 9 p.m. daily during the academic year.

Building Envelope

Roof

- Flat roof; no roof access during walk-through
- Insulation type and levels not accessible during walk-through

Exterior Walls

- Brick façade
- Insulation type and levels not accessible during walk-through

Windows

- Double glazed, metal frame windows with a thermal break
 - Most windows are operable

Doors

• Building entryway doors are wooden doors with single glazed windows

Air Infiltration/Leakage

No excessive infiltration was observed

Utilities

Electricity

• The building has a National Grid electric service separate from the rest of the campus

Natural Gas

- The building has a National Grid gas service separate from the rest of the campus
 - Used for domestic hot water (DHW) heating

District Steam

- Steam is distributed to the campus at 50 psig and is reduced to 12-13 psig within the building
 - One (1) duplex condensate unit returns condensate from Sheldon Hall to the Central Heating Plant

Submeters

• None observed during walk-through

Lighting

Interior Fixture Types

- Predominant lighting types as follows:
 - Ballroom: Recessed fluorescent lighting with dimming switch
 - Corridors: Pendant T8 fluorescent fixtures with electronic ballasts, recessed ceiling T8 fluorescent fixtures with electronic ballasts, and surface mount T8 fluorescent fixtures with electronic ballasts
 - Classrooms and offices: Recessed ceiling T8 fluorescent fixtures with electronic ballasts
 - Mechanical rooms: 2F32 T8 industrial fixtures with electronic ballasts

Interior Lighting Controls

• Primarily manually switched lighting, dimming switches and occupancy sensors in limited spaces

Exterior Lighting and Controls

- Clock tower lights and high-intensity discharge (HID) wall pack fixtures
 - Exterior lights on campus are controlled by photosensors and astronomical time clocks
- Sheldon Hall canopy lighting is scheduled on at 11 p.m. and off at 6 a.m. daily

HVAC

Central Heating System and Heat Pump Loop

- One (1) shell & tube steam-to-hot-glycol converter HX-1 generates hot glycol for building heating in Sheldon Hall's west wing
 - Bell & Gossett heat exchanger
 - 1/3 & 2/3 pneumatic steam valves modulate glycol supply temperature at the outlet of the converter
 - Hot glycol pumps P-7 and P-8 circulate hot glycol to air handler heating coils
 - In-line centrifugal pumps with 3 horsepower (hp) motors
 - 5 psi float and thermostatic steam trap
 - 35% propylene glycol storage tank
- One (1) shell & tube steam-to-hot-water converter HX-2 generates heating hot water (HW) for building heating in Sheldon Hall's west wing
 - Bell & Gossett heat exchanger
 - 1/3 & 2/3 pneumatic steam valves modulate HW supply temperature at the outlet of the converter
 - Hot water pumps P-9 and P-10 circulate HW to variable air volume (VAV) box reheat coils

- In-line centrifugal pumps with 1.5 hp motors
- 5 psi float and thermostatic steam trap
- One (1) steam-to-hot-water converter generates HW for building heating in Sheldon Hall's east and central wings
 - Pumps P-1 and P-2 serve the heat pump loop
 - Base-mounted pumps with 15 hp motors, rated for 465 gallons per minute (gpm) at 80 feet of head
 - The low limit setpoint to add heat to the heat pump loop could not be determined during the walkthrough
 - Heat is rejected to a cooling tower; the high limit setpoint to reject heat from the heat pump loop could not be determined during the walk-through

Central Cooling System

- Carrier 93.6-ton chiller generates chilled water (CHW) for building cooling in Sheldon Hall's west wing
 - Carrier water-cooled screw chiller
 - R-134A refrigerant
 - Chilled water pumping arrangement is constant flow primary/variable flow secondary. Chilled water pumps P-3 and P-4 serve the primary CHW loop. Chilled water pumps P-5 and P-6 serve the secondary CHW loop.
 - P-3 and P-4 have 3 hp motors
 - P-5 and P-6 have 5 hp motors. Secondary pumps have variable frequency drive (VFD) control of pump motor speed based on differential pressure.
 - One (1) condenser water pump circulates condenser water between the chiller condenser and the cooling tower
 - 7.5 hp pump motor
 - Baltimore Air Cooler cooling tower fan has VFD control of fan motor speed to maintain leaving water temperature
 - 10 hp fan motor

Air Handling Units

- Four (4) air handling units AHU-1 through AHU-4, located in the west attic, serve Sheldon Hall's west wing
 - Multi-zone VAV units
 - Each unit serves 8-11 VAV boxes
 - 7.5 hp supply fan motors controlled by VFDs to maintain duct static pressure
 - 3 hp return fan motors controlled by VFDs to track supply fan VFDs
 - Hot glycol heating coils; CHW cooling coils; HW terminal reheat coils at the VAV boxes

Exhaust Systems

- Four (4) exhaust fans serve bathrooms
 - Two (2) fans rated for 75 cubic feet per minute (cfm)
 - Two (2) attic belt-drive fans with 3 hp motors, rated for 700-950 cfm
- One (1) exhaust fan serves the chiller
 - Roof exhauster with a 3 hp motor, rated for 1,280 cfm

Zone Heating/Cooling

- · VAV boxes with HW reheat coils provide airflow to rooms in Sheldon Hall's west wing
- Three (3) cabinet unit heaters serve vestibules and a staircase
- One (1) hydronic unit heater serves a mechanical room

HVAC Controls

Building Automation System

• Carrier i-Vu® 8.0 building automation system (BAS) used for monitoring, direct digital control (DDC), and energy management of HVAC systems

Operating Schedules

• HVAC systems are scheduled to operate in occupied mode from 5 a.m. to 10 p.m. daily

Domestic/Service Water Heating

Domestic Water Heaters

- Two (2) natural draft, natural gas-fired water heaters with four (4) external storage tanks
 - Glass-lined commercial storage tanks, each with a 140-gallon capacity

DHW Load

• Bathroom hand sinks

Piping and Ductwork

Piping Systems/Insulation

- Some HW piping was missing insulation
- Spot observations of DHW piping and ductwork insulation revealed no remarkable deficiencies

Equipment Insulation

• A steam-to-hot-water converter was missing insulation

Piping and Ductwork Leaks

• Spot observations revealed no leakage issues

Miscellaneous Loads

Plug loads

- Offices: computers or laptops, desk phones, desk lamps, etc.
- Common spaces: vending machines

Elevators

• One (1) elevator serves the building

Specialty Systems

Air Compressors

• One (1) air compressor generates compressed air for pneumatic controls

Potential Energy Efficiency Measures (EEMs)

No Cost/Low Cost Measures

- Retro-commissioning of HVAC systems and controls
 - Optimize heat pump loop setpoints
 - Optimize cooling tower water temperature control
 - Scheduling of HVAC equipment and space temperature setbacks
- Implement pump differential pressure reset controls on the secondary CHW pumps
- Implement HW and CHW supply temperature reset
- Implement duct static pressure reset controls on AHU-1 through AHU-4
- Setback equipment during academic breaks

Capital Measures

- Install window film for solar heat gain reduction
- Install building-level steam submeter
- Replace interior fluorescent light fixtures with LED fixtures
 - Consider onboard occupancy sensor control for individual fixture dimming/staging, or on/off control based on occupancy for public spaces, especially for the ballroom
 - Consider onboard daylight sensor control for individual fixture dimming/staging based on sensed daylight for public spaces that have adequate daylight harvesting opportunity
- Replace exterior light fixtures with LED fixtures
- · Replace pump and fan motors with beyond premium efficiency motors at end of useful life
- Replace existing chiller with high-efficiency water-cooled variable speed magnetic bearing chiller
 - R-134A refrigerant is being phased out starting January 1, 2024
 - Once manufacturing of R-134A is eliminated, the price of R-134A stock is expected to rise substantially
- Install VFDs on HW pumps and Glycol pumps and control based on differential pressure
- If not already implemented, consider implementing economizer controls on AHU-1 through AHU-4
- Where not already implemented, install occupancy-based HVAC controls
- Replace pneumatic actuators with electric actuators
- Consider implementing demand control ventilation in the classrooms, ballroom, and lecture hall
- Replace DHW heaters with semi-instantaneous water heaters

O&M Measures

- Change v-belt fan drives to cogged belt fan drives
- Repair missing insulation

SUNY OSWEGO | RICHARD S. SHINEMAN CENTER BUILDING ASSESSMENT

Building Description

Building Name:	Richard S. Shineman Center
Year Constructed:	2013
No. of Floors:	4 + Basement
Est. GSF:	235,860

Recent Building Upgrades

• LEED Gold certified

Functional Description

The Richard S. Shineman Center is a science and engineering academic building in the center of campus which houses classrooms, lecture halls, common spaces, a café, laboratories, offices, a planetarium, and a greenhouse. The building has multiple sustainable energy features including rooftop solar panels, wind turbines, and a geothermal energy system. There are electric vehicle charging stations in the Shineman Center parking lot.

Occupancy Patterns

Shineman has fluctuating levels of occupancy throughout the day. The building has higher occupancy on weekdays from 8 a.m. to 9 p.m. during the academic year.

Building Envelope

Roof

- Built-up flat roof; no roof access during walk-through
- Insulation type and levels not accessible during walk-through

Exterior Walls

- Concrete and brick façades
- Insulation type and levels not accessible during walk-through

Windows

- Double glazed, metal frame windows
- Skylights in main lobby

Doors

• Building entryway doors are clear, double glazed, aluminum frame doors

Air Infiltration/Leakage

• No excessive infiltration was observed

Utilities

Electricity

• Electricity is fed to the building from the National Grid electric substation on Washington Boulevard

Natural Gas

- Natural gas is delivered to the building from the main campus gas service
 - Used for chemistry lab equipment and backup generator

District Steam

• Steam is distributed to the campus at 50 psig and is reduced to 12-13 psig within the building

Submeters

- This building has a campus-managed steam submeter to measure pressure, flow, and temperature of medium pressure steam entering building
- This building has campus-managed Btu submeters on the building geothermal loop

Lighting

Interior Fixture Types

- Predominant lighting types as follows:
 - Café: F26 TT compact fluorescent fixtures with electronic ballasts
 - First-floor lobby: Recessed F26 TT compact fluorescent fixtures with electronic ballasts, recessed and pendant LED fixtures, wall mount T5 fluorescent fixtures with electronic ballasts, and track mount metal halide fixtures with electronic ballasts
 - Lab classrooms: Recessed troffer fixtures with T8 fluorescent lamps and electronic ballasts
 - Non-lab classrooms: Recessed troffer and pendant fixtures with T8 fluorescent lamps and electronic ballasts and recessed wall mount fixtures with T5 fluorescent lamps
 - Corridors: Ceiling surface mount fixtures with T8 fluorescent lamps and electronic ballasts and recessed troffer fixtures with T8 fluorescent lamps and electronic ballasts
 - Offices: Recessed troffer fixtures with T8 fluorescent lamps and electronic ballasts
 - Lecture Hall (Room 1022): Pendant TT compact fluorescent fixtures with electronic ballasts and pendant fixtures with T5 fluorescent lamps and dimming switches
 - Conference room (Room 1024): Recessed TT compact fluorescent fixtures with dimming switches
 - Stairwells: Wall mount and recessed troffer fixtures with T5 fluorescent lamps and electronic ballasts
 - Elevator lobby: Recessed troffer fixtures with T5 fluorescent lamps and electronic ballasts
 - Bathrooms: Surface mount and pendant fixtures with T8 fluorescent lamps and electronic ballasts
 - Mechanical room: Industrial fixtures with T8 fluorescent lamps and electronic ballasts
 - Wilber connector (enclosed walkway): Recessed troffer fixtures with T5 fluorescent lamps and electronic ballasts
 - Entry vestibules: Recessed fixtures with T5 fluorescent lamps and compact fluorescent lamps (CFLs) and electronic ballasts

Interior Lighting Controls

• Lecture Hall 1022 has dimming controls and bi-level lighting

- Some classrooms and conference room 1024 have dimming controls
- Daylighting controls in stairwell
- Lighting in most areas is scheduled on at 6 a.m. and off at 12 a.m. daily

Exterior Lighting and Controls

- T5 fluorescent wall pack and wall sconce fixtures with electronic ballasts
- Entryway lighting and exterior HDs are controlled by photosensors

HVAC

Geothermal Loop

- 240 boreholes at 499 feet deep
- Primary pumps P-13 and P-14 circulate 18% glycol through the borefield. Both pumps have variable frequency drive (VFD) control of pump motor speed.
 - 100 horsepower (hp) motors

Dual Temperature Loop

- Two (2) Multistack 560-ton chillers CH-1 and CH-2 serve as modular heat pumps
 - Eight (8) modules each
 - Units produce either heating hot water (HW) at 120°F or chilled water (CHW) at 45°F on the *load* side, and use *source* water for heat extraction or heat rejection
 - Primary pumps P-11 and P-12 serve the primary dual temperature loop and secondary pumps P-7 and P-8 circulate water from the dual temperature loop to air handler coils. All four (4) dual temperature pumps have VFD control of pump motor speed based on differential pressure.
 - P-11 and P-12 have 50 hp motors and are rated for 2,300 gallons per minute (gpm) at 56 feet of head
 - P-7 and P-8 have 100 hp motors and are rated for 2,300 gpm at 99 feet of head
 - Pumps P-9 and P-10 circulate *source* water for either heat rejection or heat extraction, depending on the dual temperature loop mode of operation. Both *source* water pumps have VFD control of pump motor speed based on differential pressure.
 - P-9 and P-10 have 75 hp motors and are rated for 3,225 gpm at 50 feet of head
 - Heating mode is enabled whenever the outside air (OA) temperature is below 60°F for 12 hours or longer
 - The dual temperature loop transitions to cooling mode whenever the OA temperature is above 60°F for 12 hours or longer
- Geothermal field pumps P-13 and P-14 (described in the Geothermal Loop section)
- Flow is modulated by the geothermal field pump (P-13 and P-14, described in the Geothermal Loop section) VFDs to maintain the *source* water at 47°F when the system is in heating mode, or at 87°F when the system is in cooling mode

Central Heating System

- Two (2) shell & tube steam-to-hot-water converters HX-1 and HX-2 generate HW for building heating. One (1) converter generates HW while the other is for redundancy.
 - 1/3 & 2/3 direct digital control (DDC), pneumatically actuated steam valves modulate to supply HW at 120°F

- Primary pumps P-1 and P-2 serve the primary HW loop and secondary pumps P-5 and P-6 circulate HW to the finned tube radiation loop, cabinet unit heaters, and air handler reheat coils. All four (4) HW pumps have VFD control of pump motor speed based on differential pressure.
 - P-1 and P-2 have 20 hp motors and are rated for 708 gpm at 60 feet of head
 - P-5 and P-6 have 30 hp motors and are rated for 708 gpm at 83 feet of head
- Drawings show there is a changeover valve that can provide HW from the dual temperature loop to supplement HX-1 and HX-2. However, the sequence of operations is not clear under what conditions this can be done.
- Two (2) shell & tube steam-to-hot-glycol converters HX-3 and HX-4 generate hot glycol for building heating. One (1) converter generates hot glycol while the other is for redundancy.
 - 1/3 & 2/3 DDC, pneumatically actuated steam valves modulate glycol supply temperature at the outlet of the converter
 - Hot glycol pumps P-3 and P-4 circulate hot glycol to air handler preheat coils. Both glycol pumps have VFD control of pump motor speed based on differential pressure.
 - P-3 and P-4 have 20 hp motors and are rated for 600 gpm at 71 feet of head
 - Glycol supply temperature is reset based on OA temperature
 - 180°F supply temperature at 0°F OA temperature
 - 140°F supply temperature at 60°F OA temperature

Central Cooling System

• One (1) rooftop dry cooler serves air handling units AC-1 and AC-2 which provide cooling to the chemistry NMR room

Air Handling Units

- Two (2) air handling units AHU-1 and AHU-2 serve non-lab spaces throughout the building
 - Multi-zone variable air volume (VAV) units with enthalpy economizers
 - Supply fan motor controlled by VFD to maintain duct static pressure
 - Static pressure is reset
 - Return fan motor controlled by VFD to track supply fan VFD
 - Hot glycol preheat coil; two-pipe dual temperature heating/cooling coil
 - Units operate in heating or cooling mode based on the dual temperature loop mode of operation. The units discharge 70°F air in heating mode and 55°F air in cooling mode.
 - OA flow is varied based on the difference between the amount of carbon dioxide sensed in the OA air and return air
- Two (2) air handling units AHU-3 and AHU-4 serve lab spaces throughout the building
 - 100% OA multi-zone variable air volume (VAV) units
 - Supply fan motor controlled by VFD to maintain duct static pressure
 - Static pressure is reset
 - Return fan motor controlled by VFD to track supply fan VFD
 - Hot glycol preheat coil; two-pipe dual temperature heating/cooling coil
 - Units operate in heating or cooling mode based on the dual temperature loop mode of operation. The units discharge 70°F air in heating mode and 55°F air in cooling mode.
 - Units operate in conjunction with exhaust fans LEF-1, LEF-2, LEF-3, and LEF-4
 - Heat recovery units served by a glycol runaround loop recover heat from lab exhaust to precondition the OA provided to AHU-3 and AHU-4
 - Heat recovery units modulate to maintain AHU-3 and AHU-4 discharge air temperatures

- Glycol runaround loop pumps P-15 and P-16 circulate glycol between a heat recovery coil in the lab exhaust air stream and heat transfer coils in AHU-3 and AHU-4. Both glycol pumps have VFD control of pump motor speed based on differential pressure.
 - P-15 and P-16 have 15 hp motors and are rated for 275 gpm at 96 feet of head
- Glycol runaround loop is enabled when the OA temperature is below 55°F and above 80°F
- Penthouse air handling units; AHU-5 and AHU-6 operate in parallel and serve Trane TU VAV boxes
 - 100% OA units
 - Supply fan motor controlled by VFD
 - Duct static pressure setpoint is set by critical zone reset
 - Hot glycol preheat coil; two-pipe dual temperature heating/cooling coil
 - Units operate in heating or cooling mode based on the dual temperature loop supply temperature. The units operate in heating mode when the supply temperature is above 110°F and operate in cooling mode when the supply temperature is less than 55°F.
 - One (1) heat recovery unit serves AHU-5 and AHU-6

Exhaust Systems

- Three (3) exhaust fans EF-3, EF-4, and EF-5 serve the atrium
- Eight (8) exhaust fans serve the labs
 - Constant volume fans connected to common exhaust plenum. Plenum bypass dampers are modulated to maintain system static pressure and to maintain discharge velocity from each fan at a minimum of 4,000 FPM.
 - LEF-1, LEF-2, LEF-3, and LEF-4 controls integrated with AHU-3 and AHU-4
 - LEF-7, LEF-8, LEF-9, and LEF-10 controls integrated with AHU-5 and AHU-6
 - All lab hoods exhaust to common exhaust plenum
 - Occupancy sensor in hoods to setback face velocity when no occupancy is detected

Zone Heating/Cooling

- VAV boxes provide airflow to individual rooms
- Finned tube radiation provides perimeter heating
- Radiant floor heating in vestibule is enabled when the OA temperature is less than 60°F. One (1) 100% return air unit ventilator with a dual temperature coil provides additional heating and cooling.
- Unit ventilators serve common spaces and corridors
- Fan coil units (FCU) provide heating and cooling in corridors

HVAC Controls

Building Automation System

• Carrier i-Vu® 8.0 and Trane Tracer® Ensemble[™] building automation systems (BAS) used for monitoring, DDC, and energy management of HVAC systems

Operating Schedules

- Room 175 HVAC equipment is scheduled to operate in occupied mode from 6 a.m. to 11 p.m. daily
- Other HVAC systems are scheduled to operate in occupied mode 24/7

Domestic/Service Water Heating

Domestic Water Heaters

• Domestic hot water (DHW) system was not observed during walk-through

DHW Load

- Bathroom hand sinks
- Café sink
- Lab sinks, showers, and eye wash stations

Piping and Ductwork

Piping Systems/Insulation

- Connection for the dual temperature supply and return piping on AHU-4 was observed to be missing
- Spot observations of piping and ductwork insulation revealed no remarkable deficiencies

Equipment Insulation

• Spot observations of equipment insulation revealed no remarkable deficiencies

Piping and Ductwork Leaks

• Spot observations revealed no leakage issues

Miscellaneous Loads

Plug Loads

- Offices: computers or laptops, desk phones, desk lamps, etc.
- Library and classrooms: computers, monitors, projectors, printers, etc.
- Café: cold food holding cabinet, coffee makers, etc.
- Specialty rooms: greenhouse equipment, planetarium equipment, etc.
- Labs: autoclave, lab hoods, sinks, emergency showers, eye wash stations, etc.
- Common spaces: vending machines

Elevators

• Three (3) elevators serve the building

Specialty Systems

Lab Equipment

- One (1) cold room with independent refrigeration system
- Approximately 44 refrigerators and freezers in lab rooms throughout the building
- Autoclaves

Air Compressors

- One (1) air compressor located in the basement mechanical room generates compressed air for labs
- One (1) air compressor located in the greenhouse mechanical room generates compressed air for pneumatic controls on steam converters

Photovoltaic (PV) Array

- Approximately 20 kilowatt (kW) rooftop array
- Five (5) inverters in the fourth-floor electrical room

Potential Energy Efficiency Measures (EEMs)

No Cost/Low Cost Measures

- Install automatic interior lighting controls on existing LED fixtures
- Retro-commissioning of HVAC systems and controls
 - Optimize hot glycol supply temperature reset control
 - Scheduling of HVAC equipment and space temperature setbacks
- Implement pump differential pressure reset controls on the geothermal field, dual temperature loop, HW, and hot glycol pumps
- Implement HW supply temperature reset
- Setback equipment during academic breaks
- If not already implemented, install low-flow or ultra low-flow showerheads

Capital Measures

- Consider installing window film for solar heat gain reduction
- Install building-level steam submeter
- Replace interior fluorescent light fixtures with LED fixtures
 - Consider onboard occupancy sensor control for individual fixture dimming/staging, or on/off control based on occupancy for public spaces
 - Consider onboard daylight sensor control for individual fixture dimming/staging based on sensed daylight for public spaces that have adequate daylight harvesting opportunity, such as the main lobby, which has skylights
- Replace exterior light fixtures with LED fixtures
- If not already implemented, install occupancy-based HVAC controls
- Replace pneumatic actuators with electric actuators
- If not already implemented, consider implementing demand control ventilation in lecture hall and planetarium spaces
- Consider implementing laboratory demand control ventilation

O&M Measures

- · Change any v-belt fan drives to cogged belt fan drives
- Replace missing coil connection for dual temperature supply and return on AHU-4

SUNY OSWEGO | TYLER HALL BUILDING ASSESSMENT

Building Description

Building Name:	Tyler Hall
Year Constructed:	1968
No. of Floors:	2 + Basement
Est. GSF:	115,430

Recent Building Upgrades

- Full building renovation 2020
- Exterior renovation 2007
- LEED Gold certified May 2017

Functional Description

Tyler Hall is a fine arts academic building in the center of campus housing classrooms, studio spaces, lobby areas, galleries, and an auditorium.

Occupancy Patterns

Tyler Hall has fluctuating levels of occupancy throughout the day. The building has higher occupancy on weekdays during the academic year when classes/studios are in session.

Building Envelope

Roof

- Flat roof
 - Broken panel observed during walk-through
- Insulation type and levels not accessible during walk-through

Exterior Walls

- Walls renovated during exterior renovation in 2007
- Insulation type and levels not accessible during walk-through

Windows

• Double glazed, aluminum frame windows

Doors

• Building entryway doors are two (2) sets of glass double doors

Air Infiltration/Leakage

• No excessive infiltration was observed

Utilities

Electricity

• Electricity is fed to the building from the National Grid electric substation on Washington Boulevard

Natural Gas

- Natural gas is delivered to the building from the main campus gas service
 - Two (2) pressure reducing valves on the building natural gas line
 - No natural gas equipment observed during walk-through

District Steam

• Steam is distributed to the campus at 50 psig and is reduced to 12-13 psig within the building by two (2) pressure reducing valves (PRV) operating in parallel with a bypass

Submeters

• This building has a campus-managed Honeywell submeter on the building natural gas line

Lighting

Interior Fixture Types

- Predominant lighting types as follows:
 - Lobby: Recessed ceiling fixtures with compact fluorescent lamps (CFL) and pendant LED fixtures
 - Stage level
 - Corridors: 2x2 recessed low-profile LED fixtures with dimming switches
 - Auditorium: Linear pendant LED fixtures
 - Changing room: Linear pendant LED fixtures with dimming switches and 2x4 recessed LED fixtures with dimming switches
 - Bathrooms: LED vanity fixtures
 - Commons level
 - Classrooms and studios: Linear pendant LED fixtures
 - Offices: 2x2 recessed low-profile LED fixtures with dimming switches
 - Corridors: Recessed LEDs with aluminum housing
 - Bathrooms: Recessed downlight LEDs
 - Costume shop: Linear pendant LED fixtures with dimming switches
 - Second floor
 - Classrooms: Linear pendant LED fixtures
 - Offices: Linear pendant LED fixtures
 - Corridors: 2x2 recessed low-profile LED fixtures with dimming switches
 - Bathrooms: Recessed downlight LEDs
 - Stairwells: Pendant LED fixtures

Interior Lighting Controls

- Occupancy sensors in most common spaces
- Interior lighting is scheduled on at 6 a.m. and off at 11 p.m. daily
Exterior Lighting and Controls

- LEDs on pathway along building perimeter
- Exterior lighting is scheduled on at 7 p.m. and off at 7 a.m. daily
- Exterior lights on campus are controlled by photosensors and astronomical time clocks

HVAC

Central Heating System

- One (1) steam-to-hot-water converter generates heating hot water (HW) for building heating
 - 1/3 & 2/3 direct digital control (DDC), electronically actuated Belimo steam valves modulate HW supply temperature at the outlet of the converter
 - Hot water pumps HWP-1 and HWP-2 operate as lead/standby for the air handler heating coils loop. HW pumps have variable frequency drive (VFD) control of pump motor speed based on differential pressure.
 - Bell & Gossett base-mounted centrifugal pumps with 15 horsepower (hp) motors
 - Hot water pumps HWP-3 and HWP-4 circulate HW to the northeast and southwest finned tube radiation loops, respectively. HW pumps have VFD control of pump motor speed based on differential pressure.
 - Both HWP-3 and HWP-4 were observed to be operating at 100% speed during walk-through and later building automation system (BAS) observations
 - HW supply temperature is reset based on outside air (OA) temperature
 - 185°F HW supply temperature at 0°F OA temperature
 - 120°F HW supply temperature at 60°F OA temperature

Central Cooling System

- One (1) chiller generates chilled water (CHW) for building cooling
 - Water-cooled chiller with cooling tower
 - Two (2) CHW pumps circulate CHW to air handler cooling coils
 - Two (2) condenser water pumps circulate condenser water between the chiller condenser and the cooling tower. Both condenser water pumps have VFD control of pump motor speed.
 - A CHW supply temperature reset schedule based on OA temperature is established in the BAS. During the walk-through, CHW supply temperature was set to 45°F at all OA temperatures.

Air Handling Units

- Air handling unit AHU-3 serves the auditorium
 - Single-zone variable air volume (VAV) unit
 - Supply fan motor controlled by VFD with a temperature-based control scheme
 - Duct-mount humidity and temperature sensors, pressure and flow sensors, and DDC controls
- Three (3) air handling units AHU-1, AHU-2, and AHU-4 serve the remainder of the building
 - Multi-zone VAV units with economizer controls
 - Economizer and airflow monitor on OA intake to each unit
 - Supply fan motors controlled by VFDs to maintain duct static pressure
 - Return fan motors controlled by VFDs to track supply fan VFDs
 - HW heating coils with two-way electronic control valves; CHW cooling coils with two-way electronic control valves
 - Duct-mount humidity and temperature sensors, pressure and flow sensors, and DDC controls

- One (1) make-up air unit serves the spray booth
- One (1) split-system direct-expansion (DX) cooling unit serves the data closet

Exhaust Systems

- Exhaust fans serve the studios, first floor, bathrooms, penthouse, laundry room, and electrical rooms
- Three (3) larger exhaust fans serve studio spaces
 - EF-SB serves the spray booth
 - EF-SB has a 5 hp motor and is rated for 12,800 cfm
 - EF-128 and EF-128E serve the dust collection system
 - EF-128 and EF-128E have 5 hp motors and are rated for 1,000 cfm

Zone Heating/Cooling

- VAV boxes provide airflow to nearly all rooms and common spaces
- Finned tube radiation provides perimeter heating
- Radiant heating with OA reset schedule
 - 180°F supply temperature at 0°F OA temperature
 - 150°F supply temperature at 60°F OA temperature
- Eight (8) HW unit heaters
 - 120°F HW supply temperature setpoint observed during walk-through
 - 60°F space temperature setpoint observed during walk-through
- Cabinet unit heaters serve an entry vestibule and a staircase
- A steam unit heater serves the spray booth

HVAC Controls

Building Automation System

• Trane Tracer® Ensemble[™] BAS used for monitoring, DDC, and energy management of HVAC systems

Operating Schedules

- AHU-4 is scheduled to operate in occupied mode from 12 a.m. to 11 p.m. daily
- EF-10 and an exhaust fan serving room 237 are scheduled to operate in occupied mode from 6 a.m. to 12 a.m. daily
- Other HVAC systems are scheduled to operate in occupied mode 24/7

Domestic/Service Water Heating

Domestic Water Heaters

- One (1) semi-instantaneous water heater
 - Setpoint of 132°F and supply temperature of 126°F observed

Domestic Hot Water (DHW) Load

- · Bathroom hand sinks and showers
- Kitchenette sinks
- Art studio sinks

Piping and Ductwork

Piping Systems/Insulation

· Spot observations of piping and ductwork insulation revealed no remarkable deficiencies

Equipment Insulation

• Spot observations of equipment insulation revealed no remarkable deficiencies

Piping and Ductwork Leaks

• Spot observations revealed no leakage issues

Miscellaneous Loads

Plug loads

- Laundry room: two (2) washers and two (2) dryers served by exhaust fan
- Kitchenettes: microwaves, coffee makers, etc.
- Auditorium/stage: theatre lighting and equipment
- Computer lab and printing lab: computers, printers, etc.
- Data closet: computer equipment, servers, etc.

Elevators

• Two (2) elevators serve the building

Specialty Systems

Air Compressors

- Two (2) air compressor pumps generate compressed air for pneumatic controls
 - One (1) compressor in the penthouse was observed to be excessively loud

Ceramics Studio

- Three (3) large electric kilns and two (2) small electric kilns
- Coal room
- Dust collection system with independent exhaust
- Spray booth with independent exhaust and steam unit heater

Potential Energy Efficiency Measures (EEMs)

No Cost/Low Cost Measures

- Retro-commissioning of HVAC systems and controls
 - Optimize VFD control of HWP-3 and HWP-4 pump motors
 - Optimize HW and CHW supply temperature reset control
 - CHW reset schedule could be adjusted to raise CHW supply temperature at lower OA temperatures
 - Optimize cooling tower water temperature control
 - Optimize radiant heating reset control
 - · Scheduling of HVAC equipment and space temperature setbacks

- Scheduling of studio exhaust fan operation
- Implement pump differential pressure reset controls on the HW pumps
- Implement duct static pressure reset controls on AHU-1, AHU-2, and AHU-4
- Setback equipment during academic breaks
- If not already implemented, install low-flow or ultra low-flow showerheads

Capital Measures

- Consider installing window film for solar heat gain reduction
- Install building-level steam submeter
- Consider additional occupancy sensor control for individual fixture dimming/staging, or on/off control based on occupancy for public spaces
- Consider daylight sensor control for individual fixture dimming/staging based on sensed daylight for public spaces that have adequate daylight harvesting opportunity
- If not already implemented, install VFD on cooling tower fan motor to maintain condenser water temperature at setpoint
- Replace any remaining pneumatic actuators with electric actuators
- If not already implemented, consider implementing demand control ventilation on AHU-3 serving the auditorium
- If not already implemented, consider installing occupancy-based HVAC controls in classrooms, studio spaces, and auditorium
- If not already installed, consider adding hot water zone valves for controlling individual spaces served by finned tube radiation

O&M Measures

- Change any v-belt fan drives to cogged belt fan drives
- Repair or replace the loud compressor in the penthouse

SUNY OSWEGO | WILBER HALL BUILDING ASSESSMENT

Building Description

Building Name:	Wilber Hall
Year Constructed:	1964
No. of Floors:	4 + Basement
Est. GSF:	108,933

Recent Building Upgrades

- Full building renovation 2014
- Wilber Wireless Lab constructed in 2016
- New exhaust fans installed in Room 166 by J&A 2022

Functional Description

Wilber Hall is an academic building in the center of campus connected to Shineman Center and Park Hall as part of the campus' science and engineering complex. Wilber Hall houses classrooms, common spaces, technical labs, a wood shop studio, and manufacturing lab. The Wilber Wireless lab is also located in the building and includes a polymer lab.

Occupancy Patterns

Wilber Hall has fluctuating levels of occupancy throughout the day. During the academic year, the building has higher occupancy on weekdays while classes are in session.

Building Envelope

Roof

- Built-up flat roof; no roof access during walk-through
- Insulation type and levels not accessible during walk-through

Exterior Walls

- Concrete and brick façades
- Insulation type and levels not accessible during walk-through

Windows

- Double glazed, aluminum frame windows
 - Operable windows in classrooms, fixed windows elsewhere

Doors

• Building entryway doors are two (2) sets of metal frame, glass double doors

Air Infiltration/Leakage

• No excessive infiltration was observed

Utilities

Electricity

• Electricity is fed to the building from the National Grid electric substation on Washington Boulevard

Natural Gas

- Natural gas is delivered to the building from the main campus gas service
 - Used for space heating in the Wilber Wireless lab

District Steam

Steam is distributed to the campus at 50 psig and is reduced to 12-13 psig within the building by two
 (2) pressure reducing valves (PRV)

Submeters

• None observed during walk-through

Lighting

Interior Fixture Types

- Predominant lighting types as follows:
 - Classrooms: Ceiling recessed T8 fluorescent fixtures with electronic ballasts
 - Wood lab: 1x4 high bay pendant T5 fluorescent fixtures with electronic ballasts
 - Mezzanine: 1x4 industrial pendant T5 fluorescent fixtures with electronic ballasts
 - Paint room: Recessed T5 fluorescent fixtures with electronic ballasts
 - Metal shop: Sodium halide fixtures
 - Corridors: 4x4 recessed troffer T5 fluorescent fixtures with electronic ballasts and recessed T8 fluorescent fixtures with electronic ballasts
 - Offices: Compact fluorescent fixtures with electronic ballasts, recessed T5 fluorescent fixtures with electronic ballasts, and ceiling recessed T8 fluorescent fixtures with electronic ballasts
 - Conference room: Ceiling recessed T8 fluorescent fixtures with electronic ballasts
 - Bathrooms: Wall mount T8 fluorescent fixtures with electronic ballasts
 - Mechanical room: 1x2 twin industrial T5 fluorescent fixtures with electronic ballasts

Interior Lighting Controls

- Bi-level lighting in classrooms
- Classroom lighting is scheduled off and on at set times of day
- Interior lighting is scheduled through local panels

Exterior Lighting and Controls

- Recessed T5 fluorescent wall pack fixtures with electronic ballasts and T5 fluorescent wall sconce fixtures with electronic ballasts
- Entryway lighting and exterior HDs are controlled by photosensors

HVAC

Central Heating System

- One (1) steam-to-hot water converter generates heating hot water (HW) for building heating
 - 1/3 & 2/3 pneumatically actuated steam valves modulate HW supply temperature at the outlet of the converter
 - Hot water pumps HWP-1 and HWP-2 circulate HW to the finned tube radiation loop and fan coil units. Hot water pumps HWP-9 and HWP-10 circulate HW to the first-floor labs.
 - HW supply temperature is reset based on outside air (OA) temperature
 - 180°F supply temperature at OA temperature of 0°F and below
 - 85°F supply temperature at OA temperature of 60°F and above
- Two (2) steam-to-hot-glycol converters HX-1 and HX-2 generate hot glycol for building heating in Wilber Hall and Park Hall. Only one (1) converter operates at a time, while the other serves as backup.
 - 1/3 & 2/3 pneumatically actuated steam valves modulate hot glycol supply temperature at the outlet of the converter
 - Hot glycol pumps P-1 and P-2 circulate hot glycol to Wilber Hall air handler heating coils. Both glycol pumps have variable frequency drive (VFD) control of pump motor speed based on differential pressure.
 - System is enabled when the glycol valve on any air handler is open greater than 5%
- One (1) shell & tube steam-to-hot-glycol converter, located in the Wilber Hall penthouse, generates hot glycol for Wilber Hall energy recovery ventilation (ERV) units
 - 1/3 & 2/3 direct digital control (DDC), electronically actuated steam valves modulate hot glycol supply temperature at the outlet of the converter
 - Hot glycol pumps P-5 and P-6 circulate hot glycol to ERV-1 and ERV-2 heating coils. Both glycol pumps have VFD control of pump motor speed based on differential pressure.
 - Bell & Gossett pumps with 5 horsepower (hp) motors and suction diffusers
- One (1) natural gas-fired boiler generates HW for the Wilber Wireless lab
 - Lochinvar boiler generates HW for unit heaters, finned tube radiators, and AHU-1 heating coils in the Wireless lab

Central Cooling System

- Two (2) Trane chillers CH-1 and CH-2, located in Park Hall, generate chilled water (CHW) for building cooling in Wilber Hall and Park Hall
 - Water-cooled screw chillers
 - R-134A refrigerant
 - Two (2) compressors each
 - Chilled water pumps CWP-3 and CWP-4 circulate CHW to air handler cooling coils in Wilber Hall. Both CHW pumps have VFD control of pump motor speed based on differential pressure.
 - Condenser water pumps CTP-1 and CTP-2, located in the Wilber Hall basement, circulate condenser water between the chiller condenser and the cooling tower. Both condenser water pumps have VFD control of pump motor speed.
 - Bell & Gossett pumps with 15 hp motors
 - Cooling tower fan has VFD control of fan motor speed to maintain leaving water temperature
- One (1) plate & frame CHW-glycol converter generates chilled glycol for Wilber Hall ERV units
 - Chilled glycol pumps P-7 and P-8 circulate chilled glycol to ERV-1 and ERV-2 cooling coils. Both glycol pumps have VFD control of pump motor speed based on differential pressure.

- Bell & Gossett pumps with 3 hp motors
- One (1) Motivair chiller generates CHW for the Wilber Wireless lab
 - Chiller generates CHW for air handler cooling coils

Air Handling Units

- Four (4) air handling units serve the building
 - Air handling unit AHU-1 serves eight (8) variable air volume (VAV) boxes that provide airflow to first-floor office spaces
 - Multi-zone VAV unit
 - 3 hp supply fan motor controlled by VFD to maintain duct static pressure
 - 2 hp return fan motor controlled by VFD to track supply fan VFD
 - Hot glycol heating coil with two-way electronic control valve; CHW cooling coil with two-way electronic control valve
 - Energy recovery wheel recovers heat from the exhaust airstream
 - Rated for 3,000 cfm
 - Heating and cooling coil valves are enabled based on OA temperature
 - Cooling coil valves are enabled when the OA temperature is greater than 75°F
 - Heating coil valves are enabled when the OA temperature is less than 65°F
 - Air handling unit AHU-2 serves three (3) VAV boxes that provide airflow to the wood shop and manufacturing lab
 - Multi-zone VAV unit
 - Receives return air from the wood lab
 - 15 hp supply fan motor controlled by VFD to maintain duct static pressure
 - 7.5 hp return fan motor controlled by VFD to track supply fan VFD
 - Hot glycol heating coil with two-way electronic control valve; CHW cooling coil with two-way electronic control valve
 - Heating and cooling coil valves are enabled based on OA temperature
 - Cooling coil valves are enabled when the OA temperature is greater than 75°F
 - Heating coil valves are enabled when the OA temperature is less than 65°F
 - Air handling unit AHU-3 serves the wood shop
 - 100% OA single-zone VAV unit
 - 7.5 hp supply fan motor controlled by VFD to track dust collector system VFD
 - Hot glycol heating coils; CHW cooling coils
 - System is enabled when the dust collector system is enabled
 - Heating mode is enabled when the OA temperature is below 60°F. Cooling mode is enabled when the OA temperature is above 74°F.
 - Air handling unit AHU-4 serves the paint room
 - 100% OA single-zone VAV unit
 - 7.5 hp supply fan motor controlled by VFD
 - Runs at 25% speed when the paint room exhaust fan is off and at 100% speed when the paint room exhaust fan is on
 - Hot glycol heating coils; CHW cooling coils
 - Cooling mode is enabled based on space temperature. Cooling valve position is determined based on OA temperature.
- Two (2) energy recovery ventilators ERV-1 and ERV-2
 - Enthalpy wheels recover heat from tech shop (Rooms 166 and 163) exhaust airstreams

- Heating and cooling coils with DDC controls
- A separate air handling unit serves spaces in the Wilber Wireless Lab

Exhaust Systems

- Nine (9) exhaust fans serve mechanical rooms, electrical rooms, paint booth, finishing room, dust collector, laser room, fume hoods, and storage rooms
 - EF-1, EF-2, and EF-3 serve the wood lab
 - EF-1 controls are integrated with the dust collection system; fan is enabled when the dust collection system is enabled
 - EF-4 and EF-5 serve the paint booth and finishing room
 - EF-6 serves storage room 159
 - EF-7 and EF-8 serve basement mechanical spaces
 - EF-9 serves the first-floor lab
 - EF-2, EF-3, and EF-9 are controlled by a manual switch and do not have automated controls
- A separate exhaust fan serves the Wilber Wireless lab

Zone Heating/Cooling

- Ceiling diffusers provide airflow to nearly all rooms and common spaces
- VAV boxes provide airflow to a limited number of rooms
- Finned tube radiation provides perimeter heating along the walkway connecting Shineman and Wilber

HVAC Controls

Building Automation System

- Trane Tracer® Ensemble[™] building automation system (BAS) used for monitoring, DDC, and energy management of HVAC systems
 - CWP-3 and CWP-4 are not on the BAS

Operating Schedules

- Hot water heating system is enabled 24/7
- Air handling units are scheduled to operate 24/7
- Occupied, unoccupied, and night-time temperature setpoints are determined in the BAS
- General exhaust fans are scheduled to operate in occupied mode from 6 a.m. to 12 a.m. daily
- EF-1 is scheduled to operate in occupied mode from 6 a.m. to 11 p.m. daily
- Finned tube radiation in the Wilber-Shineman connector is scheduled to operate in occupied mode 24/7

Domestic/Service Water Heating

Domestic Water Heaters

- One (1) instantaneous water heater IWH-1
 - Uses direct steam
- One (1) electric water heater EWH-1

Domestic Hot Water (DHW) Load

- Bathroom hand sinks
- Lab sinks

· Lab eye wash stations and showers

Piping and Ductwork

Piping Systems/Insulation

- Some piping is missing insulation on the HW supply and return lines to the converter
- Spot observations of DHW piping and ductwork insulation revealed no remarkable deficiencies

Equipment Insulation

· Spot observations of equipment insulation revealed no remarkable deficiencies

Piping and Ductwork Leaks

• Spot observations revealed no leakage issues

Miscellaneous Loads

Plug loads

- Classrooms: laptops, chargers, desktop computers, printers, projectors, etc.
- Data closet: computer equipment, servers, etc.

Elevators

• One (1) elevator serves the building

Specialty Systems

Air Compressors

- Three (3) air compressors generate compressed air at 125 psig for lab equipment and pneumatic controls
 - Comairco compressed air system
 - Ingerson-Rand air compressor C-1 with one (1) compressed air storage tank
 - Succair 1500 ell air compressor with one (1) compressed air storage tank

Dust Collection System

- · Dust collection system serves the wood shop
 - Controls integrated with AHU-3 and EF-3
 - Make-up air unit AHU-3 and exhaust fan EF-1 are only enabled when the dust collection system is enabled

Potential Energy Efficiency Measures (EEMs)

No Cost/Low Cost Measures

- Retro-commissioning of HVAC systems and controls
 - Optimize HW and glycol supply temperature reset control
 - Scheduling of HVAC equipment and space temperature setbacks
 - Scheduling of lab exhaust fan operation
- If not already implemented, implement CHW supply temperature reset control

- Implement pump differential pressure reset controls on HW pumps HWP-1 and HWP-2 and hot glycol pumps
- Implement duct static pressure reset controls on AHU-1 and AHU-2
- Setback equipment during academic breaks
- Install low-flow or ultra low-flow showerheads

Capital Measures

- Consider installing window film for solar heat gain reduction
- Install building-level steam submeter
- Replace interior fluorescent light fixtures with LED fixtures
 - Consider onboard occupancy sensor control for individual fixture dimming/staging, or on/off control based on occupancy for public spaces
 - Consider onboard daylight sensor control for individual fixture dimming/staging based on sensed daylight for public spaces that have adequate daylight harvesting opportunity, such as the corridors
- Replace exterior light fixtures with LED fixtures
- Install occupancy-based HVAC controls on AHU-1 and AHU-2
- Add hot water zone valves for controlling individual spaces served by fin tube radiation
- Replace pneumatic actuators with electric actuators
- Consider implementing demand control ventilation in classrooms
- · Connect remaining building systems to BAS

O&M Measures

- Change any v-belt fan drives to cogged belt fan drives
- Repair missing HW piping insulation

SUNY OSWEGO | CAYUGA HALL BUILDING ASSESSMENT

Building Description

Building Name:	Cayuga Hall
Year Constructed:	1967
No. of Floors:	4 + Basement
Est. GSF:	105,072

Recent Building Upgrades

- Exterior renovation 2006
- Roof replacement 2022

Functional Description

Cayuga Hall is a residence hall on West campus. The building encloses two courtyards and consists of dorm rooms, a director's apartment, and lounge areas. The basement houses a laundry room, larger lounge area, and kitchenette. This residence hall was used as a COVID-19 isolation dorm for the 2021-2022 academic year.

Occupancy Patterns

The dorm is occupied 24/7 during the academic year and can house approximately 500 students. As an isolation dorm, the building is temporarily occupied by fewer people on a more consistent daily schedule.

Building Envelope

Roof

- Flat roof; no roof access during walk-through
- · Insulation type and levels not accessible during walk-through

Exterior Walls

- Concrete panel walls
- Insulation type and levels not accessible during walk-through

Windows

- Double glazed, double hung windows with fixed sidelights
 - Windows replaced in 2006 renovation

Doors

• Building entryway doors are clear, double glazed, metal frame doors

Air Infiltration/Leakage

• No excessive infiltration was observed

Utilities

Electricity

• Electricity is fed to the building from the National Grid electric substation on Washington Boulevard

Natural Gas

• This building does not receive natural gas

District Steam

• Steam is distributed to the campus at 50 psig and is reduced to 12-13 psig within the building

Submeters

• This building has a campus-managed Electro Industries revenue grade electricity submeter

Lighting

Interior Fixture Types

- Predominant lighting types as follows:
 - Dorms: Student rooms not accessible during walk-through
 - Bathrooms: Bathrooms not accessible during walk-through
 - Corridors and common spaces: Linear T8 fluorescent lamps

Interior Lighting Controls

- Occupancy sensors in some bathrooms
- No other automatic controls observed during walk-through
- Interior lighting is scheduled on at 7 a.m. and off at 8 p.m. daily

Exterior Lighting and Controls

- High-intensity discharge (HID) wall packs
- Exterior lights are controlled by photosensors

HVAC

Central Heating System

- One (1) steam-to-hot-water converter CV-1 generates heating hot water (HW) for the building
 - Direct digital control (DDC), pneumatically actuated steam valve modulates HW supply temperature at the outlet of the converter
 - Hot water pumps CIR-P1 and CIR-P2 operate as lead/standby for the HW loop serving air handler coils and finned tube radiation
 - CIR-P1 and CIR-P2 have 10 horsepower (hp) motors
 - Appears to utilize reset of HW supply temperature based on outside air (OA) temperature
- One (1) steam-to-hot-water converter CV-2 generates HW for Resident Director apartment suite
 - DDC controlled, pneumatically actuated steam valve modulates HW supply temperature at the outlet of the converter
 - In-line circulating pump circulates HW to the apartment

Central Cooling System

- One (1) small outside air-cooled chiller generates chilled glycol for cooling data closets
 - Chilled glycol is circulated to indoor ductless fan coil units (FCU)
 - Operates in free cooling mode (compressor off) during the winter
- No other space cooling in this building

Air Handling Units

- Five (5) heating and ventilating units HV-1 through HV-5 serve corridors and common spaces
 - Constant volume single-zone units
 - HV-1 serves the laundry room
 - 100% OA unit
 - Steam heating coils with 3-way valves
 - Constant speed 1 hp supply fan motor
 - HV-2 through HV-5 serve lounges
 - HV-2 and HV-3 have constant speed 1/4 hp supply fan motors
 - HV-4 and HV-5 have constant speed 34 hp supply fan motors
 - HW heating coils with 3-way valves

Exhaust Systems

- Several exhaust fans serve the bathrooms, laundry room, mechanical room, and electrical room
 - EF-1 serves the laundry room
 - EF-1 has a 1.5 hp motor and is rated for 42,000 cubic feet per minute (cfm)
 - HV-1 provides make-up air

Zone Heating/Cooling

- · Ceiling diffusers provide airflow to corridors and common spaces
- Finned tube radiation provides perimeter heating in dorm rooms and lounges; temperature control is limited to HW supply temperature reset control based on OA temperature
- No sensors or room-level temperature control in dorm rooms
- Temperature sensors in lounges control associated heating and ventilating units

HVAC Controls

Building Automation System

- Trane Tracer® Ensemble[™] building automation system (BAS) used for monitoring, DDC, and energy management of HVAC systems
 - HW and domestic hot water (DHW) equipment has pneumatic controls, but temperature is monitored by the BAS; the plan is to transition to full BAS control in the future

Operating Schedules

HVAC systems are scheduled to operate in occupied mode 24/7

Domestic/Service Water Heating

Domestic Water Heaters

• One (1) steam bundle storage tank serves most of the building

- Estimated 400-gallon capacity
- Storage temperature is set manually and maintained through pneumatic controls
 Storage temperature of 152°F observed
- One (1) recirculating pump and tempering valve
- One (1) electric water heater serves the Resident Director apartment suite

DHW Load

- Bathroom hand sinks and showers
- Kitchenette sinks

Piping and Ductwork

Piping Systems/Insulation

• Spot observations of piping and ductwork insulation revealed no remarkable deficiencies

Equipment Insulation

- Spot observations of equipment insulation revealed no remarkable deficiencies
- Removable insulation observed on steam traps

Piping and Ductwork Leaks

• Spot observations revealed no leakage issues

Miscellaneous Loads

Plug loads

- Laundry room: washing machines and dryers
- Kitchenettes: microwaves, stoves, hoods, and refrigerators
- Four (4) data closets: computer equipment, etc.
- Dorm rooms: laptops, chargers, microwaves, mini fridges, coffee makers, televisions, and portable fans

Elevators

• One (1) traction elevator serves the building

Specialty Systems

Air Compressors

• One (1) pair of reciprocating air compressors generate compressed air for pneumatic controls

Potential Energy Efficiency Measures (EEMs)

No Cost/Low Cost Measures

- Retro-commissioning of HVAC systems and controls
 - Optimize HW supply temperature reset control. Current reset schedule could not be viewed through the BAS.
 - Scheduling of HVAC equipment and space temperature setbacks

- Setback equipment during academic breaks
- Install low-flow or ultra low-flow showerheads

Capital Measures

- Upgrade roof insulation to at least code levels during gut rehab project
- Upgrade exterior wall insulation to at least code levels during gut rehab project
- Install building-level steam submeter
- Replace interior fluorescent light fixtures with LED fixtures
 - Consider onboard occupancy sensor control for individual fixture dimming/staging, or on/off control based on occupancy for public spaces
 - Consider onboard daylight sensor control for individual fixture dimming/staging based on sensed daylight for public spaces that have adequate daylight harvesting opportunity
- Replace exterior light fixtures with LED fixtures
- Install variable frequency drives (VFD) on the HW pump motors
- Replace HW circulating pump and motor serving Resident Director apartment suite with electronically commutated motor
- Consider installing VFDs on laundry exhaust fan and HV-1 supply fan
- Replace constant volume heating and ventilating units with VAV systems during gut rehab project
- Install occupancy-based HVAC controls on HV-2 through HV-5
- Consider implementing exhaust heat recovery on stacked bathroom exhaust
- Consider replacing data closet FCUs and include electronically commutated motors
- Add hot water zone valves for controlling individual spaces served by fin tube radiation
- Replace pneumatic actuators with electric actuators
- Replace DHW heater with semi-instantaneous water heater
- Replace DHW circulating pumps and motors with electronically commutated motors

O&M Measures

• Change v-belt fan drives to cogged belt fan drives

SUNY OSWEGO | COOPER DINING HALL BUILDING ASSESSMENT

Building Description

Building Name:	Cooper Dining Hall
Year Constructed:	1967
No. of Floors:	2
Est. GSF:	33,546

Recent Building Upgrades

- Chiller 1994, 2013
- Renovated CHP 2003
- Lighting 2018

Functional Description

Cooper Dining Hall is a building in the center of campus that houses both a dining hall and a fitness center. The upper floor consists of a commercial kitchen, a serving line, and a large dining area. The lower floor is comprised of the fitness center, storage space, and mechanical and electrical rooms.

Occupancy Patterns

The dining hall is occupied from 8 a.m. to 8:30 p.m. on weekdays and from 10 a.m. to 8:30 p.m. on weekends, with short closures from 3 p.m. to 4:30 p.m. daily.

Building Envelope

Roof

- Flat roof; no roof access during walk-through
- Insulation type and levels not accessible during walk-through

Exterior Walls

- Concrete façade
- Insulation type and levels not accessible during walk-through

Windows

• Dining room windows are floor-to-ceiling, single glazed, single hung, metal frame windows

Doors

• Building entryway doors are metal frame, glass double doors

Air Infiltration/Leakage

No excessive infiltration was observed

Utilities

Electricity

• Electricity is fed to the building from the National Grid electric substation on Washington Boulevard

Natural Gas

- Natural gas is delivered to the building from the main campus gas service
 - Used for cooking

District Steam

- Steam is distributed to the campus at 50 psig and is reduced to 12-13 psig within the building
 - Condensate is collected and returned from Cooper Dining Hall to the Central Heating Plant

Submeters

• This building has campus-managed Electro Industries revenue grade electricity submeters

Lighting

Interior Fixture Types

- Predominant lighting types as follows:
 - Dining area: Recessed ceiling fixtures with T8 fluorescent lamps
 - Kitchen: Pendant fixtures with fluorescent lamps
 - Fitness center: LED lighting (upgraded in 2018 renovation)

Interior Lighting Controls

- No automatic controls observed during walk-through
- Interior lighting is controlled through local panels
- Lighting is scheduled on at 7 a.m. and off at 8 p.m. daily

Exterior Lighting and Controls

- High-intensity discharge (HID) fixtures above entryway
- Exterior lights on campus are controlled by photosensors and astronomical time clocks

HVAC

Central Heating System

- One (1) natural gas-fired boiler
- Not in use
- One (1) steam-to-hot-water converter generates heating hot water (HW) for building heating
 - Hot water pumps P-1 and P-2 operate in parallel and circulate HW to air handler heating coils and heating terminal equipment
 - Pneumatic controls
 - Appears to utilize reset of HW supply temperature based on outside air (OA) temperature

Central Cooling System

• Trane chiller generates chilled water (CHW) for building cooling

- Trane water-cooled chiller, manufactured 2013
- Two (2) constant speed screw compressors
- R-134A refrigerant
- Chilled water pump P-3 circulates CHW to air handler cooling coils and cooling terminal equipment
- Condenser water pump P-5 circulates condenser water between the chiller condenser and the cooling tower
- Pump P-4 can serve as standby for either P-3 or P-5
- Forced-draft cooling tower with mist eliminator
 - Cooling tower fan has variable frequency drive (VFD) control of fan motor speed to maintain leaving water temperature

Air Handling Units

- Air handling unit AC-1 serves the lounge and men's workout room
 - HW heating coil; CHW cooling coil
- Air handling unit AC-2 serves five (5) zones in the dining area
 - Terminal reheat coils
- Heating and ventilating unit HV-1 provides makeup air to the kitchen
 - 100% OA units
 - HW heating coils with two-way pneumatic control valves

Exhaust Systems

- Commercial kitchen cooking exhaust system
- Kitchen hoods are scheduled off at night, with the exception of one hood that cannot be turned off
- Exhaust fans serve bathrooms, mechanical rooms, and the kitchen
- Transfer vent between corridor and fitness center

Zone Heating/Cooling

- Ceiling diffusers provide airflow to the dining area
- Finned tube radiation provides perimeter heating in the dining area
- Two-to-three fan coil units (FCU) provide additional heating and cooling throughout the building, including in the fitness center
- Unit ventilators serve stairwells and the kitchen entryway
 - Manually controlled

HVAC Controls

Building Automation System

- Carrier i-Vu® 8.0 building automation system (BAS) used for monitoring, direct digital control (DDC), and energy management of HVAC systems
 - HV-2, make-up air unit, some exhaust fans, and the domestic hot water (DHW) heater are not on the BAS

Operating Schedules

• HVAC systems are scheduled to operate in occupied mode 24/7

Domestic/Service Water Heating

Domestic Water Heaters

- One (1) steam bundle storage tank
 - Self-contained pneumatic control valve
 - Storage setpoint of 140°F observed
- Two (2) Burkay natural draft water heaters
 - Exhaust fan
 - Disconnected; not in use

DHW Load

- Bathroom hand sinks
- Commercial kitchen equipment and dishwasher

Piping and Ductwork

Piping Systems/Insulation

- Spot observations of piping and ductwork insulation revealed no remarkable deficiencies
- Some corrosion observed on DHW tank piping

Equipment Insulation

· Spot observations of equipment insulation revealed no remarkable deficiencies

Piping and Ductwork Leaks

• Spot observations revealed no leakage issues

Miscellaneous Loads

Plug loads

• Fitness center: 17 plug-in exercise machines

Kitchen Equipment

- Exhaust system
- One (1) pilot standby stove with six (6) burners
- Ice maker
- Coolers and freezers (reach-in and walk-in types)

Elevators

• One (1) hydraulic elevator serves the building

Specialty Systems

Commercial Kitchen Equipment

 Direct steam used for kitchen dishwashers, three (3) steam kettles, and two (2) steam-heated convection ovens

Air Compressors

• Air compressors generate compressed air for pneumatic controls

Potential Energy Efficiency Measures (EEMs)

No Cost/Low Cost Measures

- Install automatic interior lighting controls on existing LED fixtures
- Retro-commissioning of HVAC systems and controls
 - Optimize HW supply temperature reset control. Current reset schedule could not be viewed through the BAS.
 - Optimize cooling tower water temperature control
 - Scheduling of HVAC equipment and space temperature setbacks
 - Scheduling of kitchen exhaust fan operation
- Implement CHW supply temperature reset
- Setback equipment during academic breaks

Capital Measures

- Replace single glazed windows with high performance windows
- Install building-level gas and steam submeters
- Replace interior fluorescent light fixtures with LED fixtures
 - Consider occupancy sensor control for individual fixture dimming/staging, or on/off control based on occupancy for public spaces
 - Consider daylight sensor control for individual fixture dimming/staging based on sensed daylight for public spaces that have adequate daylight harvesting opportunity
- Replace exterior light fixtures with LED fixtures
- Install VFDs on P-1, P-2, and P-3 pump motors and control based on differential pressure
- · Replace pump and fan motors with beyond premium efficiency motors at end of useful life
- Replace existing chiller with high-efficiency water-cooled variable speed magnetic bearing chiller at end of useful life
 - R-134A refrigerant is being phased out starting January 1, 2024
 - Once manufacturing of R-134A is eliminated, the price of R-134A stock is expected to rise substantially
- Install occupancy-based HVAC controls
- Consider replacing FCUs and including electronically commutated motors
- Add hot water zone valves for controlling individual spaces served by fin tube radiation
- Replace pneumatic actuators with electric actuators
- Convert AC-2 to a variable air volume (VAV) system by installing VAV boxes and a VFD controlled to maintain duct static pressure
- Consider implementing demand control ventilation in the dining area
- Consider implementing kitchen demand control ventilation on exhaust and makeup air systems
- Connect remaining building systems to BAS
- Replace DHW heater with semi-instantaneous water heater
- Replace refrigeration evaporator fan motors with electronically commutated motors
- Install desuperheater on refrigeration loop to recovery energy for domestic hot water heating

O&M Measures

• Change v-belt fan drives to cogged belt fan drives

SUNY OSWEGO | FUNNELLE HALL BUILDING ASSESSMENT

Building Description

Building Name:	Funnelle Hall
Year Constructed:	1965
No. of Floors:	10 + Penthouse
Est. GSF:	114,365

Recent Building Upgrades

- Roof replacement 2015
- Bathroom renovations Ongoing

Functional Description

Functional Description Funnelle Hall is a high-rise residence hall in the center of campus connected to Cooper Dining Hall on its west side. The upper eight floors each consist of two main hallways joining single-person student rooms, bathrooms, and common spaces. The first floor includes a large lounge, offices, and residential staff apartments. A laundry room, kitchenette, additional lounges, storage spaces, and main electrical and mechanical rooms are located in the basement.

Occupancy Patterns

The dorm is occupied 24/7 during the academic year and can house approximately 200 students.

Building Envelope

Roof

- Flat roof; no roof access during walk-through
- · Insulation type and levels not accessible during walk-through

Exterior Walls

- Concrete masonry with a brick façade
- Insulation type and levels not accessible during walk-through

Windows

• Clear, double glazed, sliding, aluminum frame windows

Doors

• Building entryway doors are clear, double glazed, aluminum frame doors

Air Infiltration/Leakage

• No excessive infiltration was observed

Utilities

Electricity

• Electricity is fed to the building from the National Grid electric substation on Washington Boulevard

Natural Gas

- Natural gas is delivered to the building from the main campus gas service
 - Used for heat recovery units with gas-fired furnace sections and alternate domestic hot water (DHW) system

District Steam

• Steam is distributed to the campus at 50 psig and is reduced to 12-13 psig within the building

Submeters

- This building has a campus-managed Electro Industries revenue grade electricity submeter
- This building has a campus-managed steam submeter to measure pressure, flow, and temperature of medium pressure steam entering building

Lighting

Interior Fixture Types

- Predominant lighting types as follows:
 - Dorms: Student rooms not accessible during walk-through
 - Bathrooms: Flush mount fixtures with linear LED lamps
 - Corridors and lounges: Surface mount fixtures with two-lamp compact fluorescent lamps (CFL) and linear T8 fluorescent lamps
 - Basement: Surface mount fixtures with mix of LED and linear T8 fluorescent lamps

Interior Lighting Controls

No automatic controls observed during walk-through

Exterior Lighting and Controls

- Wall pack fixtures appear to be low-pressure sodium type
- Exterior lights on campus are controlled by photosensors and astronomical time clocks

HVAC

Central Heating System

- One (1) shell & tube steam-to-hot-water converter generates heating hot water (HW) for most of the building
 - 1/3 & 2/3 direct digital control (DDC), electronically actuated steam valves modulate HW supply temperature at the outlet of the converter. Mixing valves control supply temperatures to each of three (3) HW distribution zones.
 - Hot water pump P-1 serves Zone 2, P-3 serves Zone 1, and P-2 can serve as standby for either P-1 or P-3. Pumps P-4 and P-5 operate as lead/standby for Zone 3. All of the HW pumps have variable frequency drive (VFD) control of pump motor speed based on differential pressure.

- Bell & Gossett in-line centrifugal pumps
- System is enabled when outside air (OA) temperature is below 60°F
- HW supply temperature is reset based on OA temperature
 - 180°F supply temperature at 20°F OA temperature
 - 110°F supply temperature at 50°F OA temperature
- One (1) shell & tube steam-to-hot-water converter generates heating HW for Resident Director apartment suite
 - Steam valve modulates HW supply temperature at the outlet of the converter
 - Hot water pump P-6 with a constant speed motor circulates HW to the apartment
 - System is enabled when OA temperature is below 60°F
 - HW supply temperature is reset based on OA temperature
 - 180°F supply temperature at 0°F OA temperature
 - 110°F supply temperature at 60°F OA temperature

Central Cooling System

- One (1) small outdoor air-cooled chiller generates chilled water (CHW), which is circulated to indoor ductless fan coil units to provide cooling for data closets
- No other space cooling in this building

Air Handling Units

- One (1) heating and ventilating unit provides make-up air for laundry room exhaust
 - 100% OA unit
 - Supply fan motor controlled by VFD to track exhaust fan VFD
 - HW heating coil with two-way electronic control valve
- Two (2) rooftop heating-only heat recovery units supply ventilation air to corridors and common spaces
 - Fixed plate cross-flow heat exchanger with bypass damper; gas-fired furnace section to maintain supply temperature
 - Supply fan motors controlled by VFDs to maintain supply flow
 - Return fan motors controlled by VFDs to track supply fan VFDs

Exhaust Systems

- Five (5) small exhaust fans with constant speed motors serve the building
- Dedicated exhaust fan for laundry room
 - Motor controlled by VFD to maintain duct pressure setpoint

Zone Heating/Cooling

- Finned tube radiation provides perimeter heating in dorm rooms and common spaces; temperature control is limited to HW supply temperature reset control of three (3) building zones
- No sensors or room-level temperature control in dorm rooms
- Temperature control through electric wall thermostats in data closets

HVAC Controls

Building Automation System

- Trane Tracer® Ensemble[™] building automation system (BAS) used for monitoring, DDC, and energy management of HVAC systems
 - HV unit and chiller are not on the BAS

Operating Schedules

• HVAC systems are scheduled to operate in occupied mode 24/7

Domestic/Service Water Heating

Domestic Water Heaters

- Primary DHW system is two (2) steam bundle storage tanks
 - 600-gallon capacities
 - One (1) electric control valve on each tank
 - Manufactured 2020
 - Supply setpoint of 120°F observed
- Alternate DHW system is two (2) natural draft, natural gas-fired tank water heaters with a shared additional external storage tank
 - Approximately 200-gallon tank integral to each water heater
 - External 350-gallon storage tank
 - Water heaters manufactured 1986
 - External tank manufactured 1988
 - Used only when the central plant is down

DHW Load

- Bathroom hand sinks and showers
- Common room kitchenette sink

Piping and Ductwork

Piping Systems/Insulation

Spot observations of piping and ductwork insulation revealed no remarkable deficiencies

Equipment Insulation

• Spot observations of equipment insulation revealed no remarkable deficiencies

Piping and Ductwork Leaks

• Spot observations revealed no leakage issues

Miscellaneous Loads

Plug Loads

• Offices: computers or laptops, desk phones, desk lamps, etc.

- Dorm rooms: laptops, chargers, microwaves, mini fridges, coffee makers, televisions, and portable fans
- Laundry room: washing machines and dryers
- Data closet
- Basement lounge: three (3) beverage and snack vending machines

Elevators

• Three (3) elevators serve the building

Potential Energy Efficiency Measures (EEMs)

No Cost/Low Cost Measures

- Install automatic interior lighting controls on existing LED fixtures
- Retro-commissioning of HVAC systems and controls
 - Optimize HW supply temperature reset control
- Implement pump differential pressure reset controls on HW pumps P-1 through P-5
- Setback equipment during academic breaks
- Install low-flow or ultra low-flow showerheads

Capital Measures

- Install window film for solar heat gain reduction
- Install building-level gas submeter
- Replace interior fluorescent light fixtures with LED fixtures
 - Consider onboard occupancy sensor control for individual fixture dimming/staging, or on/off control based on occupancy for public spaces
 - Consider onboard daylight sensor control for individual fixture dimming/staging based on sensed daylight for public spaces that have adequate daylight harvesting opportunity
- Replace exterior light fixtures with LED fixtures
- Replace pump and fan motors with beyond premium efficiency motors at end of useful life
- Add hot water zone valves for controlling individual spaces served by fin tube radiation
- Connect remaining building systems to BAS
- Replace domestic hot water heaters with semi-instantaneous water heaters

O&M Measures

• Change v-belt fan drives to cogged belt fan drives

SUNY OSWEGO | HART HALL BUILDING ASSESSMENT

Building Description

Building Name:	Hart Hall
Year Constructed:	1963
No. of Floors:	10 + Penthouse
Est. GSF:	114,365

Recent Building Upgrades

• Elevator upgrades - Ongoing

es going

Functional Description

Hart Hall is a high-rise "global living" residence hall in the center of campus connected to Cooper Dining Hall on its east side. The upper eight floors each consist of two main hallways joining two-person student rooms, bathrooms, kitchenettes, and common spaces. The first floor includes a large lounge, a seminar room, offices, and residential staff apartments. A laundry room, computer lab, another large lounge, storage spaces, and main electrical and mechanical rooms are located in the basement.

Occupancy Patterns

The dorm is occupied 24/7 during the academic year and can house approximately 340 students.

Building Envelope

Roof

- Flat roof; no roof access during walk-through
- Insulation type and levels not accessible during walk-through

Exterior Walls

- Concrete masonry with a brick façade
- Insulation type and levels not accessible during walk-through

Windows

• Clear, double glazed, sliding, aluminum frame windows

Doors

• Building entryway doors are clear, double glazed, aluminum frame doors

Air Infiltration/Leakage

No excessive infiltration was observed

Utilities

Electricity

• Electricity is fed to the building from the National Grid electric substation on Washington Boulevard

Natural Gas

- Natural gas is delivered to the building from the main campus gas service
 - Used for heat recovery units with gas-fired furnace sections and alternate domestic hot water (DHW) system

District Steam

• Steam is distributed to the campus at 50 psig and is reduced to 12-13 psig within the building

Submeters

- This building has a campus-managed Electro Industries revenue grade electricity submeter
- This building has a campus-managed steam submeter to measure pressure, flow, and temperature of medium pressure steam entering building

Lighting

Interior Fixture Types

- Predominant lighting types as follows:
 - Dorms: Student rooms not accessible during walk-through
 - Bathrooms: Flush mount fixtures with linear LED lamps
 - Corridors and lounges: Surface mount fixtures with two-lamp compact fluorescent lamps (CFL) and linear T8 fluorescent lamps
 - Basement: Surface mount fixtures with two-lamp CFLs and linear T8 fluorescent lamps

Interior Lighting Controls

• No automatic controls observed during walk-through

Exterior Lighting and Controls

- Predominant exterior lighting type is high-intensity discharge (HID)
- Exterior lights on campus are controlled by photosensors and astronomical time clocks

HVAC

Central Heating System

- One (1) shell & tube steam-to-hot-water converter generates heating hot water (HW) for most of the building
 - Manufactured 1973
 - One (1) direct digital control (DDC), pneumatically actuated steam valve modulates HW supply temperature at the outlet of the converter. Mixing valves control supply temperatures to each of three (3) HW distribution zones.
 - Five (5) hot water pumps with constant speed 3 and 5 horsepower (hp) motors circulate HW to building heating terminals
 - System is enabled when outside air (OA) temperature is below 60°F
 - HW supply temperature is reset based on OA temperature
 - 170°F supply temperature at 0°F OA temperature
 - 110°F supply temperature at 60°F OA temperature

- One (1) shell & tube steam-to-hot-water converter generates heating HW for Resident Director apartment suite
 - One (1) DDC controlled, pneumatically actuated steam valve modulates HW supply temperature at the outlet of the converter
 - In-line pump with constant speed fractional hp motor circulates HW to the apartment
 - System is enabled when OA temperature is below 60°F
 - HW supply temperature is reset based on OA temperature
 - 150°F supply temperature at 0°F OA temperature
 - 100°F supply temperature at 60°F OA temperature

Central Cooling System

• No space cooling in this building

Air Handling Units

- One (1) heating and ventilating unit provides make-up air for laundry room exhaust
 - 100% OA unit
 - Supply fan motor controlled by variable frequency drive (VFD) to track exhaust fan VFD
 - HW heating coil with two-way electronic control valve
- Two (2) rooftop heating-only heat recovery units supply ventilation air to corridors and common spaces
 - Heat wheels to recover energy from exhaust streams
 - Natural gas-fired furnace sections to maintain supply temperatures

Exhaust Systems

- Four (4) small exhaust fans with constant speed motors serve the building
- Dedicated exhaust fan for laundry room
 - Motor controlled by VFD to maintain duct pressure setpoint

Zone Heating/Cooling

- Finned tube radiation provides perimeter heating in dorm rooms and common spaces; temperature control is limited to HW supply temperature control of three (3) building zones
- No sensors or room-level temperature control in dorm rooms
- HW cabinet unit heaters serve the main entryways

HVAC Controls

Building Automation System

- Trane Tracer® Ensemble[™] building automation system (BAS) used for monitoring, DDC, and energy management of HVAC systems
 - HW pumps are not on the BAS

Operating Schedules

HVAC systems are scheduled to operate in occupied mode 24/7

Domestic/Service Water Heating

Domestic Water Heaters

- Primary DHW system is one (1) steam bundle storage tank
 - One (1) pneumatic control valve
 - Supply setpoint of 120°F observed
- Alternate DHW system is two (2) natural draft, natural gas-fired tank water heaters with two (2) additional external storage tanks
 - External tanks each have 350-gallon capacity
 - Water heaters manufactured 1986
 - External tanks manufactured 1989
 - Used only when the central plant is down

DHW Load

- Bathroom hand sinks and showers
- Common room kitchenette sink

Piping and Ductwork

Piping Systems/Insulation

· Spot observations of piping and ductwork insulation revealed no remarkable deficiencies

Equipment Insulation

• Spot observations of equipment insulation revealed no remarkable deficiencies

Piping and Ductwork Leaks

• Spot observations revealed no leakage issues

Miscellaneous Loads

Plug Loads

- Offices: computers or laptops, desk phones, desk lamps, etc.
- Dorm rooms: laptops, chargers, microwaves, mini fridges, coffee makers, televisions, and portable fans
- Laundry room: two (2) beverage and snack vending machines, washing machines, and dryers
- Seminar room and computer lab: projector, printer, and computers

Elevators

• Three (3) elevators serve the building

Specialty Systems

Air Compressors

• Two (2) air compressors generate compressed air for pneumatic controls

Potential Energy Efficiency Measures (EEMs)

No Cost/Low Cost Measures

- Install automatic interior lighting controls on existing LED fixtures
- Retro-commissioning of HVAC systems and controls
 - Optimize HW supply temperature reset control
- Setback equipment during academic breaks
- Install low-flow or ultra low-flow showerheads

Capital Measures

- Install window film for solar heat gain reduction
- Install building-level gas submeter
- Replace interior fluorescent light fixtures with LED fixtures
 - Consider onboard occupancy sensor control for individual fixture dimming/staging, or on/off control based on occupancy for public spaces
 - Consider onboard daylight sensor control for individual fixture dimming/staging based on sensed daylight for public spaces that have adequate daylight harvesting opportunity
- Replace exterior light fixtures with LED fixtures
- Replace HW circulating pump and motor serving Resident Director apartment suite with electronically commutated motor
- · Replace pump and fan motors with beyond premium efficiency motors at end of useful life
- Add hot water zone valves for controlling individual spaces served by fin tube radiation
- Replace pneumatic actuators with electric actuators
- Consider implementing demand control ventilation in the seminar room and the conference room
- Connect remaining building systems to BAS
- Replace DHW heaters with semi-instantaneous water heaters

O&M Measures

• Change v-belt fan drives to cogged belt fan drives

SUNY OSWEGO | JOHNSON HALL BUILDING ASSESSMENT

Building Description

Building Name:	Johnson Hall
Year Constructed:	1958
No. of Floors:	4 + Basement
Est. GSF:	79,097

Recent Building Upgrades

• Full building renovation - 2003

Functional Description

Johnson Hall is a first-year residence hall located next to Lake Ontario on SUNY Oswego's main campus. The building consists of dorm rooms, a director's apartment, corridors, mechanical rooms, and storage spaces, with lounge areas and kitchenettes on each floor. The basement houses a laundry room and kitchen.

Occupancy Patterns

The dorm is occupied 24/7 during the academic year and can house approximately 250 students.

Building Envelope

Roof

- Flat roof; no roof access during walk-through
- · Insulation type and levels not accessible during walk-through

Exterior Walls

- Concrete masonry with a brick façade
- Insulation type and levels not accessible during walk-through

Windows

· Clear, double glazed, single-hung, wooden frame windows with aluminum thermal spacers

Doors

· Building entryway doors are metal frame, glass doors

Air Infiltration/Leakage

No excessive infiltration was observed

Utilities

Electricity

• Electricity is fed to the building from the National Grid electric substation on Washington Boulevard

Natural Gas

- Natural gas is delivered to the building from the main campus gas service
 - Used for backup generator and first-floor lounge gas fireplace

District Steam

• Steam is distributed to the campus at 50 psig and is reduced to 12-13 psig within the building by two (2) pressure reducing valves (PRV) operating in parallel with a bypass

Submeters

- This building has a campus-managed Electro Industries revenue grade electricity submeter
- This building has a campus-managed steam submeter to measure pressure, flow, and temperature of medium pressure steam entering building

Lighting

Interior Fixture Types

- Predominant lighting types as follows:
 - Dorms: Round recessed 100-150 watt incandescent light fixtures
 - Bathrooms: 2x4 recessed prismatic T8 fluorescent fixtures with electronic ballasts and 40 watt incandescent vanity fixtures
 - Showers: Ceiling mount T8 fluorescent fixtures with electronic ballasts
 - Corridors: Surface mount compact fluorescent fixtures with electronic ballasts and 2x2 recessed, round recessed, and ceiling mount T8 fluorescent fixtures with electronic ballasts
 - Lounges: Round recessed T8 fluorescent fixtures with electronic ballasts
 - First-floor offices: 2x2 recessed T8 fluorescent fixtures with electronic ballasts
 - · Laundry room: Ceiling mount T8 fluorescent fixtures with electronic ballasts
 - Vestibule: Wall mount T8 fluorescent sconce fixtures with electronic ballasts

Interior Lighting Controls

- Occupancy sensors in most common spaces
- Lighting is scheduled on at 7 a.m. and off at 8 p.m. daily

Exterior Lighting and Controls

- High-pressure sodium wall pack fixtures
- Exterior lights on campus are controlled by photosensors and astronomical time clocks
- The campus is installing LEDs in place of the existing compact fluorescent exterior lighting; this is an ongoing project at Johnson Hall

HVAC

Central Heating System

- One (1) steam-to-hot-water converter HX-1 generates heating hot water (HW) for most of the building
 - Two (2) hot water pumps operate as lead/standby. HW pumps have variable frequency drive (VFD) control of pump motor speed based on differential pressure.
 - Supply temperature of 140°F observed

- One (1) steam-to-hot-water converter HX-2 generates HW for Resident Director and Assistant Resident Director apartment suites
 - Two (2) hot water pumps operate as lead/standby for the staff apartments HW loop
- Appear to utilize reset of HW supply temperature based on outside air (OA) temperature

Central Cooling System

- Two (2) 355-ton chillers located in Lakeside Dining Hall generate chilled water (CHW) for building cooling in Lakeside Dining Hall, Johnson Hall common spaces, and Riggs Hall
 - Chilled water pumps CWP-1 and CWP-2, located in the Johnson Hall mechanical room, operate as lead/standby for the Johnson Hall air handler cooling coils loop. CHW pumps have VFD control of pump motor speed based on differential pressure.
- No other space cooling in this building

Air Handling Units

- Air handling unit AHU-1 serves the lobby
 - HW heating coils and CHW cooling coils with direct digital controls (DDC)
- Two (2) make-up air units MUA-1 and MUA-2 serve the north and east wing corridors, respectively
 - 100% OA units with face and bypass dampers
 - Steam heating coils and CHW cooling coils with DDCs

Exhaust Systems

 Fourteen (14) exhaust fans serve the bathrooms, mechanical rooms, storage closets, attic, and elevators

Zone Heating/Cooling

- Ceiling diffusers provide airflow to the corridors
- Finned tube radiation provides perimeter heating in the first-floor lounge
- Unit ventilators with heating and cooling coils serve some lounges and offices
- Convection units serve the stairwells
- Fan coil units (FCU) provide heating to the dorm rooms
 - Four (4) FCUs serve each dorm
 - FCUs are controlled by occupied/unoccupied schedules set in the building automation system (BAS)
- All rooms have temperature sensors and room-level thermostats

HVAC Controls

Building Automation System

• Carrier i-Vu® 8.0 BAS used for monitoring, DDC, and energy management of HVAC systems

Operating Schedules

HVAC systems are scheduled to operate in occupied mode 24/7 during the academic year

Domestic/Service Water Heating

Domestic Water Heaters

• One (1) steam bundle storage tank serves most of the building

- Self-contained pneumatic control valve
- Receiving pump and tempering valve
- Supply temperature of 124°F observed
- One (1) electric water heater serves the director's apartment
 - 20-gallon capacity

Domestic Hot Water (DHW) Load

- Bathroom hand sinks and showers
- Kitchenette sinks

Piping and Ductwork

Piping Systems/Insulation

· Spot observations of piping and ductwork insulation revealed no remarkable deficiencies

Equipment Insulation

• Spot observations of equipment insulation revealed no remarkable deficiencies

Piping and Ductwork Leaks

• Spot observations revealed no ductwork leakage issues

Miscellaneous Loads

Plug loads

- Laundry room: washing machines and dryers
- Five (5) kitchenettes: microwaves, stoves, kitchen hoods, and refrigerators
- Data closets: computer equipment, etc.
- Dorms: laptops, chargers, microwaves, mini fridges, coffee makers, televisions, and portable fans

Elevators

• One (1) elevator serves the building

Natural Gas Equipment

• One (1) gas fireplace in the first-floor lounge

Specialty Systems

Air Compressors

- Two (2) air compressor pumps generate compressed air for pneumatic controls
 - Self-contained control system

Potential Energy Efficiency Measures (EEMs)

No Cost/Low Cost Measures

- Retro-commissioning of HVAC systems and controls
 - Optimize HW supply temperature reset control
- Scheduling of HVAC equipment and space temperature setbacks
- Implement pump differential pressure reset controls on the HW and CHW pumps
- Implement CHW supply temperature reset control
- Setback equipment during academic breaks
- Install low-flow or ultra low-flow showerheads

Capital Measures

- Install window film for solar heat gain reduction
- Replace interior fluorescent light fixtures with LED fixtures
 - Consider onboard occupancy sensor control for individual fixture dimming/staging, or on/off control based on occupancy for public spaces
 - Consider onboard daylight sensor control for individual fixture dimming/staging based on sensed daylight for public spaces that have adequate daylight harvesting opportunity
- Continue replacing exterior light fixtures with LED fixtures as part of ongoing campus project
- Convert AHU-1 to single-zone variable air volume (VAV) system by installing VFD on system and implementing a temperature-based control scheme to modulate airflow
- Install occupancy-based HVAC controls on AHU-1
- Install occupancy based thermostatic control of fan coil units to allow for automatic setback of space temperature setpoints when dorm rooms are unoccupied.
 - Thermostats with integrated passive infrared (PIR) occupancy sensors specifically manufactured for hotel guest room and dorm room systems are readily available in the market.
 - Alternatively, remote PIR occupancy sensors can be installed connected directly or wirelessly with the thermostat.
 - Window sensors can be installed and connected to the thermostat to turn the fan coils off when the windows are opened
- Consider installing an exhaust air energy recovery system for bathroom stacked exhaust system
- Replace pneumatic actuators with electric actuators
- Consider implementing demand control ventilation for AHU-1 serving the lobby
- Replace DHW heater with semi-instantaneous water heater
- Replace DHW circulating pumps and motors with electronically commutated motors

O&M Measures

• Change v-belt fan drives to cogged belt fan drives

SUNY OSWEGO | LAKESIDE DINING HALL BUILDING ASSESSMENT

Building Description

Building Name:	Lakeside Dining Hall
Year Constructed:	1959
No. of Floors:	1 + Basement
Est. GSF:	27,870

Recent Building Upgrades

Building renovation – 2006

Functional Description

Lakeside Dining Hall is located next to Lake Ontario on SUNY Oswego's main campus. The building is comprised of a dining area, commercial kitchen, mechanical rooms, and bathrooms.

Occupancy Patterns

The dining hall is open from 7 a.m. to 11 p.m. on weekdays and from 9 a.m. to 11 p.m. on weekends, with short closures between meals.

Building Envelope

Roof

- Flat roof over most of building; pitched metal roof over main entryway; no roof access during walkthrough
- Insulation type and levels not accessible during walk-through

Exterior Walls

- Concrete masonry with a brick façade
- Insulation type and levels not accessible during walk-through

Windows

• Double glazed, single-hung windows with wood interior and aluminum thermal break

Doors

• Building entryway doors are clear, double glazed, metal frame doors

Air Infiltration/Leakage

No excessive infiltration was observed

Utilities

Electricity

• Electricity is fed to the building from the National Grid electric substation on Washington Boulevard

Natural Gas

- Natural gas is delivered to the building from the main campus gas service
 - Used for cooking

District Steam

• Steam is distributed to the campus at 50 psig and is reduced to 12-13 psig within the building by two (2) pressure reducing valves (PRV) operating in parallel with a bypass

Submeters

• This building has a campus-managed Electro Industries revenue grade electricity submeter

Lighting

Interior Fixture Types

- Predominant lighting types as follows:
 - Dining area: High bay fixtures with T5 fluorescent lamps
 - Mechanical rooms: T8 fluorescent lighting

Interior Lighting Controls

No automatic controls observed during walk-through

Exterior Lighting and Controls

- The campus is installing LEDs in place of the existing compact fluorescent exterior lighting; this is an ongoing project at Lakeside Dining Hall
- Exterior lights on campus are controlled by photosensors and astronomical time clocks

HVAC

Central Heating System

- One (1) steam-to-hot-water converter HX-1 generates hot glycol for building heating
 - Hot water pumps HWP-1 and HWP-2 operate as lead/standby for the HW loop. HW pumps have variable frequency drive (VFD) control of pump motor speed based on differential pressure.
 - HWP-1 and HWP-2 have 7.5 horsepower (hp) motors
 - Triple duty valves set to 75% open during January 2022 walk-through
 - Supply temperature of 131°F and return temperature of 105°F observed
 - One (1) 35% propylene glycol tank supplies hot glycol
 - Appears to utilize reset of HW supply temperature based on outside air (OA) temperature

Central Cooling System

- Two (2) 355-ton chillers generate chilled water (CHW) for building cooling in Lakeside Dining Hall, Johnson Hall common spaces, and Riggs Hall
 - Water-cooled chillers, each with three (3) screw compressors
 - R-134A refrigerant
 - Chilled water pumping arrangement is constant flow primary/variable flow secondary. Primary chilled water pumps PCWP-1 and PCWP-2 circulate CHW through the chillers. Secondary chilled

water pumps CHW-1 and CHW-2 circulate CHW to the building. Secondary CHW pumps have VFD control of pump motor speed based on differential pressure.

- PCWP-1 and PCWP-2 triple duty valves set to 85% and 100% open, respectively, during January 2022 walk-through
- CHW-1 and CHW-2 triple duty valves set to 40% and 60% open, respectively, during January 2022 walk-through
- Three (3) condenser water pumps operate as lead/standby and circulate condenser water between the chiller condenser and the cooling tower. Both condenser water pump motors are constant speed.
- Cooling tower fan has VFD control of fan motor speed to maintain leaving water temperature

Air Handling Units

- Air handling unit AHU-1, located in the penthouse mechanical room, serves the dining area and serving line
 - Supply fan motor controlled by VFD
 - HW heating coils; CHW cooling coils
- Air handling unit MAU-1 proves make-up air to the kitchen
 - 100% OA unit
 - HW heating coils

Exhaust Systems

- Axial exhaust fans serve the bathrooms, mechanical rooms, and elevators
- Four (4) exhaust fans serve the kitchen and dining area
 - EF-1 serves the kitchen hoods
 - EF-2, EF-3, and EF-4 serve the dining area and serving line

Zone Heating/Cooling

- Ceiling diffusers provide airflow throughout the building
- Radiant floor heating serves the dining area
 - Occupied/unoccupied schedules set in the building automation system (BAS)
- Cabinet unit heaters serve the stairwells
- Five (5) fan coil units (FCU) provide additional heating and cooling throughout the building
 - FCU-1 has HW heating coils and supplies air to other FCUs
 - FCU-2, FCU-3, FCU-4, and FCU-5 have heating and cooling coils

HVAC Controls

Building Automation System

- Carrier i-Vu® 8.0 BAS used for monitoring, direct digital control (DDC), and energy management of HVAC systems
 - Kitchen exhaust systems are not on the BAS

Operating Schedules

- Kitchen exhaust hoods are manually turned on in the morning and off at night
- Other HVAC systems are scheduled to operate in occupied mode 24/7

Domestic/Service Water Heating

Domestic Water Heaters

- One (1) steam bundle storage tank
 - Self-contained pneumatic control valve
 - Receiving pump and tempering valve
 - Supply temperature of 122°F observed

Domestic Hot Water (DHW) Load

- Bathroom hand sinks
- Commercial kitchen equipment and dishwasher

Piping and Ductwork

Piping Systems/Insulation

• Spot observations of piping and ductwork insulation revealed no remarkable deficiencies

Equipment Insulation

· Spot observations of equipment insulation revealed no remarkable deficiencies

Piping and Ductwork Leaks

Spot observations revealed no leakage issues

Miscellaneous Loads

Kitchen Equipment

- Kettles, fryers, ovens, etc.
- One (1) pilot standby stove with six (6) burners
- Walk-in coolers and freezers with air-cooled condensers

Elevators

• One (1) hydraulic elevator serves the building

Specialty Systems

Air Compressors

• Air compressors generate compressed air for pneumatic controls

Commercial Kitchen Equipment

- Direct steam used for kitchen dishwashers, steam kettles, and steam-heated convection ovens
- Air-cooled condensing units for refrigeration

Potential Energy Efficiency Measures (EEMs)

No Cost/Low Cost Measures

• Retro-commissioning of HVAC systems and controls

- Optimize HW supply temperature reset control
- Optimize cooling tower water temperature control
- Optimize temperature setpoints and schedule of radiant heating loop
- Scheduling of HVAC equipment and space temperature setbacks
- Scheduling of kitchen exhaust fan operation
- Implement pump differential pressure reset controls on the HW pumps and secondary CHW pumps
- Implement CHW supply temperature reset
- Implement duct static pressure reset controls on AHU-1
- Setback equipment during academic breaks

Capital Measures

- Install window film for solar heat gain reduction
- Install building-level gas and steam submeters
- Replace interior fluorescent light fixtures with LED fixtures
 - Consider onboard occupancy sensor control for individual fixture dimming/staging, or on/off control based on occupancy for public spaces
 - Consider onboard daylight sensor control for individual fixture dimming/staging based on sensed daylight for public spaces that have adequate daylight harvesting opportunity
- Continue replacing exterior light fixtures with LED fixtures as part of ongoing campus project
- Open triple duty valves to 100% and utilize HW and CHW pump VFDs to balance the flow
- Replace existing space cooling chillers with high-efficiency variable speed magnetic bearing chillers at end of useful life
 - R-134A refrigerant is being phased out starting January 1, 2024
 - Once manufacturing of R-134A is eliminated, the price of R-134A stock is expected to rise substantially
- Install occupancy-based HVAC controls
- Replace pneumatic actuators with electric actuators
- Consider implementing demand control ventilation in the dining area
- Consider implementing kitchen demand control ventilation on exhaust and makeup air systems
- Connect remaining building systems to BAS
- Replace DHW heater with semi-instantaneous water heater
- Replace DHW circulating pumps and motors with electronically commutated motors
- Replace refrigeration evaporator fan motors with electronically commutated motors
- Install desuperheater on refrigeration loop to recovery energy for domestic hot water heating

O&M Measures

Change v-belt fan drives to cogged belt fan drives

SUNY OSWEGO | LITTLEPAGE DINING HALL BUILDING ASSESSMENT

Building Description

Building Name:	Littlepage Dining Hall
Year Constructed:	1968
No. of Floors:	2 + Penthouse
Est. GSF:	33,827

Recent Building Upgrades

- Full building renovation Ongoing
- Building envelope renovation 2017

Functional Description

Littlepage Dining Hall is a building on West Campus that houses both a dining hall and the Glimmerglass Fitness Center. The upper floor consists of a commercial kitchen, two serving lines, a large dining area, storage space and offices. The lower floor is comprised of the fitness center, mechanical and electrical rooms, and a maintenance shop.

Occupancy Patterns

Typically, the dining hall is occupied from 7 a.m. to 8 p.m. on weekdays and from 9 a.m. to 12 a.m. on weekends. The fitness center is open from 7 a.m. to 10 p.m. Monday through Thursday, from 7 a.m. to 8 p.m. on Fridays, and from 10 a.m. to 8 p.m. on weekends.

Building Envelope

Roof

- Flat roof; no roof access during walk-through
- Insulation type and levels not accessible during walk-through

Exterior Walls

- Concrete masonry with a concrete façade
- Insulation type and levels not accessible during walk-through

Windows

- Clear, single glazed, fixed, aluminum frame windows
 - Large, nearly floor-to-ceiling

Doors

- Building entryway doors are clear, single glazed, aluminum frame doors
- Loading dock doors are hollow metal doors

Air Infiltration/Leakage

No excessive infiltration was observed

Utilities

Electricity

• Electricity is fed to the building from the National Grid electric substation on Washington Boulevard

Natural Gas

• This building does not receive natural gas

District Steam

• Steam is distributed to the campus at 50 psig and is reduced to 12-13 psig within the building

Submeters

• This building has a campus-managed Electro Industries revenue grade electricity submeter

Lighting

Interior Fixture Types

- Predominant lighting types as follows:
 - Kitchen: Recessed fixtures with linear fluorescent lamps
 - · Dining room: Recessed troffer fixtures with fluorescent lamps
 - Loading dock: Strip light fixtures with linear T8 fluorescent lamps
 - Lower level: Strip light fixtures with linear T8 fluorescent lamps

Interior Lighting Controls

• No automatic controls observed during walk-through

Exterior Lighting and Controls

- Predominant exterior lighting type is high-intensity discharge (HID)
- Exterior lights on campus are controlled by photosensors and astronomical time clocks

HVAC

Central Heating System

- One (1) shell & tube steam-to-hot-water converter generates heating hot water (HW) for building heating
 - 1/3 & 2/3 direct digital control (DDC), pneumatically actuated steam valves modulate HW supply temperature at the outlet of the converter. One (1) mixing valve controls supply temperature to the perimeter radiation loop.
 - HW pumps P-5 and P-6 operate as lead/standby for the perimeter radiation loop and HW pumps P-7 and P-8 operate as lead/standby for the air handler coils loop. All HW pump motors are constant speed.
 - P-5 and P-6 are base-mounted centrifugal pumps with 2 horsepower (hp) motors
 - P-7 and P-8 are base-mounted centrifugal pumps with 10 hp motors

Central Cooling System

• Carrier 116-ton water-cooled chiller generates chilled water (CHW) for building cooling

- Two (2) constant speed screw compressors
- R-134A refrigerant
- Forced-draft cooling tower with constant speed fan motor
- Condenser water (CW) pumps P-1 and P-2 operate as lead/standby for the CW loop and CHW pumps P-3 and P-4 operate as lead/standby for the CHW loop. All four (4) pump motors are constant speed.
 - P-1 and P-2 are vertical in-line and horizontal split-case pumps with 20 hp motors
 - P-3 and P-4 are motor-mounted pumps with 15 hp motors

Air Handling Units

- Two (2) air handling units serve the building
 - Constant volume multi-zone units
 - HW heating and reheat coils and CHW cooling coils
- One (1) heating and ventilating unit provides make-up air for kitchen exhaust
 - 100% outside air (OA) unit
 - Constant speed supply fan motor
 - HW heating coil
- "Fan room" was not accessible during walk-through

Exhaust Systems

- Commercial kitchen cooking exhaust system
 - Four (4) approximately 6 ft. long Gaylord kitchen exhaust hoods above kitchen stoves, ovens, kettles, etc.
 - Two (2) approximately 3 ft. long kitchen exhaust hoods above serving line griddles
 - Fans observed to be on during walk-through, despite kitchen not being in use
- Commercial kitchen dishwasher exhaust system
- Four (4) small general exhaust fans with constant speed motors serve the building

Zone Heating/Cooling

• Finned tube radiation provides perimeter heating; temperature control appears to be limited to HW supply temperature reset control

HVAC Controls

Building Automation System

- Carrier i-Vu® 8.0 building automation system (BAS) used for monitoring, DDC, and energy management of HVAC systems
 - Chiller and CHW system are not on the BAS

Operating Schedules

 HVAC systems are assumed to operate from 6 a.m. to 11 p.m. on weekdays and from 8 a.m. to 1 a.m. on weekends

Domestic/Service Water Heating

Domestic Water Heaters

- One (1) steam bundle storage tank
 - Estimated 1,000 to 2,000-gallon capacity
 - 1/3 & 2/3 pneumatically actuated steam valves
 - In-line circulating pump with fractional hp motor
 - Motor installed 2021

Domestic Hot Water (DHW) Load

- Bathroom hand sinks
- · Commercial kitchen equipment and dishwasher

Piping and Ductwork

Piping Systems/Insulation

- Condensate piping insulation was observed to be missing in several areas
- Spot observations of ductwork insulation revealed no remarkable deficiencies

Equipment Insulation

• Spot observations of equipment insulation revealed no remarkable deficiencies

Piping and Ductwork Leaks

• Spot observations revealed no leakage issues

Miscellaneous Loads

Plug Loads

• Offices: computers or laptops, desk phones, desk lamps, etc.

Kitchen Equipment

- Main kitchen: three (3) reach-in freezers, 10 to 15 reach-in coolers, one (1) walk-in freezer, two (2) walk-in coolers, two (2) hot boxes, a dishwasher, blenders, food processors, etc.
- Serving lines: two (2) hot boxes, four (4) reach-in coolers, hot food buffet tables, cold food buffet tables, fountain drink machines, griddles, holding cabinets, etc.
- Dining area: hot food buffet tables, cold food buffet tables, etc.

Specialty Systems

Commercial Kitchen Equipment

 Direct steam used for kitchen dishwasher booster heater, steam kettles, and steam-heated convection ovens

Air Compressors

• One (1) duplex air compressor generates compressed air for pneumatic controls

Potential Energy Efficiency Measures (EEMs)

No Cost/Low Cost Measures

- Retro-commissioning of HVAC systems and controls
 - Optimize cooling tower water temperature control
 - Scheduling of HVAC equipment and space temperature setbacks
 - Scheduling of kitchen exhaust fan operation, if the building is used as a dining hall in the future
- Setback equipment during academic breaks

Capital Measures

- Upgrade roof insulation to at least code levels during gut rehab project
- Upgrade exterior wall insulation to at least code levels during gut rehab project
- Replace single glazed windows with high performance windows
- Install building-level steam submeter
- Replace interior fluorescent light fixtures with LED fixtures
 - Consider onboard occupancy sensor control for individual fixture dimming/staging, or on/off control based on occupancy for public spaces
 - Consider onboard daylight sensor control for individual fixture dimming/staging based on sensed daylight for public spaces that have adequate daylight harvesting opportunity, such as the main dining area and the fitness center
- Replace exterior light fixtures with LED fixtures
- Install variable frequency drives (VFD) on the motors of HW pumps P-7 and P-8 and CHW pumps P-3 and P-4
- Replace pump and fan motors with beyond premium efficiency motors at end of useful life
- Replace existing chiller with high-efficiency water-cooled variable speed magnetic bearing chiller
 - R-134A refrigerant is being phased out starting January 1, 2024
 - Once manufacturing of R-134A is eliminated, the price of R-134A stock is expected to rise substantially
- Install VFD on cooling tower fan motor to maintain condenser water temperature at setpoint
- Replace air handling units with variable air volume (VAV) systems during gut rehab project
- Install occupancy-based HVAC controls
- Consider installing an exhaust air energy recovery system on the two (2) multi-zone air handling units
- Add hot water zone valves for controlling individual spaces served by fin tube radiation
- Replace pneumatic actuators with electric actuators
- Implement HW and CHW supply temperature reset
- Consider implementing demand control ventilation in the dining area
- Consider implementing kitchen demand control ventilation on exhaust and makeup air systems if the building is used as a dining hall in the future
- Connect remaining building systems to BAS
- Replace DHW heater with semi-instantaneous water heater
- Replace DHW circulating pump and motor with electronically commutated motor
- Replace refrigeration evaporator fan motors with electronically commutated motors if the building is used as a dining hall in the future
- Install desuperheater on refrigeration loop to recovery energy for domestic hot water heating if the building is used as a dining hall in the future

O&M Measures

- Change v-belt fan drives to cogged belt fan drives
- Repair missing insulation on condensate piping

SUNY OSWEGO | LONIS HALL BUILDING ASSESSMENT

Building Description

Building Name:	Lonis Hall
Year Constructed:	1951
No. of Floors:	4
Est. GSF:	32,285

Recent Building Upgrades

Steam line replaced – 2021

Functional Description

Lonis Hall is a residence hall on the east side of campus connected to Mackin Dining Hall on its south side. The upper three floors each consist of laundry rooms, kitchenettes, bathrooms, and 25 to 30 student rooms. The ground floor is comprised of additional student rooms, bathrooms, storage space, and a lounge.

Occupancy Patterns

The Mackin Complex was used as a COVID-19 isolation residence at the onset of the pandemic, but all three buildings have now been unoccupied for approximately two years. They may be repurposed for the department of Auxiliary Services in the near future. Previously, Lonis Hall was occupied 24/7 during the academic year and housed around 75 students.

Building Envelope

Roof

- Flat roof; no roof access during walk-through
- Insulation type and levels not accessible during walk-through

Exterior Walls

- Concrete masonry with a brick façade
- Insulation type and levels not accessible during walk-through

Windows

- Clear, sliding, aluminum frame windows
 - Primarily double glazed, although some are single glazed

Doors

• Building entryway doors are clear, double glazed, aluminum frame doors

Air Infiltration/Leakage

• No excessive infiltration was observed

Utilities

Electricity

• Electricity is fed to the building from the National Grid electric substation on Washington Boulevard

Natural Gas

• This building does not receive natural gas

District Steam

• Steam is distributed to the campus at 50 psig and is reduced to 12-13 psig within the Mackin Complex

Submeters

• None observed during walk-through

Lighting

Interior Fixture Types

- Predominant lighting types as follows:
 - Student rooms: Recessed fixtures with compact fluorescent lamps (CFL)
 - Basement: Surface mount fixtures with linear fluorescent lamps

Interior Lighting Controls

• No automatic controls observed during walk-through

Exterior Lighting and Controls

- Predominant exterior lighting type is high-intensity discharge (HID)
- Exterior lights on campus are controlled by photosensors and astronomical time clocks

HVAC

Central Heating System

- Primary heating hot water (HW) system is the steam-to-hot-water converter located in Mackin Dining Hall
- Alternate HW system is the natural gas-fired hydronic boiler located in Mackin Dining Hall

Central Cooling System

• No space cooling in this building

Air Handling Units

• None observed during walk-through

Exhaust Systems

- Several small general exhaust fans with constant speed motors serve the building
- Kitchenette cooking exhaust system
 - Three (3) kitchen exhaust hoods above small stoves in communal kitchenettes

Zone Heating/Cooling

- Finned tube radiation provides perimeter heating to student rooms and common spaces; two (2) HW zone control valves modulate to maintain space temperature setpoints
- Cast-iron radiators serve offices and storage spaces
 - Self-contained control valves
- Several spaces were markedly overheated, despite building being unoccupied

HVAC Controls

Building Automation System

- Carrier i-Vu® 8.0 building automation system (BAS) used for monitoring, direct digital control (DDC), and energy management of HVAC systems in the Mackin Complex
 - Only one (1) heating and ventilating unit, exhaust fans, control valves for the perimeter radiation loop, and the domestic hot water (DHW) system are on the BAS

Operating Schedules

• HVAC systems are scheduled to operate in occupied mode 24/7

Domestic/Service Water Heating

Domestic Water Heaters

- Primary DHW system is the steam bundle storage tank located in Mackin Dining Hall
- Alternate DHW system is the natural gas-fired hydronic boiler located in Mackin Dining Hall

DHW Load

- Bathroom hand sinks and showers
- Kitchenette sinks
- · Recycling room utility sinks

Piping and Ductwork

Piping Systems/Insulation

Spot observations of piping and ductwork insulation revealed no remarkable deficiencies

Equipment Insulation

Spot observations of equipment insulation revealed no remarkable deficiencies

Piping and Ductwork Leaks

• Spot observations revealed no leakage issues

Miscellaneous Loads

Plug Loads

- Dorm rooms: laptops, chargers, microwaves, mini fridges, coffee makers, televisions, and portable fans
- Laundry room: washing machines and dryers

Specialty Systems

Air Compressors

• Two (2) air compressors located in Mackin Dining Hall generate compressed air for pneumatic controls

Potential Energy Efficiency Measures (EEMs)

No Cost/Low Cost Measures

- Setback equipment during academic breaks and when buildings are not in use
- Install low-flow or ultra low-flow showerheads

Capital Measures

- Upgrade roof insulation to at least code levels during gut rehab project
- Upgrade exterior wall insulation to at least code levels during gut rehab project
- Replace single glazed windows with high performance windows
- Install building-level gas and steam submeters
- Replace interior fluorescent light fixtures with LED fixtures
 - Consider onboard occupancy sensor control for individual fixture dimming/staging, or on/off control based on occupancy for public spaces
 - Consider onboard daylight sensor control for individual fixture dimming/staging based on sensed daylight for public spaces that have adequate daylight harvesting opportunity
- Replace exterior light fixtures with LED fixtures
- Add hot water zone valves for controlling individual spaces served by fin tube radiation
- Connect remaining building systems to BAS

O&M Measures

• No O&M opportunities identified during walk-through

SUNY OSWEGO | MACKIN DINING HALL BUILDING ASSESSMENT

Building Description

Building Name:	Mackin Dining Hall
Year Constructed:	1951
No. of Floors:	4 + Penthouse
Est. GSF:	41,984

Recent Building Upgrades

Steam line replaced – 2021

Mackin Dining Hall is a dining hall on the east side of campus connected to Lonis Hall on its north side and Moreland Hall on its south side. The upper two floors consist of offices, classrooms, lounges, and a director's apartment. The ground floor is comprised of a commercial kitchen and dining hall. Additional offices, storage spaces, and main electrical and mechanical rooms are located in the basement.

Occupancy Patterns

The Mackin Complex was used as a COVID-19 isolation residence at the onset of the pandemic, but all three buildings have now been unoccupied for approximately two years. They may be repurposed for the department of Auxiliary Services in the near future. Previously, the dining hall was open Monday through Thursday, from 3 p.m. to 7 p.m.

Building Envelope

Roof

- Flat roof; no roof access during walk-through
- Insulation type and levels not accessible during walk-through

Exterior Walls

- Concrete masonry with a brick façade
- Insulation type and levels not accessible during walk-through

Windows

- Clear, sliding, aluminum frame windows
 - Primarily double glazed, although some are single glazed

Doors

• Building entryway doors are clear, double glazed, aluminum frame doors

Air Infiltration/Leakage

• No excessive infiltration was observed

Utilities

Electricity

• Electricity is fed to the building from the National Grid electric substation on Washington Boulevard

Natural Gas

- Natural gas is delivered to the building from the main campus gas service
 - Used for space heating and domestic hot water heating when the central plant is down

District Steam

• Steam is distributed to the campus at 50 psig and is reduced to 12-13 psig within the building

Submeters

• None observed during walk-through

Lighting

Interior Fixture Types

- Predominant lighting types as follows:
 - Basement: Surface mount fixtures with linear fluorescent lamps
 - Other spaces were not accessible during walk-through

Interior Lighting Controls

• No automatic controls observed during walk-through

Exterior Lighting and Controls

- Predominant exterior lighting type is high-intensity discharge (HID)
- Exterior lights on campus are controlled by photosensors and astronomical time clocks

HVAC

Central Heating System

- One (1) shell & tube steam-to-hot-water converter generates heating hot water (HW) for the complex
 - Pneumatically actuated steam valve modulates HW supply temperature at the outlet of the converter
 - One (1) hot water pump circulates HW to building heating terminals
- One (1) cast-iron sectional boiler serves as alternate HW system when the central plant is down
 - Weil-McLain Model 1888 natural gas-fired hot water boiler
 - 2,452 thousand Btus per hour (MBH) output

Central Cooling System

• No space cooling in this building

Air Handling Units

- One (1) heating and ventilating unit serves the dining room
 - 100% outside air (OA) unit

- Constant speed supply fan motor
- HW heating coil with electronic control valve

Exhaust Systems

- Several small general exhaust fans with constant speed motors serve the building
- Commercial kitchen cooking exhaust system

Zone Heating/Cooling

- Finned tube radiation provides perimeter heating; one (1) steam valve modulates to maintain space temperature setpoint
- Cast-iron radiators serve kitchen and other spaces
 - Self-contained control valves
- Several spaces were markedly overheated, despite building being unoccupied

HVAC Controls

Building Automation System

- Carrier i-Vu® 8.0 building automation system (BAS) used for monitoring, direct digital control (DDC), and energy management of HVAC systems in the Mackin Complex
 - Only the heating and ventilating unit, exhaust fans, control valves for the perimeter radiation loop, and the domestic hot water (DHW) system are on the BAS

Operating Schedules

• Operating schedules could not be verified during walk-through

Domestic/Service Water Heating

Domestic Water Heaters

- Primary DHW system is one (1) steam bundle storage tank
 - Serves all three (3) buildings in the complex
- Alternate DHW system is the natural gas-fired hydronic boiler
 - Serves all three (3) buildings in the complex when the central plant is down
- One (1) shell & tube steam-to-hot-water converter generates DHW for commercial dishwasher

DHW Load

- Bathroom hand sinks and showers
- Kitchenette sinks
- Commercial kitchen equipment and dishwasher

Piping and Ductwork

Piping Systems/Insulation

• Spot observations of piping and ductwork insulation revealed no remarkable deficiencies

Equipment Insulation

· Spot observations of equipment insulation revealed no remarkable deficiencies

Piping and Ductwork Leaks

• Spot observations revealed no leakage issues

Miscellaneous Loads

Plug Loads

- Apartments: laptops, chargers, microwaves, fridges, kitchen ranges, coffee makers, televisions, and portable fans
- Offices: computers or laptops, desk phones, desk lamps, etc.
- Classrooms: computers, projectors, etc.
- Corridors: vending machines

Kitchen Equipment

• Kitchen and dining hall not accessible during walk-through

Elevators

- One (1) service elevator serves the basement and ground floor
- One (1) dumbwaiter serves the kitchen

Specialty Systems

Air Compressors

• Two (2) air compressors generate compressed air for pneumatic controls

Potential Energy Efficiency Measures (EEMs)

No Cost/Low Cost Measures

- Retro-commissioning of HVAC systems and controls
 - Scheduling of HVAC equipment and space temperature setbacks
 - Scheduling of kitchen exhaust fan operation, if the building is used as a dining hall in the future
- Setback equipment during academic breaks and when buildings are not in use
- Install low-flow or ultra low-flow showerheads

Capital Measures

- Upgrade roof insulation to at least code levels during gut rehab project
- Upgrade exterior wall insulation to at least code levels during gut rehab project
- Replace single glazed windows with high performance windows
- Install building-level gas and steam submeters
- Replace interior fluorescent light fixtures with LED fixtures
 - Consider onboard occupancy sensor control for individual fixture dimming/staging, or on/off control based on occupancy for public spaces
 - Consider onboard daylight sensor control for individual fixture dimming/staging based on sensed daylight for public spaces that have adequate daylight harvesting opportunity
- Replace exterior light fixtures with LED fixtures
- · Replace hot water pump and motor with electronically commutated motor
- Replace heating and ventilating unit with variable air volume (VAV) system during gut rehab project

- Add hot water zone valves for controlling individual spaces served by fin tube radiation
- Replace pneumatic actuators with electric actuators
- Implement HW supply temperature reset
- Consider implementing kitchen demand control ventilation on exhaust and makeup air systems if the building is used as a dining hall in the future
- Connect remaining building systems to BAS
- Replace DHW heater with semi-instantaneous water heater
- Replace refrigeration evaporator fan motors with electronically commutated motors if the building is used as a dining hall in the future
- Install desuperheater on refrigeration loop to recovery energy for domestic hot water heating if the building is used as a dining hall in the future

O&M Measures

• Change v-belt fan drives to cogged belt fan drives

SUNY OSWEGO | MORELAND HALL BUILDING ASSESSMENT

Building Description

Building Name:	Moreland Hall
Year Constructed:	1951
No. of Floors:	4
Est. GSF:	29,400

Recent Building Upgrades

• Steam line replaced - 2021

Functional Description

Moreland Hall is a residence hall on the east side of campus connected to Mackin Dining Hall on its north side. The upper three floors each consist of laundry rooms, kitchenettes, bathrooms, and 25 to 30 student rooms. The ground floor is comprised of a residential staff apartment, office, storage space, and a lounge.

Occupancy Patterns

The Mackin Complex was used as a COVID-19 isolation residence at the onset of the pandemic, but all three buildings have now been unoccupied for approximately two years. They may be repurposed for the department of Auxiliary Services in the near future. Previously, Moreland Hall was occupied 24/7 during the academic year and housed around 100 students.

Building Envelope

Roof

- Flat roof; no roof access during walk-through
- Insulation type and levels not accessible during walk-through

Exterior Walls

- Concrete masonry with a brick façade
- Insulation type and levels not accessible during walk-through

Windows

- Clear, sliding, aluminum frame windows
 - Primarily double glazed, although some are single glazed

Doors

• Building entryway doors are clear, double glazed, aluminum frame doors

Air Infiltration/Leakage

• No excessive infiltration was observed

Utilities

Electricity

• Electricity is fed to the building from the National Grid electric substation on Washington Boulevard

Natural Gas

• This building does not receive natural gas

District Steam

• Steam is distributed to the campus at 50 psig and is reduced to 12-13 psig within the Mackin Complex

Submeters

• None observed during walk-through

Lighting

Interior Fixture Types

- Predominant lighting types as follows:
 - Student rooms: Recessed fixtures with compact fluorescent lamps (CFL)
 - Basement: Surface mount fixtures with linear fluorescent lamps

Interior Lighting Controls

• No automatic controls observed during walk-through

Exterior Lighting and Controls

- Predominant exterior lighting type is high-intensity discharge (HID)
- Exterior lights on campus are controlled by photosensors and astronomical time clocks

HVAC

Central Heating System

- Primary heating hot water (HW) system is the steam-to-hot-water converter located in Mackin Dining Hall
- Alternate HW system is the natural gas-fired hydronic boiler located in Mackin Dining Hall

Central Cooling System

• No space cooling in this building

Air Handling Units

• None observed during walk-through

Exhaust Systems

- Several small general exhaust fans with constant speed motors serve the building
- Kitchenette cooking exhaust system
 - Three (3) kitchen exhaust hoods above small stoves in communal kitchenettes

Zone Heating/Cooling

- · Finned tube radiation provides perimeter heating to student rooms and common spaces
- Cast-iron radiators serve offices and storage spaces
 - Self-contained control valves
- Several spaces were markedly overheated, despite building being unoccupied
 - In particular, the ground floor lounge and recycling room

HVAC Controls

Building Automation System

- Carrier i-Vu® 8.0 building automation system (BAS) used for monitoring, direct digital control (DDC), and energy management of HVAC systems in the Mackin Complex
 - Only one (1) heating and ventilating unit, exhaust fans, control valves for the perimeter radiation loop, and the domestic hot water (DHW) system are on the BAS

Operating Schedules

• HVAC systems are scheduled to operate in occupied mode 24/7

Domestic/Service Water Heating

Domestic Water Heaters

- Primary DHW system is the steam bundle storage tank located in Mackin Dining Hall
- Alternate DHW system is the natural gas-fired hydronic boiler located in Mackin Dining Hall

DHW Load

- Bathroom hand sinks and showers
- Kitchenette sinks
- · Recycling room utility sinks

Piping and Ductwork

Piping Systems/Insulation

· Spot observations of piping and ductwork insulation revealed no remarkable deficiencies

Equipment Insulation

• Spot observations of equipment insulation revealed no remarkable deficiencies

Piping and Ductwork Leaks

• Spot observations revealed no leakage issues

Miscellaneous Loads

Plug Loads

- Dorm rooms: laptops, chargers, microwaves, mini fridges, coffee makers, televisions, and portable fans
- Laundry room: washing machines and dryers

Specialty Systems

Air Compressors

• Two (2) air compressors located in Mackin Dining Hall generate compressed air for pneumatic controls

Potential Energy Efficiency Measures (EEMs)

No Cost/Low Cost Measures

- Setback equipment during academic breaks and when buildings are not in use
- Install low-flow or ultra low-flow showerheads

Capital Measures

- Upgrade roof insulation to at least code levels during gut rehab project
- Upgrade exterior wall insulation to at least code levels during gut rehab project
- Replace single glazed windows with high performance windows
- Install building-level gas and steam submeters
- Replace interior fluorescent light fixtures with LED fixtures
 - Consider onboard occupancy sensor control for individual fixture dimming/staging, or on/off control based on occupancy for public spaces
 - Consider onboard daylight sensor control for individual fixture dimming/staging based on sensed daylight for public spaces that have adequate daylight harvesting opportunity
- Replace exterior light fixtures with LED fixtures
- Add hot water zone valves for controlling individual spaces served by fin tube radiation
- Connect remaining building systems to BAS

O&M Measures

• No O&M opportunities identified during walk-through

SUNY OSWEGO | ONEIDA HALL BUILDING ASSESSMENT

Building Description

Building Name:	Oneida Hall
Year Constructed:	1970
No. of Floors:	5
Est. GSF:	105,000

Recent Building Upgrades

Exterior renovation – 2010

Functional Description

Oneida Hall is a residence hall on West campus. The building encloses two courtyards, one on the eastern side and one on the western side. On the upper four floors, a lounge separates the courtyards, and the building perimeter consists of two-person and 4-person student rooms. Residential staff apartments and offices are located on the first floor. The basement is comprised of storage spaces, a laundry room, a computer room, an electrical room, and mechanical rooms. This residence hall was being used as a COVID-19 isolation dorm at the time of the walk-through in January 2022.

Occupancy Patterns

The dorm is occupied 24/7 during the academic year and can house approximately 450 students. As an isolation dorm, the building is temporarily occupied by fewer people on a more consistent daily schedule.

Building Envelope

Roof

- Flat roof; no roof access during walk-through
- Insulation type and levels not accessible during walk-through

Exterior Walls

- Concrete masonry with a concrete façade
- Insulation type and levels not accessible during walk-through

Windows

- Clear, double glazed, aluminum frame windows
 - Double-hung windows with sidelights in lobbies and perimeter common areas
 - · Awning windows in rooms adjacent to courtyards

Doors

• Building entryway and courtyard doors are clear, double glazed, aluminum frame doors

Air Infiltration/Leakage

No excessive infiltration was observed

Utilities

Electricity

• Electricity is fed to the building from the National Grid electric substation on Washington Boulevard

Natural Gas

- Natural gas is delivered to the building from the main campus gas service
 - Used for backup generator

District Steam

• Steam is distributed to the campus at 50 psig and is reduced to 12-13 psig within the building

Submeters

• This building has a campus-managed Electro Industries revenue grade electricity submeter

Lighting

Interior Fixture Types

- Predominant lighting types as follows:
 - Dorms: Student rooms not accessible during walk-through
 - Bathrooms: Bathrooms not accessible during walk-through
 - Corridors and lounges: Surface mount fixtures with compact fluorescent lamps (CFL) and linear T8 fluorescent lamps
 - Basement: Pendant fixtures with CFLs and surface mount fixtures with linear T8 fluorescent lamps

Interior Lighting Controls

• No automatic controls observed during walk-through

Exterior Lighting and Controls

- Predominant exterior lighting type is high-intensity discharge (HID)
- Exterior lights on campus are controlled by photosensors and astronomical time clocks

HVAC

Central Heating System

- One (1) shell & tube steam-to-hot-water converter generates heating hot water (HW) for most of the building
 - Pneumatic control valve modulates HW supply temperature at the outlet of the converter
 - Hot water pumps P-1 and P-2 circulate HW to building heating terminals. HW pump motors are constant speed.
 - Bell & Gossett base-mounted centrifugal pumps with 10 horsepower (hp) motors, rated for 510 gallons per minute (gpm) at 45 feet of head
 - Appears to utilize reset of HW supply temperature based on outside air (OA) temperature
- One (1) shell & tube steam-to-hot-water converter generates heating HW for Resident Director apartment suite
 - Pneumatic control valve modulates HW supply temperature at the outlet of the converter

• In-line circulating pump with constant speed fractional horsepower motor circulates HW to the apartment

Central Cooling System

• No space cooling in this building

Air Handling Units

- One (1) heating and ventilating unit HV-1 serves the basement
 - 100% OA unit
 - Constant speed supply fan motor
 - HW heating coil with two-way pneumatic control valve and face & bypass dampers with pneumatic actuators
- One (1) air handling unit MZ-1 serves the first-, second-, and third-floor lounges
 - Constant volume multi-zone unit
 - Constant speed supply and return fan motors
 - HW heating coil

Exhaust Systems

· Several small exhaust fans with constant speed motors serve the building

Zone Heating/Cooling

- Finned tube radiation provides perimeter heating in dorm rooms and common spaces; temperature control is limited to HW supply temperature control of three (3) building zones
- · No sensors or room-level temperature control in dorm rooms

HVAC Controls

Building Automation System

• Carrier i-Vu® 8.0 building automation system (BAS) used for monitoring, direct digital control (DDC), and energy management of HVAC systems

Operating Schedules

• HVAC systems are scheduled to operate in occupied mode 24/7

Domestic/Service Water Heating

Domestic Water Heaters

- One (1) steam bundle storage tank
 - Estimated 2,000-gallon capacity
 - 1/3 & 2/3 DDC controlled, electronically actuated steam valves

DHW Load

- Bathroom hand sinks and showers
- Common room kitchenette sink

Piping and Ductwork

Piping Systems/Insulation

· Spot observations of piping and ductwork insulation revealed no remarkable deficiencies

Equipment Insulation

· Spot observations of equipment insulation revealed no remarkable deficiencies

Piping and Ductwork Leaks

• Spot observations revealed no leakage issues

Miscellaneous Loads

Plug Loads

- Offices: computers or laptops, desk phones, desk lamps, etc.
- Dorm rooms: laptops, chargers, microwaves, mini fridges, coffee makers, televisions, and portable fans
- Laundry room: washing machines and dryers
- First-floor lounge: three (3) beverage and snack vending machines, two (2) small refrigerators, and two (2) microwaves

Elevators

- One (1) elevator serves the building
- One (1) dumbwaiter serves the first-floor receiving area

Specialty Systems

Air Compressors

• Two (2) air compressors generate compressed air for pneumatic controls

Potential Energy Efficiency Measures (EEMs)

No Cost/Low Cost Measures

- Retro-commissioning of HVAC systems and controls
 - Optimize HW supply temperature reset control
 - Scheduling of HVAC equipment and space temperature setbacks
- Setback equipment during academic breaks
- Install low-flow or ultra low-flow showerheads

Capital Measures

- Upgrade roof insulation to at least code levels during gut rehab project
- Upgrade exterior wall insulation to at least code levels during gut rehab project
- Install building-level steam submeter
- Replace interior fluorescent light fixtures with LED fixtures
 - Consider onboard occupancy sensor control for individual fixture dimming/staging, or on/off control based on occupancy for public spaces

- Consider onboard daylight sensor control for individual fixture dimming/staging based on sensed daylight for public spaces that have adequate daylight harvesting opportunity
- Replace exterior light fixtures with LED fixtures
- Install variable frequency drives (VFD) on the motors of HW pumps P-1 and P-2
- Replace HW circulating pump and motor serving Resident Director apartment suite with electronically commutated motor at end of useful life
- · Replace pump and fan motors with beyond premium efficiency motors at end of useful life
- Replace and upgrade HVAC system during gut rehab project and consider including exhaust air energy recovery system
- Add hot water zone valves for controlling individual spaces served by fin tube radiation
- Replace pneumatic actuators with electric actuators
- · Connect remaining building systems to BAS
- Replace DHW heater with semi-instantaneous water heater

O&M Measures

• Change v-belt fan drives to cogged belt fan drives

SUNY OSWEGO | ONONDAGA HALL BUILDING ASSESSMENT

Building Description

Building Name:	Onondaga Hall
Year Constructed:	1968
No. of Floors:	10 + 2 Penthouses
Est. GSF:	152,548

Recent Building Upgrades

• Exterior renovation – 2010

Functional Description

Onondaga Hall is a high-rise residence hall on West campus. The upper eight floors each consist of a main hallway joining twelve 6-person suites and two lounges. The first floor is comprised of offices, residential staff apartments, lobby space, and additional student rooms. A larger lounge, laundry room, kitchenette, storage spaces, and main electrical and mechanical rooms are located in the basement.

Occupancy Patterns

The dorm is occupied 24/7 during the academic year and can house approximately 600 students.

Building Envelope

Roof

- Flat roof; no roof access during walk-through
- Insulation type and levels not accessible during walk-through

Exterior Walls

- Concrete masonry with a concrete façade
- Insulation type and levels not accessible during walk-through

Windows

• Clear, double glazed, double-hung, aluminum frame windows with sidelights

Doors

• Building entryway under construction during walk-through

Air Infiltration/Leakage

• No excessive infiltration was observed

Utilities

Electricity

• Electricity is fed to the building from the National Grid electric substation on Washington Boulevard

Natural Gas

- Natural gas is delivered to the building from the main campus gas service
 - Used for backup generator

District Steam

• Steam is distributed to the campus at 50 psig and is reduced to 12-13 psig within the building

Submeters

• This building has a campus-managed Electro Industries revenue grade electricity submeter

Lighting

Interior Fixture Types

- Predominant lighting types as follows:
 - Dorms: Surface mount fixtures with compact fluorescent lamps (CFL) and floor lamps with LED bulbs
 - Corridors and lounges: Surface mount fixtures with CFLs
 - Basement: Recessed fixtures with U-bend and linear T8 fluorescent lamps

Interior Lighting Controls

- Manually switched lighting in dorm rooms
- Vacancy sensors located in suite bathrooms
- Lighting fixtures in common spaces dim at set time

Exterior Lighting and Controls

- Predominant exterior lighting type is high-intensity discharge (HID)
- · Exterior lights on campus are controlled by photosensors and astronomical time clocks

HVAC

Central Heating System

- One (1) shell & tube steam-to-hot-water converter generates heating hot water (HW) for most of the building
 - Pneumatic control valve modulates HW supply temperature at the outlet of the converter
 - Scheduled to be replaced with an electronically actuated valve by 2023
 - Hot water pumps P-1 and P-2 circulate HW to building heating terminals. HW pump motors are constant speed.
 - Bell & Gossett base-mounted centrifugal pumps with 7.5 horsepower (hp) motors, rated for 316 gallons per minute (gpm) at 45 feet of head
- One (1) shell & tube steam-to-hot-water converter generates heating HW for Resident Director apartment suite
 - Pneumatic control valve modulates HW supply temperature at the outlet of the converter
- HW supply temperature is reset based on outside air (OA) temperature
 - 180°F supply temperature at 30°F OA temperature
 - 140°F supply temperature at 60°F OA temperature

Central Cooling System

- One (1) small outside air-cooled chiller
 - R-407C refrigerant
 - Could not verify service during walk-through
- One (1) dry cooler with three (3) fans serves Liebert unit
- No other space cooling in this building

Air Handling Units

- One (1) heating and ventilating unit provides make-up air for laundry room exhaust
 - 100% OA unit
 - Supply fan motor controlled by variable frequency drive (VFD) to track exhaust fan VFD
 - HW heating coil with two-way pneumatic control valve
- 11 additional heating and ventilating units supply ventilation air to corridors and common spaces
 - Pneumatic damper actuators
 - Two (2) units have HW heating coils; nine (9) units have direct steam heating coils

Exhaust Systems

- · Several small exhaust fans with constant speed motors serve the building
- · Dedicated laundry room exhaust fan controlled by VFD to maintain duct static pressure

Zone Heating/Cooling

- Finned tube radiation provides perimeter heating in dorm rooms and common spaces; temperature control is limited to HW supply temperature reset control
- No sensors or room-level temperature control in dorm rooms
- HW cabinet unit heaters serve the main entryways

HVAC Controls

Building Automation System

- Carrier i-Vu® 8.0 building automation system (BAS) used for monitoring, direct digital control (DDC), and energy management of HVAC systems
 - Only the laundry room heating and ventilating unit and exhaust system are on the BAS

Operating Schedules

• HVAC systems are scheduled to operate in occupied mode 24/7

Domestic/Service Water Heating

Domestic Water Heaters

- One (1) steam bundle storage tank
 - Estimated 1,000-gallon capacity
 - 1/3 & 2/3 pneumatically actuated steam valves
 - Storage setpoint of 130°F observed

DHW Load

• Bathroom hand sinks and showers

• Common room kitchenette sink

Piping and Ductwork

Piping Systems/Insulation

· Spot observations of piping and ductwork insulation revealed no remarkable deficiencies

Equipment Insulation

• Spot observations of equipment insulation revealed no remarkable deficiencies

Piping and Ductwork Leaks

• Spot observations revealed no leakage issues

Miscellaneous Loads

Plug Loads

- Offices: computers or laptops, desk phones, desk lamps, etc.
- Dorm rooms: laptops, chargers, microwaves, mini fridges, coffee makers, televisions, and portable fans
- · Laundry room: washing machines and dryers
- First-floor lobby: three (3) beverage and snack vending machines

Elevators

• Four (4) elevators serve the building

Specialty Systems

Air Compressors

• Two (2) air compressors generate compressed air for pneumatic controls

Potential Energy Efficiency Measures (EEMs)

No Cost/Low Cost Measures

- Retro-commissioning of HVAC systems and controls
 - Optimize HW supply temperature reset control
 - Scheduling of HVAC equipment and space temperature setbacks
- Setback equipment during academic breaks
- Install low-flow or ultra low-flow showerheads

Capital Measures

- Upgrade roof insulation to at least code levels during gut rehab project
- Upgrade exterior wall insulation to at least code levels during gut rehab project
- Install building-level steam submeter
- Replace interior fluorescent light fixtures with LED fixtures
 - Consider onboard occupancy sensor control for individual fixture dimming/staging, or on/off control based on occupancy for public spaces

- Consider onboard daylight sensor control for individual fixture dimming/staging based on sensed daylight for public spaces that have adequate daylight harvesting opportunity
- Replace exterior light fixtures with LED fixtures
- Install VFDs on the motors of HW pumps P-1 and P-2
- Replace pump and fan motors with beyond premium efficiency motors at end of useful life
- Replace and upgrade HVAC system during gut rehab project and consider including exhaust air energy recovery system
- Add hot water zone valves for controlling individual spaces served by fin tube radiation
- Replace pneumatic actuators with electric actuators
- Connect remaining building systems to BAS
- Replace DHW heater with semi-instantaneous water heater

O&M Measures

• Change v-belt fan drives to cogged belt fan drives

SUNY OSWEGO | PATHFINDER DINING HALL BUILDING ASSESSMENT

Building Description

Building Name:	Pathfinder Dining Hall
Year Constructed:	1967
No. of Floors:	1 + Basement
Est. GSF:	33,827

Recent Building Upgrades

• Boiler replacement - 1998

Functional Description

Pathfinder Dining Hall is a building on West Campus comprised of a dining room, commercial kitchen, mechanical rooms, and bathrooms. The basement houses the campus police department.

Occupancy Patterns

Typically, the dining hall is open from 8 a.m. to 11 p.m. Monday through Thursday, from 8 a.m. to 7:30 p.m. on Fridays, and from 9 a.m. to 11 p.m. on weekends, with closures between meals.

Building Envelope

Roof

- Flat roof; no roof access during walk-through
- Insulation type and levels not accessible during walk-through

Exterior Walls

- Concrete façade
- Insulation type and levels not accessible during walk-through

Windows

- Single glazed, metal frame windows
 - Large, nearly floor-to-ceiling
 - Appear to be tinted

Doors

• Building entryway doors are metal frame, swinging, glass doors

Air Infiltration/Leakage

No excessive infiltration was observed

Utilities

Electricity

• Electricity is fed to the building from the National Grid electric substation on Washington Boulevard
Natural Gas

- Natural gas is delivered to the building from the main campus gas service
 - Used for cooking and alternate space heating and domestic hot water (DHW) heating systems

District Steam

• Steam is distributed to the campus at 50 psig and is reduced to 12-13 psig within the building

Submeters

• None observed during walk-through

Lighting

Interior Fixture Types

- Predominant lighting types as follows:
 - Dining area: High-bay fixtures with linear fluorescent lamps
 - Kitchen: Linear T8 fluorescent lighting
 - Corridors: Linear T8 fluorescent lighting
 - Police department: Campus police station was not accessible during walk-through

Interior Lighting Controls

• Occupancy sensors are present throughout the building

Exterior Lighting

- High-intensity discharge (HID) wall pack fixtures above loading dock and main entryways
- Exterior lights on campus are controlled by photosensors and astronomical time clocks

HVAC

Central Heating System

- One (1) steam-to-hot water converter generates heating hot water (HW) for building heating
 - Hot water pumps P-5 and P-6 operate as lead/standby for the air handler coils loop and HW pumps P-7 and P-8 operate as lead/standby for the perimeter radiation loop. All of the HW pump motors are constant speed.
 - P-5 and P-6 have 10 horsepower (hp) motors
 - P-7 and P-8 have 2 hp motors
 - Appears to utilize reset of HW supply temperature based on outside air (OA) temperature
- One (1) boiler serves as alternate HW system when the Central Heating Plant is at capacity
 - The boiler was previously required to supplement the central plant capacity during the coldest days of the year. Since the boiler upgrade at the central plant (around 2007), this satellite boiler at Pathfinder has not been required or used.

Central Cooling System

- Carrier 126-ton water-cooled chiller generates chilled water (CHW) for building cooling
 - Two (2) constant speed screw compressors
 - R-134A refrigerant
 - Forced-draft cooling tower

- Condenser water (CW) pumps P-1 and P-2 operate as lead/standby for the CW loop and CHW pumps P-3 and P-4 operate as lead/standby for the CHW loop. All four (4) pump motors are constant speed.
 - P-1 and P-2 have 20 hp motors
 - P-3 and P-4 have 15 hp motors

Air Handling Units

- Two (2) air handling units SF-1 and SF-2 serve the dining area and police department, respectively
 - Constant volume multi-zone units
 - HW heating coils and CHW cooling coils
- One (1) packaged rooftop energy recovery ventilator serves the kitchen

Exhaust Systems

- General exhaust fans serve the bathrooms and mechanical rooms
- Commercial kitchen cooking exhaust system
 - No automatic kitchen hood controls observed during walk-through

Zone Heating/Cooling

- Celling diffusers provide airflow to the dining area
- Finned tube radiation provides perimeter heating

HVAC Controls

Building Automation System

• Carrier i-Vu® 8.0 building automation system (BAS) used for monitoring, direct digital control (DDC), and energy management of HVAC systems

Operating Schedules

• HVAC systems are scheduled to operate in occupied mode 24/7

Domestic/Service Water Heating

Domestic Water Heaters

- One (1) steam bundle storage tank
 - Estimated 900-gallon capacity
 - 1/3 & 2/3 pneumatically actuated steam valves
 - Storage temperature setpoint is set manually
 - Storage setpoint of 130°F and supply setpoint of 116°F observed

DHW Load

- Bathroom hand sinks
- · Commercial kitchen equipment and dishwasher

Piping and Ductwork

Piping Systems/Insulation

- Spot observations of piping and ductwork insulation revealed no remarkable deficiencies
- Some corrosion observed on piping to the DHW tank

Equipment Insulation

• Spot observations of equipment insulation revealed no remarkable deficiencies

Piping and Ductwork Leaks

• Spot observations revealed no leakage issues

Miscellaneous Loads

Plug loads

- Dining area: vending machines
- Police department: Campus police station was not accessible during walk-through

Kitchen Equipment

• Main kitchen: kitchen hoods, one (1) gas stove with standing pilots on each of six (6) burners, ice maker, walk-in coolers and freezers, etc.

Specialty Systems

Commercial Kitchen Equipment

 Direct steam used for kitchen dishwasher booster heater, steam kettles, and steam-heated convection ovens

Air Compressors

• Two (2) air compressors generate compressed air for pneumatic controls

Potential Energy Efficiency Measures (EEMs)

No Cost/Low Cost Measures

- Retro-commissioning of HVAC systems and controls
 - Optimize HW supply temperature reset control
 - Optimize cooling tower water temperature control
 - Scheduling of HVAC equipment and space temperature setbacks
 - Scheduling of kitchen exhaust fan operation
- Implement CHW supply temperature reset
- · Setback equipment during academic breaks

Capital Measures

- · Replace single glazed windows with high performance windows
- Install building-level gas and steam submeters
- Replace interior fluorescent light fixtures with LED fixtures

- Consider onboard occupancy sensor control for individual fixture dimming/staging, or on/off control based on occupancy for public spaces
- Consider onboard daylight sensor control for individual fixture dimming/staging based on sensed daylight for public spaces that have adequate daylight harvesting opportunity
- Replace exterior light fixtures with LED fixtures
- Install variable frequency drives (VFD) on the motors of HW pumps P-5 and P-6 and CHW pumps P-3 and P-4
- Replace pump and fan motors with beyond premium efficiency motors at end of useful life
- Replace existing chiller with high-efficiency water-cooled variable speed magnetic bearing chiller
 - R-134A refrigerant is being phased out starting January 1, 2024
 - Once manufacturing of R-134A is eliminated, the price of R-134A stock is expected to rise substantially
- If not already implemented, install VFD on cooling tower fan motor to maintain condenser water temperature at setpoint
- Install occupancy-based HVAC controls on SF-1 and SF-2
- Consider installing an exhaust air energy recovery system on SF-1 and SF-2
- Add hot water zone valves for controlling individual spaces served by fin tube radiation
- Replace pneumatic actuators with electric actuators
- · Consider implementing demand control ventilation in the dining area
- Consider implementing kitchen demand control ventilation on exhaust and makeup air systems
- · Connect remaining building systems to BAS
- Replace DHW heater with semi-instantaneous water heater
- Replace refrigeration evaporator fan motors with electronically commutated motors
- · Install desuperheater on refrigeration loop to recovery energy for domestic hot water heating

O&M Measures

• Change v-belt fan drives to cogged belt fan drives

SUNY OSWEGO | RIGGS HALL BUILDING ASSESSMENT

Building Description

Building Name:	Riggs Hall
Year Constructed:	1960
No. of Floors:	3 + Basement
Est. GSF:	58,201

Recent Building Upgrades

• Full building renovation - 2006

Functional Description

Riggs Hall is a residence hall located next to Lake Ontario on SUNY Oswego's main campus. The building consists of dorm rooms, a director's apartment, corridors, mechanical rooms, and storage spaces, with lounge areas and kitchenettes on each floor. The basement houses a laundry room and larger lounge.

Occupancy Patterns

The dorm is occupied 24/7 during the academic year and can house approximately 200 students.

Building Envelope

Roof

- Flat roof; no roof access during walk-through
- Insulation type and levels not accessible during walk-through

Exterior Walls

- Concrete masonry with a brick façade
- Insulation type and levels not accessible during walk-through

Windows

• Double glazed, single-hung, wooden frame windows with aluminum thermal spacers

Doors

• Building entryway doors are metal frame, glass doors

Air Infiltration/Leakage

No excessive infiltration was observed

Utilities

Electricity

• Electricity is fed to the building from the National Grid electric substation on Washington Boulevard

Natural Gas

- Natural gas is delivered to the building from the main campus gas service
 - Used for backup generator and first-floor lounge gas fireplace

District Steam

• Steam is distributed to the campus at 50 psig and is reduced to 12-13 psig within the building by a pressure reducing valve (PRV)

Submeters

- This building has a campus-managed Electro Industries revenue grade electricity submeter
- This building has a campus-managed natural gas submeter, but the submeter is not registering on the building automation system (BAS) as of 1/13/22

Lighting

Interior Fixture Types

- Predominant lighting types as follows:
 - Dorms: Recessed compact fluorescent quad fixtures with electronic ballasts
 - Bathrooms: Surface mount T8 fluorescent fixtures with electronic ballasts and wall mount T8 fluorescent vanity fixtures with electronic ballasts
 - Corridors: Surface mount fluorescent quad fixtures with electronic ballasts
 - Lounges: 4-arm prismatic pendant fluorescent fixtures with electronic ballasts
 - Study rooms: Wall mount T5 fluorescent fixtures with electronic ballasts
 - Stairwells: Surface mount fluorescent quad fixtures with electronic ballasts
 - First-floor lobby: Surface mount compact fluorescent fixture with electronic ballasts
 - First-floor offices: 2x4 recessed troffer fixtures with T8 fluorescent lamps
 - Laundry room: Surface mount T8 fluorescent fixtures with electronic ballasts
 - Mechanical room: Surface mount prismatic T8 fluorescent fixtures
 - Recycling room: Surface mount prismatic T8 fluorescent fixtures

Interior Lighting Controls

- Lighting is scheduled in the BAS
 - Zoned by floor and section of building
 - Lighting is scheduled on at 7 a.m. and off at 8 p.m. daily
- Occupancy sensors in lounges, study rooms, and laundry room

Exterior Lighting and Controls

- · Metal halide wall pack fixtures above entryway
- Exterior lights on campus are controlled by photosensors and astronomical time clocks
- The campus is installing LEDs in place of the existing compact fluorescent exterior lighting; this is an ongoing project at Riggs Hall

HVAC

Central Heating System

- One (1) shell & tube steam-to-hot-water converter HX-1 generates heating hot water (HW) for building heating
 - Hot water pumps HWP-R-1 and HWP-R-2 operate as lead/standby for the HW loop. HW pumps have variable frequency drive (VFD) control of pump motor speed based on differential pressure.
 - Bell & Gossett base-mounted centrifugal pumps with 15 horsepower (hp) motors
 - Appears to utilize reset of HW supply temperature based on outside air (OA) temperature
 - Supply temperature of 124°F and return temperature of 122°F observed
- One (1) plate & frame HW-to-hot-glycol converter HX-2 generates hot glycol for building heating
 - Hot glycol pumps GP-R-1 and GP-R-2 circulate hot glycol to the building. Both glycol pumps have VFD control of pump motor speed based on differential pressure.
 - Supply temperature of 120°F observed

Central Cooling System

- Two (2) 355-ton chillers located in Lakeside Dining Hall generate chilled water (CHW) for building cooling in Lakeside Dining Hall, Johnson Hall common spaces, and Riggs Hall
 - Chilled water pumps CHWP-1 and CHWP-2, located in the Riggs Hall mechanical room, circulate CHW to air handler cooling coils and cooling terminal equipment. CHW pumps have VFD control of pump motor speed based on differential pressure.
 - CHWP-1 and CHWP-2 have 7.5 hp motors

Air Handling Units

- Air handling unit AHU-R-1 serves the community spaces
 - Supply fan motor controlled by VFD to maintain duct static pressure
 - Return fan motor controlled by VFD to track supply fan VFD
 - HW and CHW coils
- AHU-R-2 provides makeup air for toilet exhaust
 - Cross-flow energy recovery to recover energy from the exhaust airstream
 - · Return air bypass to avoid recovery energy when outdoor air conditions permit
 - Constant speed supply and return fan motors
 - HW and CHW coils

Exhaust Systems

- 11 exhaust fans serve the building
 - Exhaust fans EF-2 and EF-9 are controlled by space temperature setpoint for motor start/stop
 - Other exhaust fans are controlled by timer switch for motor start/stop

Zone Heating/Cooling

- Variable air volume (VAV) boxes with HW reheat coils provide airflow to common areas
- Finned tube radiation provides perimeter heating lounges
- Valance units prove heating and cooling in dorm rooms and common spaces
- Cabinet unit heaters serve the main entryways and corridors
- Four (4) fan coil units (FCU) serve a corridor, the crawlspace, laundry room, and director's apartment
 - Delta controls maintain room temperature setpoints

- Two (2) FCUs have HW heating coils; two (2) have hot glycol heating coils
- FCU-R-2 serving the director's apartment and FCU-R-4 serving the corridor have both heating and cooling coils
- FCU-R-2 supply fan motor controlled by VFD
- All rooms have temperature sensors and room-level thermostats

HVAC Controls

Building Automation System

• Carrier i-Vu® 8.0 and Trane Tracer® Ensemble[™] BAS used for monitoring, direct digital control (DDC), and energy management of HVAC systems

Operating Schedules

• HVAC systems are scheduled to operate in occupied mode 24/7

Domestic/Service Water Heating

Domestic Water Heaters

- One (1) steam bundle storage tank
 - Receiving pump and tempering valve
 - Supply temperature of 118°F observed
 - One (1) circulating pump

Domestic Hot Water (DHW) Load

- Bathroom hand sinks and showers
- Kitchenette sinks

Piping and Ductwork

Piping Systems/Insulation

· Spot observations of piping and ductwork insulation revealed no remarkable deficiencies

Equipment Insulation

• Spot observations of equipment insulation revealed no remarkable deficiencies

Piping and Ductwork Leaks

• Spot observations revealed no ductwork leakage issues

Miscellaneous Loads

Plug loads

- · Laundry room: washing machines and dryers
- Four (4) kitchenettes: microwaves, stoves, kitchen hoods, and refrigerators
- Basement corridor: dehumidifier
- Data closets: computer equipment, etc.
- Dorms: laptops, chargers, microwaves, mini fridges, coffee makers, televisions, and portable fans

Elevators

• One (1) hydraulic elevator serves the building

Natural Gas Equipment

• One (1) gas fireplace in the first-floor lounge

Specialty Systems

Air Compressors

• Air compressors generate compressed air for pneumatic controls

Potential Energy Efficiency Measures (EEMs)

No Cost/Low Cost Measures

- Retro-commissioning of HVAC systems and controls
 - Scheduling of HVAC equipment and space temperature setbacks
- Implement pump differential pressure reset controls on the HW pumps, Glycol pumps, and CHW pumps
- Implement duct static pressure reset controls on AHU-R-1
- Setback equipment during academic breaks
- If not already implemented, implement HW, CHW, and hot glycol supply temperature reset control
- Install low-flow or ultra low-flow showerheads

Capital Measures

- Install window film for solar heat gain reduction
- Install building-level steam submeter
- Replace interior fluorescent light fixtures with LED fixtures
 - Consider onboard occupancy sensor control for individual fixture dimming/staging, or on/off control based on occupancy for public spaces
 - Consider onboard daylight sensor control for individual fixture dimming/staging based on sensed daylight for public spaces that have adequate daylight harvesting opportunity
- Continue replacing exterior light fixtures with LED fixtures as part of ongoing project
- Install occupancy based thermostatic control to allow for automatic setback of space temperature setpoints when dorm rooms and common areas are unoccupied.
 - Thermostats with integrated passive infrared (PIR) occupancy sensors specifically manufactured for hotel guest room and dorm room systems are readily available in the market.
 - Alternatively, remote PIR occupancy sensors can be installed connected directly or wirelessly with the thermostat.
 - Window sensors can be installed and connected to the thermostat to turn the valance units off when the windows are opened
- Consider replacing FCUs and including electronically commutated motors
- Replace pneumatic actuators with electric actuators
- Replace DHW heater with semi-instantaneous water heater
- Replace DHW circulating pump and motor with electronically commutated motor

O&M Measures

• Change v-belt fan drives to cogged belt fan drives

SUNY OSWEGO | SCALES HALL BUILDING ASSESSMENT

Building Description

Building Name:	Scales Hall
Year Constructed:	1961
No. of Floors:	4
Est. GSF:	57,464

Recent Building Upgrades

• Full building renovation - 2017

Functional Description

Scales Hall is a residence hall located next to Lake Ontario on SUNY Oswego's main campus. The four floors each consist of a west wing and an east wing, primarily housing two-person student rooms, in addition to a lounge and two shared bathroom alcoves. The first floor includes residential staff apartments, lobby space, offices, a workroom, and a computer room. A laundry room, kitchenette, storage spaces, and electrical and mechanical rooms are located in the basement.

Occupancy Patterns

The dorm is occupied 24/7 during the academic year and can house approximately 200 students.

Building Envelope

Roof

- Flat roof; no roof access during walk-through
- Insulation type and levels not accessible during walk-through

Exterior Walls

- Concrete masonry with a brick façade
- Insulation type and levels not accessible during walk-through

Windows

• Clear, double glazed, sliding or fixed, aluminum frame windows

Doors

• Building entryway doors are clear, double glazed, aluminum frame doors

Air Infiltration/Leakage

No excessive infiltration was observed

Utilities

Electricity

• Electricity is fed to the building from the National Grid electric substation on Washington Boulevard

Natural Gas

- Natural gas is delivered to the building from the main campus gas service
 - Used for backup generator

District Steam

• Steam is distributed to the campus at 50 psig and is reduced to 12-13 psig within the building

Submeters

- This building has a campus-managed Electro Industries revenue grade electricity submeter
- This building has a campus-managed steam submeter to measure pressure, flow, and temperature of medium pressure steam entering building
- This building has a campus-managed natural gas submeter
- This building has a campus-managed potable water submeter

Lighting

Interior Fixture Types

- Predominant lighting types as follows:
 - Dorms: Flush mount fixtures with LED lamps
 - · Bathrooms: Flush mount fixtures with LED lamps and wall mount fluorescent sconces
 - Corridors, stairwells, and common areas: Recessed and surface mount fixtures with LED lamps
 - Lobby: Pendant fixture with LED lamp
 - Mechanical/electrical rooms: Industrial pendant fixtures with linear T8 fluorescent lamps

Interior Lighting Controls

- Occupancy sensors located in stairwells
- Bi-level lighting with dimming switches in first-floor lounge
- Interior lighting is controlled locally. Interior lights are scheduled to be on from 7 a.m. to 10 p.m. daily.

Exterior Lighting and Controls

- Recessed LED wall luminaires along exterior staircase
- Streetlights with LED lamps along pedestrian walkway
- Exterior lights on campus are controlled by photosensors and astronomical time clocks

HVAC

Central Heating System

- One (1) shell & tube steam-to-hot-water converter HX-1 generates heating hot water (HW) for building heating
 - 1/3 & 2/3 direct digital control (DDC), electronically actuated steam valves modulate HW supply temperature at the outlet of the converter. Zone valves control supply to each of six (6) HW distribution zones.
 - Two (2) primary hot water pumps HWPP-1 and HWPP-2 operate as lead/standby for the HW loop. One (1) secondary hot water pump serves each HW distribution zone. All HW pumps have variable frequency drive (VFD) control of pump motor speed based on differential pressure.

- Primary pumps are base-mounted pumps with 5 horsepower (hp) motors
- Secondary pumps are in-line pumps with 1.5 hp motors
- HW supply temperature is reset based on outside air (OA) temperature
 - 170°F supply temperature at 0°F OA temperature
 - 110°F supply temperature at 60°F OA temperature
- One (1) plate & frame HW-to-hot-glycol converter HX-2 generates hot glycol for building heating
 - DDC controlled, electronically actuated HW valve modulates glycol supply temperature at the outlet of the converter
 - Two (2) glycol pumps GHWP-1 and GHWP-2 operate as lead/standby for the hot glycol loop. Both glycol pumps have VFD control of pump motor speed based on differential pressure.
 - In-line pumps with 3 hp motors
 - Hot glycol supply temperature is reset based on OA temperature
 - 180°F supply temperature at 0°F OA temperature
 - 115°F supply temperature at 60°F OA temperature

Air Handling Units

- Heating and ventilating unit HV-1 serves the first-floor lounge
 - Single-zone variable air volume (VAV) unit
 - Differential enthalpy economizer
 - Supply fan motor controlled by VFD
 - Return fan motor controlled by VFD to track supply fan VFD
 - Lounge has space CO₂ sensor for demand control ventilation
 - HW-glycol heating coil with two-way electronic control valve
 - Duct static pressure reset control disabled during walk-through
- Heating and ventilating unit HV-2 supplies ventilation air to lobbies and corridors
 - 100% OA unit
 - Supply fan motor controlled by VFD
 - HW-glycol heating coil with two-way electronic control valve
- One (1) blower coil unit BCU-1 supplies make-up air to the laundry room
 - 100% OA unit
 - Constant speed supply fan motor
 - HW-glycol heating coil with two-way electronic control valve
- Six (6) split-system air conditioners serve the director's apartment, assistant director's apartment, meeting room, mechanical rooms, and data closets
 - Three (3) rooftop air-cooled condensing units
 - R-410A refrigerant

Exhaust Systems

- 11 exhaust fans with constant speed motors serve the building
 - One (1) exhaust fan serves the laundry room
 - ¾ hp motor
 - Controls integrated with BCU-1
 - One (1) exhaust fan serves corridors
 - Fan enabled when average corridor space temperature exceeds 72°F
 - Two (2) exhaust fans serve janitorial closets
 - Four (4) exhaust fans serve bathrooms

- One (1) exhaust fan serves the third-floor kitchenette
- Two (2) exhaust fans serve electrical rooms
 - Fans enabled when space temperatures exceed 72°F

Zone Heating/Cooling

- Finned tube radiation provides perimeter heating in dorm rooms and common spaces; temperature control is limited to HW supply temperature control of four (4) general building zones and two (2) residential staff apartment zones
- Two (2) HW unit heaters and one (1) electric unit heater serve the mechanical rooms
- Three (3) HW cabinet unit heaters serve basement common areas and the main entryway

HVAC Controls

Building Automation System

 Carrier i-Vu® 8.0 building automation system (BAS) used for monitoring, DDC, and energy management of HVAC systems

Operating Schedules

HVAC systems are scheduled to operate in occupied mode 24/7

Domestic/Service Water Heating

Domestic Water Heaters

- Primary domestic hot water (DHW) system is one (1) steam bundle storage tank
 - Two (2) small in-line circulating pumps operate as lead/standby
 - 1/3 & 2/3 DDC controlled, electronically actuated steam valves
 - Supply setpoint of 120°F observed
- Alternate DHW system is one (1) electric storage tank water heater
 - 40-gallon capacity

DHW Load

- Bathroom hand sinks and showers
- Common room kitchenette sinks

Piping and Ductwork

Piping Systems/Insulation

• Spot observations of piping and ductwork insulation revealed no remarkable deficiencies

Equipment Insulation

• Spot observations of equipment insulation revealed no remarkable deficiencies

Piping and Ductwork Leaks

• Spot observations revealed no leakage issues

Miscellaneous Loads

Plug Loads

- Offices: computers or laptops, desk phones, desk lamps, etc.
- Common spaces: two (2) beverage and snack vending machines, computers, microwaves, televisions, electric fireplace, etc.
- Dorm rooms: laptops, chargers, microwaves, mini fridges, coffee makers, televisions, and portable fans
- Laundry room: washing machines and dryers

Elevators

• One (1) elevator serves the building

Potential Energy Efficiency Measures (EEMs)

No Cost/Low Cost Measures

- Install automatic interior lighting controls on existing LED fixtures
- Retro-commissioning of HVAC systems and controls
 - Optimize HW supply temperature reset control
 - Optimize hot glycol supply temperature reset control
 - Optimize VFD control of HV-1 and HV-2 fan motors
 - Scheduling of HVAC equipment and space temperature setbacks
- Implement pump differential pressure reset controls on the HW and hot glycol pumps
- · Setback equipment during academic breaks
- Install low-flow or ultra low-flow showerheads

Capital Measures

- Install window film for solar heat gain reduction
- Consider additional occupancy sensor control for individual fixture dimming/staging, or on/off control based on occupancy for public spaces
- Install occupancy-based HVAC controls on HV-1
- Consider installing an exhaust air energy recovery system off bathroom exhaust air
- Add hot water zone valves for controlling individual spaces served by fin tube radiation
- Replace storage tank DHW heater with semi-instantaneous water heater
- · Replace DHW circulating pumps and motors with electronically commutated motors

O&M Measures

• Change v-belt fan drives to cogged belt fan drives

SUNY OSWEGO | SENECA HALL BUILDING ASSESSMENT

Building Description

Building Name:	Seneca Hall
Year Constructed:	1967
No. of Floors:	10 + Basement
Est. GSF:	152,548

Recent Building Upgrades

- Exterior renovation 2006
- Roof replacement 2022

Functional Description

Seneca Hall is a residence hall on West campus. The building consists of dorm rooms, a director's apartment, corridors, mechanical rooms, and storage spaces. The basement houses a laundry room, larger lounge area, and kitchen.

Occupancy Patterns

The dorm is occupied 24/7 during the academic year and can house approximately 600 students.

Building Envelope

Roof

- Flat roof; no roof access during walk-through
- · Insulation type and levels not accessible during walk-through

Exterior Walls

- Concrete panel walls
- Insulation type and levels not accessible during walk-through

Windows

• Double glazed, double-hung windows with sidelights

Doors

• Building entryway doors are metal frame, glass doors

Air Infiltration/Leakage

• No excessive infiltration was observed

Utilities

Electricity

• Electricity is fed to the building from the National Grid electric substation on Washington Boulevard

Natural Gas

• This building does not receive natural gas

District Steam

• Steam is distributed to the campus at 50 psig and is reduced to 12-13 psig within the building

Submeters

• None observed during walk-through

Lighting

Interior Fixture Types

- Predominant lighting types as follows:
 - Dorms: Surface mount fixtures with compact fluorescent lamps (CFL) and floor lamps with LED bulbs
 - Corridors and lounges: Surface mount fixtures with CFLs
 - Laundry room: Recessed fluorescent fixtures
 - Basement: Recessed fixtures with U-bend and linear T8 fluorescent lamps

Interior Lighting Controls

- Occupancy sensors in some bathrooms
- No other automatic controls observed during walk-through
- Lighting is scheduled on at 7 a.m. and off at 8 p.m. daily

Exterior Lighting and Controls

- High-intensity discharge (HID) and compact fluorescent fixtures above entryway
- Exterior lights on campus are controlled by photosensors and astronomical time clocks

HVAC

Central Heating System

- One (1) shell & tube steam-to-hot-water converter generates heating hot water (HW) for most of the building
 - Triple duty valve regulates flow and pressure into the converter
 - Two (2) hot water pumps operate as lead/standby for the HW loop. HW pump motors are constant speed.
 - HW supply temperature is reset based on outside air (OA) temperature
 - 180°F supply temperature at 0°F OA temperature
 - 110°F supply temperature at 50°F OA temperature
 - Reset on local pneumatic gauges
- One (1) shell & tube steam-to-hot-water converter generates heating HW for Resident Director apartment suite

Central Cooling System

- One (1) chiller/dry cooler generates chilled glycol at 45°F for cooling data closets
 - Direct digital controls (DDC)

- Control schedule is reset based on OA temperature
- Operates in free cooling mode during the winter
- No other space cooling in this building

Air Handling Units

- Eight (8) heating and ventilating units HV-1 through HV-8 serve common spaces
 - HV-1 serves the laundry room; HV-2 and HV-3 serve lounges; HV-4 through HV-8 serve corridors and mechanical rooms
 - HV-1 through HV-3 have HW heating coils with two-way control valves; HV-4 through HV-8 have steam heating coils with 3-way control valves

Exhaust Systems

- Ten (10) rooftop exhaust fans serve the bathrooms, laundry room, and mechanical and electrical rooms
 - EF-1 serves the laundry room

Zone Heating/Cooling

- Ceiling diffusers provide airflow to common areas and corridors
- Finned tube radiation provides perimeter heating in dorm rooms and common spaces
- · Unit ventilators serve the lobby and entry halls
- Electric cabinet unit heaters serve the bathrooms
- No sensors or room-level temperature control in dorms or lounges

HVAC Controls

Building Automation System

- Carrier i-Vu® 8.0 building automation system (BAS) used for monitoring, direct digital control (DDC), and energy management of HVAC systems
 - Only the chiller/dry cooler and laundry room systems are on the BAS; other equipment is monitored through the BAS but operates on pneumatic controls (i.e., domestic hot water (DHW) temperature monitoring)

Operating Schedules

• HVAC systems are scheduled to operate in occupied mode 24/7

Domestic/Service Water Heating

Domestic Water Heaters

- One (1) steam bundle storage tank
 - Pneumatic controls
 - Supply temperature of 128°F observed
 - Receiving pump and tempering valve
- One (1) electric water heater, located in the recycling room, serves the Resident Director apartment suite

DHW Load

- Bathroom hand sinks and showers
- Kitchenette sinks

Piping and Ductwork

Piping Systems/Insulation

· Spot observations of piping and ductwork insulation revealed no remarkable deficiencies

Equipment Insulation

· Spot observations of equipment insulation revealed no remarkable deficiencies

Piping and Ductwork Leaks

- Steam leak observed near DHW tank
 - Potential issue with a steam trap on condensate return line
- Spot observations revealed no ductwork leakage issues

Miscellaneous Loads

Plug loads

- Laundry room: washing machines and dryers
- · Kitchenettes: microwaves, stoves, kitchen hoods, and refrigerators
- Data closets: computer equipment, etc.
- Dorms: laptops, chargers, microwaves, mini fridges, coffee makers, televisions, and portable fans

Elevators

• Four (4) elevators serve the building

Specialty Systems

Air Compressors

• Air compressors generate compressed air for pneumatic controls

Potential Energy Efficiency Measures (EEMs)

No Cost/Low Cost Measures

- Retro-commissioning of HVAC systems and controls
 - Optimize HW supply temperature reset control
 - Scheduling of HVAC equipment and space temperature setbacks
- Setback equipment during academic breaks
- Install low-flow or ultra low-flow showerheads

Capital Measures

- Upgrade roof insulation to at least code levels during gut rehab project
- Upgrade exterior wall insulation to at least code levels during gut rehab project
- Install building-level steam submeter

- Replace interior fluorescent light fixtures with LED fixtures
 - Consider onboard occupancy sensor control for individual fixture dimming/staging, or on/off control based on occupancy for public spaces
 - Consider onboard daylight sensor control for individual fixture dimming/staging based on sensed daylight for public spaces that have adequate daylight harvesting opportunity
- Replace exterior light fixtures with LED fixtures
- Install variable frequency drives (VFD) on the HW pump motors
- Replace pump and fan motors with beyond premium efficiency motors at end of useful life
- Replace constant volume heating and ventilating units with variable air volume (VAV) systems during gut rehab project
- Install occupancy-based HVAC controls
- Consider installing an exhaust air energy recovery system for stacked exhaust
 Six (6) separate ducts of exhaust
- Add hot water zone valves for controlling individual spaces served by fin tube radiation
- Replace pneumatic actuators with electric actuators
- Connect remaining building systems to BAS
- Replace DHW heater with semi-instantaneous water heater
- Replace DHW circulating pumps and motors with electronically commutated motors

O&M Measures

- Change v-belt fan drives to cogged belt fan drives
- Repair piping to stop steam leakage

SUNY OSWEGO | SHADY SHORE BUILDING ASSESSMENT

Building Description

Building Name:	Shady Shore
Year Constructed:	1909
No. of Floors:	2 + Basement + Attic
Est. GSF:	8,754

Recent Building Upgrades

- Exterior renovation 1995, 2006
- Interior renovation 2006

Functional Description

Shady Shore is the university president's residence, located next to Lake Ontario on SUNY Oswego's main campus. The house has two floors and a basement, an attic, and a garage. The residence is usually occupied but was not in use during Ramboll's site visit in February 2022.

Occupancy Patterns

The residence is typically occupied 24/7.

Building Envelope

Roof

- · Pitched roof with architectural shingles; no roof access during walk-through
- Attic insulation type and levels not accessible during walk-through

Exterior Walls

- Wood siding
- Insulation type and levels not accessible during walk-through

Windows

- Double-hung, wooden frame windows
 - Primarily double glazed, some single glazed windows in dining room

Doors

- Residence entryway door is a wood door
- · Patio door is a double glazed glass door

Air Infiltration/Leakage

• No excessive infiltration was observed

Utilities

Electricity

• Electricity is fed to the residence from the National Grid electric substation on Washington Boulevard

Natural Gas

- The residence has a National Grid gas service separate from the rest of the campus
 - Used for space heating and domestic hot water (DHW) heating

District Steam

• The residence does not receive steam from the Central Heating Plant

Submeters

• None observed during walk-through

Lighting

Interior Fixture Types

- Predominant lighting types as follows:
 - LED bulbs

Interior Lighting Controls

• Manually switched lighting; no automatic controls observed during walk-through

Exterior Lighting and Controls

- Four (4) lamps along the driveway
- Single light above the garage
- Flag light
- Single light on the shed

HVAC

Central Heating System

- One (1) natural-draft boiler generates heating hot water (HW) for building heating
 - Well-McLain natural gas-fired hot water boiler
 - Seven (7) in-line circulating pumps
 - No combustion air fan
 - Expansion tank with automatic air separator

Central Cooling System

• No central cooling in this residence

Air Handling Units

- One (1) split-system heat pump provides heating and cooling to the residence
- Outdoor condensing unit

Exhaust Systems

• No major exhaust systems observed during walk-through

Zone Heating/Cooling

- · Finned tube radiation provides heating throughout the residence
- Zone-level temperature control for seven (7) separate zones through manual thermostats

HVAC Controls

Building Automation System

• The residence is not connected to the campus building automation system (BAS)

Operating Schedules

• HVAC systems operate 24/7 to meet thermostat setpoints

Domestic/Service Water Heating

Domestic Water Heaters

- One (1) natural draft, natural gas-fired condensing water heater
 - 50-gallon capacity
 - Small in-line pumps circulate DHW to residence zones

DHW Load

- Bathroom hand sinks and showers
- Dishwasher
- Washing machine

Piping and Ductwork

Piping Systems/Insulation

Spot observations of piping and ductwork insulation revealed no remarkable deficiencies

Equipment Insulation

• Spot observations of equipment insulation revealed no remarkable deficiencies

Piping and Ductwork Leaks

• Spot observations revealed no leakage issues

Miscellaneous Loads

Plug loads

- Office and living space: desktop computer, laptop, chargers, television, etc.
- Kitchen: refrigerator, oven, dishwasher, etc.
- Basement: dehumidifiers and refrigerator
- Laundry room: washer and dryer

Potential Energy Efficiency Measures (EEMs)

No Cost/Low Cost Measures

- Retro-commissioning of HVAC systems and controls
 - Setback space temperature when the residence is unoccupied
- Implement HW supply temperature reset
- Install programmable thermostats
- Install low-flow or ultra low-flow showerheads

Capital Measures

- Add additional attic insulation to bring insulation level up to at least R-38
- Replace single glazed windows with high performance windows
- Replace interior fluorescent light fixtures with LED fixtures
- Replace exterior light fixtures with LED fixtures
- Replace HW circulating pump and motor with an electronically commutated motor
- · Connect remaining building systems to BAS
- Replace DHW circulating pumps and motors with electronically commutated motors

O&M Measures

• No O&M opportunities identified during walk-through

SUNY OSWEGO | THE VILLAGE TOWNHOUSES BUILDING ASSESSMENT

Building Description

Building Name:	The Village Townhouses
Year Constructed:	2010
No. of Floors:	3
Est. GSF:	150,551

Recent Building Upgrades

• None

Functional Description

The Village Townhouses are a 12-building residential community on West campus. They consist of four 4person one-story units, 26 4-person two-story units and 36 6-person 3-story units. Each building has two closets accessible from the exterior that house fire protection and electrical equipment. Each unit is comprised of single-person bedrooms, a full kitchen, a laundry room, a common living space, and one or two shared bathroom(s). Community lounges, storage spaces, bathrooms, offices, meeting rooms, a mail room, and a café are located in Townhouse F. Additional storage and custodial spaces are located in Townhouses B and G. Mechanical equipment for The Townhouses is housed in two standalone one-room buildings next to Townhouses A and H.

Occupancy Patterns

The townhouses are occupied 24/7 during the academic year and can house approximately 350 students.

Building Envelope

Roof

- Pitched roofs with architectural shingles; no roof access during walk-through
- Attic insulation type and levels not accessible during walk-through

Exterior Walls

- Structural insulated panels with lap siding
- Insulation type and levels not accessible during walk-through

Windows

- Clear, double glazed, double-hung, aluminum frame windows with blinds
- Townhouse F lounge windows are clear, double glazed, awning, wooden frame windows with interior shades

Doors

- Building entryway doors are clear, double glazed, aluminum frame doors
- Townhouse F terrace doors are clear, double glazed, wooden frame doors

Air Infiltration/Leakage

• No excessive infiltration was observed

Utilities

Electricity

• Electricity is fed to the building from the National Grid electric substation on Washington Boulevard

Natural Gas

- These buildings have two (2) National Grid gas services separate from the rest of the campus
 - Used for space heating, domestic hot water heating, and cooking

District Steam

• These buildings do not receive steam from the Central Heating Plant

Submeters

• These buildings have campus-managed Electro Industries revenue grade electricity submeters

Lighting

Interior Fixture Types

- Predominant lighting types as follows:
 - Apartments: Student apartments not accessible during walk-through
 - Townhouse F common spaces: Surface mount and recessed fixtures with compact fluorescent lamps (CFL)
 - Mechanical/electrical rooms: Surface mount fixtures with linear fluorescent lamps

Interior Lighting Controls

• No automatic controls observed during walk-through

Exterior Lighting and Controls

- The campus has been installing LED bulbs in the exterior fixtures located at the entryway of each apartment; this is an ongoing project with approximately 50% of the fixture upgrades completed as of October 2022
- Exterior lights on campus are controlled by photosensors and astronomical time clocks

HVAC

Central Heating System

- Four (4) condensing boilers generate heating hot water (HW) for space heating
 - Benchmark 2.0 Low NOx natural gas-fired boilers
 - 2,000 thousand Btus per hour (MBH) output
 - Isolation valves are used to bypass the boilers when the dual temperature loop is in summer mode
 - Appear to utilize reset of HW supply temperature based on outside air (OA) temperature

Central Cooling System

- Two (2) AAON air-cooled scroll chillers generate chilled glycol for building cooling
 - R-410A refrigerant
 - Four (4) pumps circulate chilled glycol between the chillers and two (2) plate & frame heat exchangers
 - Armstrong base-mounted centrifugal pumps with 7.5 hp motors
 - One (1) 3-way diverting valve diverts the dual temperature loop through the plate & frame heat exchangers when the dual temperature loop is in summer mode
 - Appear to utilize reset of chilled glycol supply temperature based on OA temperature

Dual Temperature Loop

- Two (2) dual temperature loops ("A" Dual Temp System and "H" Dual Temp System) provide heating
 or cooling to building terminal units
 - "A" Dual Temp System serves buildings A through F; "H" Dual Temp System serves buildings G through L
 - Four (4) dual temperature pumps (two pumps per dual temp system) circulate HW or chilled glycol to building terminal units. All dual temperature pumps have variable frequency drive (VFD) control of pump motor speed based on differential pressure.
 - Armstrong base-mounted centrifugal pumps with 15 horsepower (hp) motors, rated for 396 gallons per minute (gpm) at 90 feet of head

Air Handling Units

- One (1) heat recovery unit serves Townhouse F
 - Heat wheel recovers energy from the toilet and janitorial closet exhaust airstreams (EF-3 and EF-4, respectively)
 - Supply and return fan motors have VFDs for balancing, and run at a fixed speed
 - HW heating coil with 3-way electronic control valve
 - One (1) small HW coil pump P-6
 - Free cooling capabilities and two-stage direct expansion (DX) mechanical cooling units
 - Dehumidification controls
 - Hot gas reheat coil
- Ductless mini-split systems serve the data closets
 - 18 MBH cooling capacities
 - 21.6 MBH heating capacities
 - R-410A refrigerant

Exhaust Systems

- Several small exhaust fans with constant speed motors serve the buildings
- Dedicated exhaust fan for each mechanical room

Zone Heating/Cooling

- Two-pipe valance and fan coil units (FCU) provide heating and cooling in apartments
 - Each apartment has two (2) FCUs serving entryways and six (6) or eight (8) valance units serving bedrooms and common spaces
 - Apartments were not accessible during walk-through; assumed to have individual temperature control of each apartment

• Temperature control through electric wall thermostats in data closets

HVAC Controls

Building Automation System

• Carrier i-Vu® 8.0 building automation system (BAS) used for monitoring, direct digital control (DDC), and energy management of HVAC systems

Operating Schedules

- Dual temperature loop mode of operation is based on calendar date and OA temperature
- HVAC systems are scheduled to operate in occupied mode 24/7

Domestic/Service Water Heating

Domestic Water Heaters

- Six (6) direct vent, natural gas-fired condensing storage tank water heaters
 - 124-gallon capacity tanks
 - 285 MBH input
 - 331 gal/hour recovery rate
 - Installed 2010
 - 118°F supply temperature setpoint observed

DHW Load

- Bathroom hand sinks and showers
- Kitchen and café sinks

Piping and Ductwork

Piping Systems/Insulation

· Spot observations of piping and ductwork insulation revealed no remarkable deficiencies

Equipment Insulation

· Spot observations of equipment insulation revealed no remarkable deficiencies

Piping and Ductwork Leaks

• Spot observations revealed no leakage issues

Miscellaneous Loads

Plug Loads

- Townhouse F common spaces: two (2) beverage and snack vending machines, computers, monitors, desk phones, desk lamps, etc.
- Apartments: laptops, chargers, microwaves, fridges, ovens, dishwashers, coffee makers, televisions, and portable fans
- Kitchen equipment
 - Café not accessible during walk-through

Elevators

• One (1) elevator serves the Townhouse F common spaces

Potential Energy Efficiency Measures (EEMs)

No Cost/Low Cost Measures

- Retro-commissioning of HVAC systems and controls
 - Optimize HW supply temperature reset control
 - Optimize chilled glycol supply temperature reset control
 - Scheduling of HVAC equipment and space temperature setbacks
- Implement pump differential pressure reset controls on the dual temperature pumps
- Setback equipment during academic breaks
- Install low-flow or ultra low-flow showerheads

Capital Measures

- Install window film for solar heat gain reduction
- Replace interior fluorescent light fixtures with LED fixtures
 - Consider onboard occupancy sensor control for individual fixture dimming/staging, or on/off control based on occupancy for public spaces
 - Consider onboard daylight sensor control for individual fixture dimming/staging based on sensed daylight for public spaces that have adequate daylight harvesting opportunity
- Continue replacing exterior light fixtures with LED fixtures
- Install occupancy-based HVAC controls in Townhouse F common spaces
- Install occupancy based thermostatic control in apartments units to allow for automatic setback of space temperature setpoints when apartments are unoccupied.
 - Thermostats with integrated passive infrared (PIR) occupancy sensors specifically manufactured for hotel guest room and dorm room systems are readily available in the market.
 - Alternatively, remote PIR occupancy sensors can be installed connected directly or wirelessly with the thermostat.
 - Window sensors can be installed and connected to the thermostat to turn the units off when the windows are opened
- Replace DHW heaters with semi-instantaneous water heaters at end of useful life

O&M Measures

• No O&M opportunities identified during walk-through

SUNY OSWEGO | WATERBURY HALL BUILDING ASSESSMENT

Building Description

Building Name:	Waterbury Hall
Year Constructed:	1960
No. of Floors:	4
Est. GSF:	57,464

Recent Building Upgrades

• Full building renovation – 2016

Functional Description

Waterbury Hall is a residence hall located next to Lake Ontario on SUNY Oswego's main campus. The four floors each consist of a north wing and a west wing, primarily housing two-person student rooms, in addition to a lounge and two shared bathroom alcoves. The first floor includes residential staff apartments, lobby space, offices, a workroom, and a computer room. A laundry room, kitchenette, storage spaces, and electrical and mechanical rooms are located in the basement.

Occupancy Patterns

The dorm is occupied 24/7 during the academic year and can house approximately 200 students.

Building Envelope

Roof

- Flat roof; no roof access during walk-through
- Insulation type and levels not accessible during walk-through

Exterior Walls

- Concrete masonry with a brick façade
- Insulation type and levels not accessible during walk-through

Windows

· Clear, double glazed, partially operable, aluminum frame windows

Doors

• Building entryway doors are clear, double glazed, aluminum frame doors

Air Infiltration/Leakage

• No excessive infiltration was observed

Utilities

Electricity

• Electricity is fed to the building from the National Grid electric substation on Washington Boulevard

Natural Gas

- Natural gas is delivered to the building from the main campus gas service
 - Used for backup generator

District Steam

- Steam is distributed to the campus at 50 psig and is reduced to 12-13 psig within the building
 - One (1) duplex condensate receiver returns condensate from Waterbury Hall to the Central Heating Plant

Submeters

- This building has a campus-managed Electro Industries revenue grade electricity submeter
- This building has a campus-managed steam submeter to measure pressure, flow, and temperature of medium pressure steam entering building
- This building has a campus-managed natural gas submeter
- This building has a campus-managed potable water submeter

Lighting

Interior Fixture Types

- Predominant lighting types as follows:
 - Dorms: Student rooms not accessible during walk-through
 - Bathrooms: Surface mount fixtures with LED lamps
 - Corridors and lounges: Surface mount fixtures with LED lamps
 - Mechanical/electrical rooms: Surface mount fixtures with linear T8 fluorescent lamps

Interior Lighting Controls

• Interior lighting is controlled locally. Interior lights are scheduled to be on from 7 a.m. to 10 p.m. daily.

Exterior Lighting and Controls

- Recessed LED wall luminaires along exterior staircase
- Streetlights with LED lamps along pedestrian walkway
- Exterior lights on campus are controlled by photosensors and astronomical time clocks

HVAC

Central Heating System

 One (1) shell & tube steam-to-hot-water converter HE-1 generates heating hot water (HW) for most of the building

- 1/3 & 2/3 direct digital control (DDC), electronically actuated steam valves modulate HW supply temperature at the outlet of the converter. Mixing valves control supply temperatures to each of six (6) HW distribution zones.
- Hot water pumps HWP-6 and HWP-7 operate as lead/standby for the primary HW loop. Secondary HW pumps HWP-1, HWP-2, HWP-3, HWP-4, HWP-5, and HWP-8 each serve one (1) building zone. All of the HW pumps have variable frequency drive (VFD) control of pump motor speed based on differential pressure.
 - Bell & Gossett in-line centrifugal pumps with 1 to 2 horsepower (hp) motors
- HW supply temperature is reset based on outside air (OA) temperature
 - 170°F supply temperature at 0°F OA temperature
 - 100°F supply temperature at 60°F OA temperature
- One (1) plate & frame HW-to-hot-glycol converter HE-2 generates hot glycol for building heating
 - DDC controlled, electronically actuated HW valve modulates glycol supply temperature at the outlet of the converter
 - Two (2) glycol pumps GHWP-1 and GHWP-2 operate as lead/standby for the hot glycol loop. Both glycol pumps have VFD control of pump motor speed based on differential pressure.
 - In-line pumps with 2 hp motors
 - System is enabled when OA temperature is below 60°F
- Secondary HW pumps are enabled when OA temperature is below 65°F

Central Cooling System

• No central cooling in this building

Air Handling Units

- Heating and ventilating unit HV-1 serves the first-floor lounge
 - Single-zone variable air volume (VAV) unit
 - Differential enthalpy economizer
 - Economizer is enabled when OA temperature is above 28°F and below 65°F
 - Supply fan motor controlled by VFD with a temperature-based control scheme
 - Return fan motor controlled by VFD to track supply fan VFD
 - HW-glycol heating coil with two-way electronic control valve
 - Demand controlled ventilation implemented
- Heating and ventilating unit HV-2 supplies ventilation air to corridors
 - 100% OA unit
 - Supply fan motor controlled by VFD
 - HW-glycol heating coil with two-way electronic control valve
 - System is enabled when OA temperature is below 60°F
- One (1) blower coil unit BCU-1 supplies make-up air to the laundry room
 - 100% OA unit
 - Constant speed supply fan motor
 - HW heating coil with two-way electronic control valve
- A variable refrigerant flow (VRF) system serves the resident director's apartment
 - Simultaneous heating and cooling
 - One (1) 6-ton outside air-cooled heat pump
 - 69 thousand Btus per hour (MBH) cooling capacity
 - 73 MBH heating capacity

• Three (3) indoor, duct-free, wall-mounted units

Exhaust Systems

- Six (6) exhaust fans with constant speed motors serve the building
 - One (1) exhaust fan serves the laundry room
 - Controls integrated with BCU-1
 - One (1) exhaust fan serves corridors
 - Two (2) exhaust fans serve janitorial closets
 - Two (2) exhaust fans serve electrical rooms

Zone Heating/Cooling

- Finned tube radiation provides perimeter heating in dorm rooms; temperature control is limited to HW supply temperature control of six (6) building zones
- Four (4) HW cabinet unit heaters serve a lounge on each floor and the main entryway

HVAC Controls

Building Automation System

• Trane Tracer® Ensemble[™] building automation system (BAS) used for monitoring, DDC, and energy management of HVAC systems

Operating Schedules

• HVAC systems are scheduled to operate in occupied mode 24/7

Domestic/Service Water Heating

Domestic Water Heaters

- Primary domestic hot water (DHW) system is one (1) steam bundle storage tank
 - Two (2) circulating pumps with fractional hp motors operate as lead/standby
 - One (1) DDC controlled, electronically actuated steam valve
- Alternate DHW system is one (1) electric storage tank water heater
 - 40-gallon capacity

DHW Load

- Bathroom hand sinks and showers
- Common room kitchenette sinks

Piping and Ductwork

Piping Systems/Insulation

• Spot observations of piping and ductwork insulation revealed no remarkable deficiencies

Equipment Insulation

· Spot observations of equipment insulation revealed no remarkable deficiencies

Piping and Ductwork Leaks

• Spot observations revealed no leakage issues

Miscellaneous Loads

Plug Loads

- Offices: computers or laptops, desk phones, desk lamps, etc.
- Common spaces: three (3) beverage and snack vending machines, computers, microwaves, televisions, electric fireplace, etc.
- Dorm rooms: laptops, chargers, microwaves, mini fridges, coffee makers, televisions, and portable fans
- Laundry room: washing machines and dryers

Elevators

• One (1) elevator serves the building

Potential Energy Efficiency Measures (EEMs)

No Cost/Low Cost Measures

- Install automatic interior lighting controls on existing LED fixtures
- Retro-commissioning of HVAC systems and controls
 - Optimize HW supply temperature reset control
 - Optimize hot glycol supply temperature reset control
 - Scheduling of HVAC equipment and space temperature setbacks
- Implement pump differential pressure reset controls on the HW and glycol pumps
- Implement duct static pressure reset control on HV-2
- Setback equipment during academic breaks
- Install low-flow or ultra low-flow showerheads

Capital Measures

- Install window film for solar heat gain reduction
- Consider additional occupancy sensor control for individual fixture dimming/staging, or on/off control based on occupancy for public spaces
- Install occupancy-based HVAC controls on HV-1
- Consider installing an exhaust air energy recovery system
- Add hot water zone valves for controlling individual spaces served by fin tube radiation
- Replace storage tank DHW heater with semi-instantaneous water heater
- Replace DHW circulating pumps and motors with electronically commutated motors

O&M Measures

- Change v-belt fan drives to cogged belt fan drives
- Replace HV-1 supply fan VFD control panel screen and cover
 - Observed to be missing during walk-through

SUNY OSWEGO | CENTRAL HEATING PLANT BUILDING ASSESSMENT

Building Description

Building Name:	Central Heating Plant
Year Constructed:	1958
No. of Floors:	1 + Catwalks
Est. GSF:	21,980

Recent Building Upgrades

- Roof, door, and window replacements 2019
- Boiler valve replacements & software upgrades Ongoing
- Phase out of pneumatic controls Ongoing

Functional Description

The Central Heating Plant is located in the center of campus and connected to Lee Hall on its east side. The one-story facility produces steam used for space heating and domestic hot water heating in most buildings on the main campus.

Occupancy Patterns

The building is occupied 24/7 by at least one plant operator. Only plant personnel have access to the facility.

Building Envelope

Roof

- Flat roof; no roof access during walk-through
- Insulation type and levels not accessible during walk-through

Exterior Walls

- Concrete masonry with a brick façade
- Insulation type and levels not accessible during walk-through

Windows

- Clear, awning, metal frame windows
 - Large, nearly floor-to-ceiling

Doors

• Building entryway doors are metal doors

Air Infiltration/Leakage

• Windows mostly open during walk-through, allowing infiltration

Utilities

Electricity

• Electricity is fed to the building from the National Grid electric substation on Washington Boulevard

Natural Gas

- Natural gas is delivered to the building from the main campus gas service
 - Used for steam production

Submeters

• Plant personnel manually record steam output rates and gas input rates every four (4) hours

Lighting

Interior Fixture Types

- Predominant lighting types as follows:
 - Boiler room: Industrial surface mount fixtures with linear T8 fluorescent lamps

Interior Lighting Controls

No automatic controls observed during walk-through

Exterior Lighting and Controls

- Predominant exterior lighting type is high-intensity discharge (HID)
- Exterior lights on campus are controlled by photosensors and astronomical time clocks

HVAC

Central Heating System

- Four (4) primary boilers B-6, B-7, B-8, and B-9 generate steam used for space heating and domestic hot water heating in buildings across campus
 - Cleaver-Brooks high-pressure natural gas-fired water tube boilers
 - All boilers have mechanical gas valve control; no oxygen trim controls
 - B-6, B-7, and B-8 have Natcom dual-fuel burners and controls. The boilers have not been fired with fuel oil since 2012. Existing controls are under consideration for replacement due to age.
 - B-9 has a Coen burner and controls. This boiler runs alone in summer operation; it has better turndown than the other boilers.
 - B-6 is rated to produce 30,000 lb/hr of steam at 250 psig; B-7 and B-8 are rated to produce 50,000 lb/hr of steam at 250 psig; B-9 is rated to produce 30,000 lb/hr of steam at 260 psig
 - All four (4) boilers are equipped with a feedwater economizer to recover heat from the exhaust gas
 - Forced draft combustion fan motors are controlled by variable frequency drives (VFD)
 - B-7 and B-8 have flue gas recirculation systems
 - B-6, B-7, and B-8 were manufactured in 2007; B-9 was manufactured in 1985
 - On a design load day, typically, three (3) of the four (4) boilers run with the fourth in standby. At the beginning and end of the heating season, two (2) boilers operate with one (1) in standby. All boilers that may be required for the time of year are cycled as needed to maintain a minimum boiler interior temperature. No standby boiler is required in the summer.
- One (1) alternate boiler B-10 can be used to generate steam in the summer for use in Lakeside Dining Hall and for the autoclave at Mary Walker Health Center when the primary boilers are shut down
 - Kewanee skid-mounted high-pressure natural gas-fired fire tube boiler
 - Rated to produce 6,900 lb/hr of steam at 150 psig
 - Firing rate of 8,370 thousand Btus per hour (MBH)
 - Primary boilers used to be shut down every summer from mid-July to late August, but are now only shut down when maintenance is required
 - Approximately ten (10) pressure reducing stations with pneumatically actuated valves reduce the 100 psig high-pressure steam generated by the boilers to 50 psig medium-pressure steam before it is distributed across campus. There is no steam pressure reset. Buildings have their own pressure reducing valves and use steam at approximately 12-13 psig.
 - Four (4) steam distribution lines originate from the plant, serving different areas of the campus:
 - Piez line serving the campus' science and engineering buildings, including Shineman Center, Wilbur Hall, and Park Hall
 - Lakefront line (historically called the North Line) serving the dorms and dining halls located next to Lake Ontario
 - East line serving the oldest buildings located on the east side of the campus
 - The main line (historically the West line and South line), with the largest loads, serving the most buildings on campus
- One (1) shell & tube steam-to-hot-water converter generates heating hot water (HW) for building heating in Lee Hall
 - One (1) two-way pneumatically actuated steam valve modulates HW supply temperature at the outlet of the converter
 - One (1) in-line hot water pump circulates HW from Lee Hall through the converter

Condensate and Feedwater System

- One (1) condensate tank collects and stores condensate return
 - Condensate pumps CRP-1 and CRP-2 circulate condensate from the storage tank to the feedwater loop. Both condensate pumps have VFD control of pump motor speed.
 - CRP-1 operates in the winter and is a Weinman base-mounted centrifugal pump with a 25 hp motor
 - CRP-2 operates in the summer and is a Bell & Gossett base-mounted centrifugal pump with a 10 hp motor, rated for 140 gallons per minute (gpm) at 140 feet of head
- Two (2) water softeners remove minerals from the feedwater to prevent hard water scale buildup on boiler tubes
- One (1) makeup water station treats 1,200 to 1,300 gallons of makeup water per day
 Makeup water is preheated with heat recovered from surface blowdown process
- One (1) deaerator tank removes approximately 95% of dissolved gases from the feedwater loop and stores the treated feedwater
 - Maximum allowable working pressure of 50 psig at 300°F
 - Manufactured by Allied Steel Products, Inc. in 1998
 - Feedwater pumps P-1, P-2, and P-3 circulate feedwater from the deaerator tank to the boilers. All three (3) feedwater pumps have VFD control of pump motor speed based on differential pressure. P-1 and P-2 share the same VFD.
 - P-1 is a Goulds vertical multistage pump with a 50 hp motor
 - P-2 is a Weinman base-mounted centrifugal pump with a 60 hp motor

- P-3 is a Goulds vertical multistage pump with a 25 hp motor
- Feedwater undergoes phosphate treatment to prevent corrosion
 - The plant uses approximately four (4) barrels of phosphate per year

Central Cooling System

• No space cooling in this building

Air Handling Units

- Two (2) heating and ventilating units provide make-up air to the plant
 - 100% outside air (OA) constant volume single-zone units
 - Constant speed supply fan motors
 - Steam heating coils with 3-way control valves
 - Valves have a minimum position of 15% when OA temperature below 35 °F
 - Units operate as lead/standby when only one (1) boiler is running; both units run when more than one (1) boiler is running

Exhaust Systems

• No exhaust fans observed during walk-through

Zone Heating/Cooling

• No terminal heating or cooling equipment observed during walk-through

HVAC Controls

Building Automation System

 Rockwell Automation Allen-Bradley[®] boiler control system and Trane Tracer[®] Ensemble[™] building automation system (BAS) used for monitoring, direct digital control (DDC), and energy management of HVAC systems

Operating Schedules

• HVAC systems are scheduled to operate in occupied mode 24/7

Domestic/Service Water Heating

Domestic Water Heaters

- One (1) steam bundle storage tank serves the plant and Lee Hall
 - One (1) pneumatic control valve with receiver-controller
 - Pneumatic thermostat in tank

DHW (Domestic Hot Water) Load

Bathroom hand sinks and showers

Piping and Ductwork

Piping Systems/Insulation

· Spot observations of ductwork insulation revealed no remarkable deficiencies

Equipment Insulation

• Spot observations of equipment insulation revealed no remarkable deficiencies

Piping and Ductwork Leaks

• Spot observations revealed no leakage issues

Miscellaneous Loads

Plug Loads

• Offices: computers or laptops, desk phones, desk lamps, etc.

Specialty Systems

Wastewater Lift Station

- One (1) lift station serves the campus wastewater system
 - Lift station pumps P-1 and P-2 move wastewater toward the treatment plant

Air Compressors

- Three (3) air compressors generate service air at 120 psig and compressed air for pneumatic controls at 36 psig
 - One (1) compressed air storage tank

Potential Energy Efficiency Measures (EEMs)

No Cost/Low Cost Measures

• Install low-flow or ultra low-flow showerheads

Capital Measures

- Replace interior fluorescent light fixtures with LED fixtures
 - Consider onboard occupancy sensor control for individual fixture dimming/staging, or on/off control based on occupancy for public spaces
 - Consider onboard daylight sensor control for individual fixture dimming/staging based on sensed daylight for public spaces that have adequate daylight harvesting opportunity
- Replace exterior light fixtures with LED fixtures
- Consider implementing oxygen trim control on boilers depending on timeline of clean energy transition. May be most cost-effective as an upgrade to the controls that need replacement due to age.
- Replace pump and fan motors with beyond premium efficiency motors at end of useful life
 - Choose high-efficiency pump with beyond premium efficiency motor for backup condensate pump scheduled to be replaced soon
- Replace pneumatic actuators with electric actuators where possible

O&M Measures

- Consider laboratory analysis of a boiler tube sample to check on condition of boiler tubes
- Change v-belt fan drives to cogged belt fan drives

SUNY OSWEGO | COMMISSARY (BUILDING 11) BUILDING ASSESSMENT

Building Description

Building Name:	Commissary (Building 11)
Year Constructed:	1966
No. of Floors:	1
Est. GSF:	30,836

Recent Building Upgrades

- Interior renovation 2018
- Replacement of coolers and freezers Ongoing
- Roof renovation Ongoing

Functional Description

The Commissary building, also called Building 11, is a one-story administrative building located on the southern side of Route 104 which houses the campus bakery, cold food storage, and dry food storage. The Commissary consists of storage rooms, a small commercial grade kitchen, walk-in coolers and freezers, offices, and mechanical rooms.

Occupancy Patterns

The commissary is occupied from 3 a.m. to 9 p.m. on weekdays and from 8 a.m. to 9 p.m. on weekends.

Building Envelope

Roof

- Flat roof; no roof access during walk-through
- · Insulation type and levels not accessible during walk-through

Exterior Walls

- Concrete masonry with a stone façade
- Insulation type and levels not accessible during walk-through

Windows

· Clear, single glazed, awning and fixed, steel frame windows with shades

Doors

· Building entryway doors are metal doors with small, clear, double glazed sidelights

Air Infiltration/Leakage

• Many of the spaces in this building are garage spaces with large doors and natural air infiltration

Utilities

Electricity

• Electricity is fed to the building from the National Grid electric substation on Washington Boulevard

Natural Gas

- The building has a National Grid gas service separate from the rest of the campus
 - Used for space heating, domestic hot water heating, cooking, and steam generation

District Steam

• This building does not receive steam from the Central Heating Plant

Submeters

• This building has a campus-managed Electro Industries revenue grade electricity submeter

Lighting

Interior Fixture Types

- Predominant lighting types as follows:
 - Corridors and storage spaces: Linear T8 fluorescent lamps
 - Offices: Mix of LED and linear T8 fluorescent lamps
 - Kitchen: Linear T8 fluorescent lamps
 - Mechanical rooms: Industrial pendant fixtures with compact fluorescent lamps (CFL)

Interior Lighting Controls

• No automatic controls observed during walk-through

Exterior Lighting and Controls

- Recessed and surface mount fixtures with high-intensity discharge (HID) lamps
- Recessed fixtures with CFLs along garage doors
- Exterior lights are controlled by photosensors

HVAC

Central Heating System

- One (1) cast-iron sectional boiler generates heating hot water (HW) for building heating
 - Weil-McLain Model 688 natural gas-fired hot water boiler
 - 1,413 thousand Btus per hour (MBH) output at 83% rated thermal efficiency
 - Power Flame, Inc. burner with 1,680 MBH input capacity
 - One (1) small in-line pump circulates HW through the boiler
 - One (1) constant speed hot water pump circulates HW to building heating terminals
 In-line centrifugal pump with 5 horsepower (hp) motor

Central Cooling System

• No space cooling in this building

Air Handling Units

- Heating and ventilating unit HV-1 serves the central warehouse
 - 100% OA unit
 - 1 hp supply fan motor
 - Hot water heating coil
- Heating and ventilating unit HV-3 serves the dry bulk storage room
 - 100% OA unit
 - 3 hp supply fan motor
 - Hot water heating coil
 - HV-3 has been disconnected since May 2022

Exhaust Systems

- One (1) exhaust fan with a constant speed motor serves mechanical room 120
- Commercial kitchen exhaust system

Zone Heating/Cooling

- One (1) unit ventilator serves storage room 112
 - Economizer control
 - Heating and ventilating only
- Hot water unit heaters serve the mechanical rooms

HVAC Controls

Building Automation System

- Trane Tracer® Ensemble[™] building automation system (BAS) used for monitoring, direct digital control (DDC), and energy management of HVAC systems
 - Only condenser fan, exhaust fan, and unit ventilator are on the BAS

Operating Schedules

- Kitchen oven and exhaust systems are scheduled to turn on at 2:30 a.m. and off at 6 a.m.
- Other HVAC systems are scheduled to operate in occupied mode 24/7

Domestic/Service Water Heating

Domestic Water Heaters

- One (1) natural draft, natural gas-fired tank water heater with an additional external storage tank
 - 225 MBH input
 - Water heater manufactured 1967
 - Storage temperature of 115°F observed

Domestic Hot Water (DHW) Load

- Bathroom hand sinks
- Break room kitchenette sink
- Commercial kitchen equipment and dishwasher

Piping and Ductwork

Piping Systems/Insulation

· Spot observations of piping and ductwork insulation revealed no remarkable deficiencies

Equipment Insulation

· Spot observations of equipment insulation revealed no remarkable deficiencies

Piping and Ductwork Leaks

• Spot observations revealed no leakage issues

Miscellaneous Loads

Plug Loads

- Offices: computers or laptops, desk phones, desk lamps, etc.
- Break room: fridge, microwave, coffee maker, etc.
- Kitchen: freezers, coolers, dishwashers, etc.

Specialty Systems

Commercial Refrigeration

- One (1) condenser CU-1 generates high-pressure liquid refrigerant for the walk-in coolers and freezers
 - Air-cooled indoor condenser
 - One (1) centrifugal fan with a 25 hp motor controlled by a variable frequency drive (VFD)
 - R-404A refrigerant
 - 28.11 MBH total heat of rejection
 - Five (5) scroll compressors generate high-pressure refrigerant to supply to CU-1
 - Compressors 1, 2, and 5 serve walk-in coolers
 - Compressors 3 and 4 serve walk-in freezers

Commercial Kitchen Equipment

- One (1) natural gas-fired steam generator used for steam kettles, etc.
- Natural gas deep fryers
- Electric ovens

Potential Energy Efficiency Measures (EEMs)

No Cost/Low Cost Measures

- Install automatic interior lighting controls on existing LED fixtures
- Retro-commissioning of HVAC systems and controls
 - Scheduling of HVAC equipment and space temperature setbacks
 - Scheduling of kitchen exhaust fan operation to match kitchen use
- Implement HW supply temperature reset

Capital Measures

• Replace single glazed windows with high performance windows

- Replace interior fluorescent light fixtures with LED fixtures
 - Consider onboard occupancy sensor control for individual fixture dimming/staging, or on/off control based on occupancy for public spaces
 - Consider onboard daylight sensor control for individual fixture dimming/staging based on sensed daylight for public spaces that have adequate daylight harvesting opportunity
- Replace exterior light fixtures with LED fixtures
- Replace HW boiler circulating pump and motor with electronically commutated motor
- Replace fan motors with beyond premium efficiency motors at end of useful life
- Consider implementing kitchen demand control ventilation on exhaust and makeup air systems
- Connect remaining building systems to BAS
- Replace DHW heater with semi-instantaneous water heater
- Replace refrigeration evaporator fan motors with electronically commutated motors
- Install desuperheater on refrigeration loop to recovery energy for domestic hot water heating

O&M Measures

- Change v-belt fan drives to cogged belt fan drives
- Integrate all equipment onto BAS

SUNY OSWEGO | CULKIN HALL BUILDING ASSESSMENT

Building Description

Building Name:	Culkin Hall
Year Constructed:	1967
No. of Floors:	7 + Basement
Est. GSF:	63,591

Recent Building Upgrades

• Exterior renovation – 2001

Functional Description

Culkin Hall is the primary administration building on campus and houses various administrative offices, including the provost's office on the seventh floor.

Occupancy Patterns

Culkin Hall is occupied from 8 a.m. to 5 p.m. on weekdays only.

Building Envelope

Roof

- Flat roof; no roof access during walk-through
- Insulation type and levels not accessible during walk-through

Exterior Walls

- · Concrete panels reinforced with protective concrete coating for additional weather resistance
- Insulation type and levels not accessible during walk-through

Windows

- Double glazed, aluminum frame windows
 - Mix of clear and tinted glazing

Doors

Building entryway doors are automatic revolving doors

Air Infiltration/Leakage

No excessive infiltration was observed

Utilities

Electricity

• Electricity is fed to the building from the National Grid electric substation on Washington Boulevard

Natural Gas

- Natural gas is delivered to the building from the main campus gas service
 - Used for domestic hot water (DHW) heating and backup generator

District Steam

• Steam is distributed to the campus at 50 psig and is reduced to 12-13 psig within the building

Submeters

• This building has a campus-managed potable water submeter

Lighting

Interior Fixture Types

- Predominant lighting types as follows:
 - Lobby: T8 Fluorescent lamps
 - First-floor corridors: Volumetric fixtures with fluorescent lamps
 - Second- through sixth-floor corridors: Recessed prismatic fixtures with U-bend fluorescent lamps
 - Seventh-floor corridors: Volumetric fixtures retrofit with LED lamps
 - Offices: Mix of LED and fluorescent lighting
 - Stairwells: Fluorescent lighting

Interior Lighting Controls

- No automatic controls observed during walk-through
- Interior lighting is controlled through local panels

Exterior Lighting and Controls

- · Recessed lights on overhang around building perimeter
- High intensity discharge (HID) wall pack fixtures controlled by photosensors

HVAC

Central Heating System

- Two (2) steam-to-hot-water converters CV-1 and CV-2 generate heating hot water (HW) for building heating
 - 1/3 & 2/3 direct digital control (DDC), pneumatically actuated steam valves modulate HW supply temperature at the outlet of the converter
 - Two (2) hot water pumps circulate HW from CV-1 to air handler coils. Two (2) additional hot water pumps circulate HW from CV-2 to the radiation heating loop.
 - Double-suction pumps with 7.5 horsepower (hp) motors
- A hot glycol system serves the data center
 - Two (2) glycol pumps operate as lead/standby for the glycol loop

Central Cooling System

- Trane chiller generates chilled water (CHW) for building cooling
 - Trane Model CVHE water-cooled centrifugal chiller
 - R-123 refrigerant

- Chilled water pumping arrangement is primary only. Two (2) chilled water pumps circulate CHW to air handler coils. CHW pump motors are constant speed.
 - CHW pumps have 1.5 hp motors
- One (1) condenser water pump circulates condenser water between the chiller condenser and the cooling tower
 - Condenser water pump has a 2.5 hp motor
- Cooling tower fan has variable frequency drive (VFD) control of fan motor speed to maintain leaving water temperature
- Condenser water setpoint of 85°F observed during walk-through
- A server rack cooling system serves the data center

Air Handling Units

- Five (5) air handling units AC-1 through AC-5 serve the building
 - AC-1 serves the lower level
 - HW heating coils and CHW cooling coils with two-way pneumatic control valves; HW reheat coils
 - AC-2 serves the computer rooms
 - Dual-duct unit
 - HW heating coils and CHW cooling coils with two-way valves
 - AC-3 serves the commons level
 - Dual-duct unit
 - HW heating coils and CHW cooling coils with two-way valves
 - AC-4 serves the corridors
 - 100% outside air (OA) unit
 - HW heating coils and CHW cooling coils; dual temperature terminal reheat coils
 - AC-5 serves the building interior
 - HW heating coils and CHW cooling coils
- One (1) heating and ventilating unit HV-1 serves the lower level
- 100% OA system
 - HW heating coils

Exhaust Systems

- Four (4) exhaust fans serve mechanical rooms, bathrooms, and general exhaust
 - Exhaust fans EF-2 and EF-3 are connected to the campus building automation system (BAS) and serve bathroom exhaust and general exhaust, respectively

Zone Heating/Cooling

- Finned tube radiation provides perimeter heating
- Unit ventilators serve the provost's office and the Housing Office
- Cabinet unit heaters serve the entry vestibules

HVAC Controls

Building Automation System

• Carrier i-Vu® 8.0 BAS used for monitoring, DDC and energy management of the majority of HVAC systems in the building

• Trane Tracer® Ensemble[™] BAS used for monitoring, DDC and energy management of the chiller and glycol system

Operating Schedules

• HVAC systems are scheduled to operate in occupied mode 24/7

Domestic/Service Water Heating

Domestic Water Heaters

- Two (2) natural gas-fired instantaneous water heaters with an external storage tank
 - Glass-lined steel storage tank

DHW Load

Bathroom hand sinks

Piping and Ductwork

Piping Systems/Insulation

• Spot observations of piping and ductwork insulation revealed no remarkable deficiencies

Equipment Insulation

Spot observations of equipment insulation revealed no remarkable deficiencies

Piping and Ductwork Leaks

• Spot observations revealed no ductwork leakage issues

Miscellaneous Loads

Plug loads

- Offices: computers or laptops, desk phones, desk lamps, space heaters, microwaves, etc.
- Basement: two (2) vending machines

Elevators

- Two (2) elevators serve the building
 - One (1) elevator was out of order during walk-through

Specialty Systems

Air Compressors

• One (1) air compressor pump generates compressed air for pneumatic controls

Potential Energy Efficiency Measures (EEMs)

No Cost/Low Cost Measures

- Install automatic interior lighting controls on existing LED fixtures
- Retro-commissioning of HVAC systems and controls

- Optimize cooling tower water temperature control
- Scheduling of HVAC equipment and space temperature setbacks
- Implement HW and CHW supply temperature reset
- Setback equipment during academic breaks

Capital Measures

- Consider installing window film for solar heat gain reduction
- Install building-level gas and steam submeters
- Replace interior fluorescent light fixtures with LED fixtures
 - Consider occupancy sensor control for individual fixture dimming/staging, or on/off control based on occupancy for public spaces
 - Consider daylight sensor control for individual fixture dimming/staging based on sensed daylight for public spaces that have adequate daylight harvesting opportunity
- Replace exterior light fixtures with LED fixtures
- Install VFDs on the motors of dual temperature loop pumps P-4 and P-5 and HW radiation heating loop pumps P-6 and P-7
 - Replace any HW heating coil 3-way valves with two-way valves
 - Implement control of pump motor speed based on differential pressure
- Replace pump and fan motors with beyond premium efficiency motors at end of useful life
- Replace existing chiller with high-efficiency water-cooled variable speed magnetic bearing chiller
 - R-123 refrigerant is being phased out starting January 1, 2020
 - Once manufacturing of R-123 is eliminated, the price of R-123 stock is expected to rise substantially
- Replace air handling units with variable air volume (VAV) systems during gut rehab project
- Consider installing occupancy-based HVAC controls on AC-1 through AC-5
- Add hot water zone valves for controlling individual spaces served by fin tube radiation
- Replace pneumatic actuators with electric actuators

O&M Measures

• Change v-belt fan drives to cogged belt fan drives

SUNY OSWEGO | KING HALL BUILDING ASSESSMENT

Building Description

Building Name:	King Hall
Year Constructed:	1935
No. of Floors:	4
Est. GSF:	7,200

Recent Building Upgrades

• Interior renovation – 2017

Functional Description

King Hall is an administrative building located on the east side of campus. The 3-story building, housing the department of alumni relations, consists of offices, storage space, and an alumni lounge.

Occupancy Patterns

The building is occupied from 8 a.m. to 5 p.m. on weekdays only.

Building Envelope

Roof

- Pitched roof with 3-tab asphalt shingles; no attic access during walk-through
- Attic insulation type and levels not accessible during walk-through

Exterior Walls

- Wood frame with a brick façade
- Insulation type and levels not accessible during walk-through

Windows

- Clear, double-hung, aluminum frame storm windows over clear, single glazed, casement, wooden frame original windows
 - Some offices have interior window shades or curtains

Doors

• Building entryway door is a wooden door with a transom window

Air and Water Infiltration/Leakage

- Noticeable signs of water leakage through stone foundation
- No excessive air infiltration was observed

Utilities

Electricity

• The building has a National Grid electric service separate from the rest of the campus

Natural Gas

- The building has a National Grid gas service separate from the rest of the campus
 - Used for space heating and domestic hot water heating

District Steam

• This building does not receive steam from the Central Heating Plant

Submeters

• None observed during walk-through

Lighting

Interior Fixture Types

- Predominant lighting types as follows:
 - Offices: Surface mount fixtures with linear T8 fluorescent lamps
 - Storage space: Surface mount fixtures with compact fluorescent lamps (CFL)

Interior Lighting Controls

• No automatic controls observed during walk-through

Exterior Lighting and Controls

- Exterior light fixtures appear to be high-intensity discharge (HID) type
- Exterior lighting controlled by manual switch

HVAC

Central Heating System

- One (1) cast-iron boiler generates heating hot water (HW) for building heating
 - Utica Boilers Model MGB natural gas-fired low-pressure hot water boiler
 - 200 thousand Btus per hour (MBH) input
 - 165 MBH heating capacity
 - 82.5% thermal efficiency
 - Four (4) hot water pumps each serve one of the four floors. All of the HW pump motors are constant speed.
 - Bell & Gossett in-line circulating pumps with fractional horsepower (hp) motors, rated for 22 gallons per minute (gpm) at 15 feet of head

Central Cooling System

• No central cooling in this building

Air Handling Units

• None observed during walk-through

Exhaust Systems

• None observed during walk-through

Zone Heating/Cooling

- Finned tube radiation provides perimeter heating in basement
- HW radiators serve the upper three (3) floors
 - Zone temperature control through electric wall thermostats
 - Thermostats have programming capabilities, but these do not appear to be in use
- Window air conditioning units cool the upper three (3) floors

HVAC Controls

Building Automation System

• This building is not connected to the campus building automation system (BAS)

Operating Schedules

• HVAC systems operate 24/7 to meet thermostat setpoints

Domestic/Service Water Heating

Domestic Water Heaters

- One (1) natural draft, natural gas-fired automatic tank water heater
 - 40-gallon capacity
 - 40 MBH input

Domestic Hot Water (DHW) Load

- Bathroom hand sinks
- Basement utility sink

Piping and Ductwork

Piping Systems/Insulation

• Some HW and DHW piping is missing insulation in basement mechanical room

Equipment Insulation

· Spot observations of equipment insulation revealed no remarkable deficiencies

Piping and Ductwork Leaks

• Spot observations revealed no leakage issues

Miscellaneous Loads

Plug Loads

- Offices: computers or laptops, printers, desk phones, desk lamps, portable fans, space heaters, etc.
- Common space: microwave, mini fridge, coffee maker, water dispenser, monitor, etc.
- Basement: dehumidifier and sump pump

Potential Energy Efficiency Measures (EEMs)

No Cost/Low Cost Measures

- Retro-commissioning of HVAC systems and controls
 - Utilize programmable thermostats to setback space temperature when the building is unoccupied
- Implement HW supply temperature reset

Capital Measures

- Install window film for solar heat gain reduction
- Repair foundation
- Replace interior fluorescent light fixtures with LED fixtures
 - Consider onboard occupancy sensor control for individual fixture dimming/staging, or on/off control based on occupancy for public spaces
 - Consider onboard daylight sensor control for individual fixture dimming/staging based on sensed daylight for public spaces that have adequate daylight harvesting opportunity
- Replace exterior light fixtures with LED fixtures
- Replace HW circulating pumps and motors with electronically commutated motors
- Consider replacing window AC units with ductless split systems
- Integrate building systems into campus BAS

O&M Measures

• Repair missing insulation

SUNY OSWEGO | MAINTENANCE (BUILDING 12) BUILDING ASSESSMENT

Building Description

Building Name:	Maintenance (Building 12)
Year Constructed:	1965
No. of Floors:	1
Est. GSF:	20,664

Recent Building Upgrades

• None

Functional Description

The maintenance building, also called Building 12, is an administrative building located on the southern side of Route 104. The one-story building, housing the department of facilities services, consists of one main hallway joining offices and workspaces.

Occupancy Patterns

The maintenance building is occupied 24/7, primarily from 7 a.m. to 4 p.m.

Building Envelope

Roof

- Flat roof; no roof access during walk-through
- Insulation type and levels not accessible during walk-through

Exterior Walls

- Concrete masonry with a stone façade
- Insulation type and levels not accessible during walk-through

Windows

• Clear, single glazed, awning and fixed, steel frame windows with shades

Doors

• Building entryway doors are clear, double glazed, aluminum frame doors

Air Infiltration/Leakage

No excessive infiltration was observed

Utilities

Electricity

• Electricity is fed to the building from the National Grid electric substation on Washington Boulevard

Natural Gas

- The building has a National Grid gas service separate from the rest of the campus
 - Used for space heating and domestic hot water heating

District Steam

• This building does not receive steam from the Central Heating Plant

Submeters

• None observed during walk-through

Lighting

Interior Fixture Types

- Predominant lighting types as follows:
 - Corridor: Surface mount fixtures with LED lamps
 - Offices and workspaces: Prismatic troffer fixtures with linear T8 fluorescent lamps

Interior Lighting Controls

• No automatic controls observed during walk-through

Exterior Lighting and Controls

- Recessed and surface mount fixtures with high-intensity discharge (HID) lamps
- Exterior lights on campus are controlled by photosensors and astronomical time clocks

HVAC

Central Heating System

- One (1) high-efficiency boiler generates heating hot water (HW) for building heating
 - Lochinvar Model PBN1501 natural gas-fired hot water boiler
 - 1,260 thousand Btus per hour (MBH) output
 - 84% thermal efficiency
 - Manufactured 2018
 - Two (2) HW pumps circulate HW to building heating terminals. HW pump motors are constant speed.
 - Bell & Gossett base-mounted centrifugal pumps
 - HW temperature setback from 6 p.m. to 8 a.m.

Central Cooling System

• No central cooling in this building

Air Handling Units

• One (1) ductless mini-split system serves the IT Project Manager's office

Exhaust Systems

· Several rooftop exhaust fans with constant speed motors serve the building

Zone Heating/Cooling

- Finned tube radiation provides perimeter heating in offices, workspaces, and storage rooms
- Cabinet unit heaters serve interior offices, workspaces, and entryways
 - Temperature control through non-programmable wall thermostat
 - 62°F setpoint observed during walk-through
- Window air conditioning units serve the offices and workspaces

HVAC Controls

Building Automation System

• This building is not connected to the campus building automation system (BAS)

Operating Schedules

• HW system scheduled to operate in occupied mode from 8 a.m. to 6 p.m.

Domestic/Service Water Heating

Domestic Water Heaters

- One (1) natural draft, natural gas-fired automatic tank water heater
 - 50-gallon capacity
 - 40 MBH input
 - Installed 2021

DHW Load

- · Bathroom hand sinks and showers
- Break room kitchenette sinks

Piping and Ductwork

Piping Systems/Insulation

Spot observations of piping and ductwork insulation revealed no remarkable deficiencies

Equipment Insulation

Spot observations of equipment insulation revealed no remarkable deficiencies

Piping and Ductwork Leaks

• Spot observations revealed no leakage issues

Miscellaneous Loads

Plug Loads

- Offices: computers or laptops, desk phones, desk lamps, etc.
- Break rooms: fridges, microwaves, coffee makers, etc.

Potential Energy Efficiency Measures (EEMs)

No Cost/Low Cost Measures

- Install automatic interior lighting controls on existing LED fixtures
- Retro-commissioning of HVAC systems and controls
 - Enable reset of HW supply temperature based on outside air temperature
- Install low-flow or ultra low-flow showerheads

Capital Measures

- Replace single glazed windows with high performance windows
- Replace interior fluorescent light fixtures with LED fixtures
 - Consider onboard occupancy sensor control for individual fixture dimming/staging, or on/off control based on occupancy for public spaces
 - Consider onboard daylight sensor control for individual fixture dimming/staging based on sensed daylight for public spaces that have adequate daylight harvesting opportunity
- Replace exterior light fixtures with LED fixtures
- Integrate building systems into campus BAS

O&M Measures

• No O&M opportunities identified during walk-through

SUNY OSWEGO | MARY WALKER HEALTH CENTER BUILDING ASSESSMENT

Building Description

Building Name:	Mary Walker Health Center
Year Constructed:	1965
No. of Floors:	1 + Basement
Est. GSF:	33,260

Recent Building Upgrades

Interior renovation – 2021

Functional Description

Mary Walker Health Center is the campus health care facility, located next to Lake Ontario on SUNY Oswego's main campus. The building houses a waiting area, medical exam rooms, offices, and counseling suite.

Occupancy Patterns

The building is open from 8:30 a.m. to 4 p.m. on weekdays only.

Building Envelope

Roof

- Flat roof; no roof access during walk-through
- Insulation type and levels not accessible during walk-through

Exterior Walls

Brick masonry

Windows

• Double hung, steel frame windows with tempered insulating glass

Doors

• Building entryway doors are metal frame doors with tempered insulating glass

Air Infiltration/Leakage

No excessive infiltration was observed

Utilities

Electricity

• Electricity is fed to the building from the National Grid electric substation on Washington Boulevard

Natural Gas

• This building does not receive natural gas

District Steam

- Steam is distributed to the campus at 50 psig and is reduced to 12-13 psig within the building
 - Condensate is collected and returned from Mary Walker Health Center to the Central Heating Plant

Submeters

• This building has a campus-managed Electro Industries revenue grade electricity submeter

Lighting

Interior Fixture Types

- Predominant lighting types as follows:
 - Basement: Mix of fluorescent and LED lighting
 - Waiting area: Pendant fixtures with LEDs
 - Offices: Offices were not accessible during walk-through
 - Exam rooms: Exam rooms were not accessible during walk-through

Interior Lighting Controls

• Occupancy sensors in offices

Exterior Lighting and Controls

- Predominant exterior lighting type is LED wall pack fixtures
- Exterior lights on campus are controlled by photosensors and astronomical time clocks

HVAC

Central Heating System

- One (1) shell & tube steam-to-hot-water converter HX-1 generates heating hot water (HW) for building heating
 - Bell & Gossett heat exchanger, manufactured 2021
 - Two (2) hot water pumps circulate HW to building. Both HW pumps have variable frequency drive (VFD) control of pump motor speed based on differential pressure.
 - Bell & Gossett in-line pumps with 5 horsepower (hp) motors, rated for 75 gallons per minute (gpm) at 70 feet of head
 - HW supply temperature is reset based on outside air (OA) temperature
 - 180°F supply temperature at OA temperature of 0°F and below
 - 125°F supply temperature at OA temperature of 50°F and above

Variable Refrigerant Flow (VRF) System

- A VRF system serves the building
 - Two-pipe simultaneous heating and cooling system
 - Air-cooled condensing unit located outside
 - Indoor units provide heating and cooling to the rooms
 - Wall-mounted and ceiling cassette types

- Two (2) energy recovery ventilators ERV-1 and ERV-2 pre-condition the supply air
 - 100% OA units
 - Supply fan motors controlled by VFDs
 - Exhaust fan motors controlled by VFDs
 - Heat wheels with VFDs recovers heat from the exhaust airstreams
 - HW reheat coils
 - Each unit has separate heating and cooling direct expansion (DX) coils connected to the condensing unit outside

Air Handling Units

- One (1) heating and ventilating unit HV-1 serves the waiting area
 - Constant volume single-zone unit
 - Constant speed supply and return fan motors
 - HW preheat and heating coils

Exhaust Systems

- Four (4) exhaust fans serve the building
 - EF-1 serves the red bag room
 - EF-2 and EF-4 serve clinic areas
 - EF-3 serves the penthouse
 - Integral damper and direct digital controls (DDC)

Zone Heating/Cooling

• Nine (9) HW and steam unit heaters serve the building

HVAC Controls

Building Automation System

• Trane Tracer® Ensemble[™] building automation system (BAS) used for monitoring, DDC, and energy management of HVAC systems

Operating Schedules

- EF-1 is scheduled to operate in occupied mode 24/7
- Other HVAC systems are scheduled to operate in occupied mode from 7 a.m. to 5:30 p.m. daily

Domestic/Service Water Heating

Domestic Water Heaters

- One (1) Bradford White electric water heater
- One (1) CEMline semi-instantaneous steam-fired water heater
 - 6-gallon capacity

DHW Load

- Bathroom hand sinks
- Medical room sinks

Piping and Ductwork

Piping Systems/Insulation

· Spot observations of piping and ductwork insulation revealed no remarkable deficiencies

Equipment Insulation

- Steam-to-HW converter, manufactured 2021, was not insulated at the time of the 2022 walk-through
- Spot observations of other equipment insulation revealed no remarkable deficiencies

Piping and Ductwork Leaks

• Spot observations revealed no leakage issues

Miscellaneous Loads

Plug loads

- Offices: desktop computers, laptops, chargers, printer/fax machine, etc.
- Medical rooms: autoclave

Specialty Systems

Air Compressors

• One (1) air compressor generates compressed air for pneumatic controls

Potential Energy Efficiency Measures (EEMs)

No Cost/Low Cost Measures

- Retro-commissioning of HVAC systems and controls
- Scheduling of HVAC equipment and space temperature setbacks
- Implement pump differential pressure reset controls on the HW pumps
- Setback equipment during academic breaks

Capital Measures

- Replace interior fluorescent light fixtures in basement with LED fixtures
- Install building-level steam submeter
- Consider installing occupancy-based HVAC controls
- Convert HV-1 to single-zone variable air volume (VAV) system by installing VFD on system and implementing a temperature-based control scheme to modulate airflow
- Replace pneumatic actuators with electric actuators

O&M Measures

- Change any v-belt fan drives to cogged belt fan drives
- · If not already implemented, install insulation on the steam-to-HW converter

SUNY OSWEGO | SERVICE BUILDING 20 BUILDING ASSESSMENT

Building Description

Building Name:	Service Building 20
Year Constructed:	1971
No. of Floors:	2
Est. GSF:	14,850

Recent Building Upgrades

• None

Functional Description

Service Building 20, also called Garage Building 20, is an administrative building on the east side of campus housing the office of sustainability and the departments of publications, technology, and facility services. The upper floor consists of offices, workspace, and a publications studio. The lower floor is comprised of a bicycle repair shop and a kitchenette primarily used to store campus compost.

Occupancy Patterns

Service Building 20 is occupied from 8 a.m. to 5 p.m. on weekdays and closed on weekends.

Building Envelope

Roof

- Flat roof; no roof access during walk-through
- Insulation type and levels not accessible during walk-through

Exterior Walls

- Concrete masonry with a brick façade
- Insulation type and levels not accessible during walk-through

Windows

- Clear, double glazed, fixed and awning, aluminum frame windows
 - Interior window shades or curtains in most offices

Doors

• Building entryway doors are metal doors with small, clear, double glazed sidelights

Air Infiltration/Leakage

No excessive infiltration was observed

Utilities

Electricity

• Electricity is fed to the building from the National Grid electric substation on Washington Boulevard

Natural Gas

- This building has a National Grid gas service separate from the rest of the campus
 - · Used for space heating and domestic hot water heating

District Steam

• This building does not receive steam from the Central Heating Plant

Submeters

• None observed during walk-through

Lighting

Interior Fixture Types

- Predominant lighting types as follows:
 - Corridors: Industrial surface mount fixtures with linear T8 fluorescent lamps
 - Offices: Recessed prismatic fixtures with linear T8 fluorescent lamps

Interior Lighting Controls

• No automatic controls observed during walk-through

Exterior Lighting and Controls

- Predominant exterior lighting type is high-intensity discharge (HID)
- Exterior lights on campus are controlled by photosensors and astronomical time clocks

HVAC

Central Heating System

- One (1) cast-iron boiler generates heating hot water (HW) for building heating
 - Weil-McLain Model LGB natural gas-fired hot water boiler
 - 650 thousand Btus per hour (MBH) input
 - 526.5 MBH output
 - 81% thermal efficiency
 - Two (2) hot water pumps circulate HW to building heating terminals. Both HW pump motors are constant speed.
 - Bell & Gossett in-line circulating pumps

Central Cooling System

No central cooling system

Air Handling Units

- One (1) rooftop air handling unit serves the building
 - Supply fan motor controlled by variable frequency drive (VFD) to maintain supply flow
 - Roof not accessible during walk-through

Exhaust Systems

· Several rooftop exhaust fans with constant speed motors serve the building

Zone Heating/Cooling

- Electric baseboards and HW finned tube radiation provide perimeter heating
 - Electric baseboard heaters have integrated thermostats
- Unit heaters serve the interior rooms
- Linear slot diffusers distribute air across windows

HVAC Controls

Building Automation System

• This building is not connected to the campus building automation system (BAS)

Operating Schedules

• Operating schedules could not be verified during walk-through

Domestic/Service Water Heating

Domestic Water Heaters

- One (1) natural draft, natural gas-fired automatic tank water heater
 - 40-gallon capacity
 - 35.5 thousand Btus per hour (MBH) input
 - Manufactured 2009

DHW (Domestic Hot Water) Load

- Bathroom hand sinks
- Kitchenette sink

Piping and Ductwork

Piping Systems/Insulation

- Some DHW piping is missing insulation in several areas
- Spot observations of HW piping and ductwork insulation revealed no remarkable deficiencies

Equipment Insulation

• Spot observations of equipment insulation revealed no remarkable deficiencies

Piping and Ductwork Leaks

• Spot observations revealed no leakage issues

Miscellaneous Loads

Plug Loads

- Offices: computers or laptops, desk phones, desk lamps, space heaters, etc.
- Production studio: computers, monitors, umbrella and softbox lights, etc.
- Break room: fridge, microwave, coffee maker, etc.

Specialty Systems

Air Compressors

• One (1) air compressor generates compressed air for pneumatic controls

Potential Energy Efficiency Measures (EEMs)

No Cost/Low Cost Measures

- Retro-commissioning of HVAC systems and controls
 - Scheduling of HVAC equipment and space temperature setbacks
- Implement HW supply temperature reset
- Setback equipment during academic breaks

Capital Measures

- Install window film for solar heat gain reduction
- Replace interior fluorescent light fixtures with LED fixtures
 - Consider onboard occupancy sensor control for individual fixture dimming/staging, or on/off control based on occupancy for public spaces
 - Consider onboard daylight sensor control for individual fixture dimming/staging based on sensed daylight for public spaces that have adequate daylight harvesting opportunity
- Replace exterior light fixtures with LED fixtures
- Replace HW circulating pumps and motors with electronically commutated motors
- Replace fan motors with beyond premium efficiency motors at end of useful life
- Add hot water zone valves for controlling individual spaces served by fin tube radiation
- Replace pneumatic actuators with electric actuators
- Integrate building systems into campus BAS

O&M Measures

- Change v-belt fan drives to cogged belt fan drives
- Repair missing insulation

Appendix C EEM Supporting Documents

- EEM-1 Interior LED Lighting Retrofit
- EEM-2 Exterior LED Lighting Retrofit
- EEM-3 Retro-Commissioning
- EEM-4 HVAC Scheduling
- EEM-5 Occupancy Based HVAC Controls
- EEM-6 Differential Pressure Reset Controls
- EEM-7 Multizone VAV Static Pressure Reset Controls
- EEM-8 Implement Demand Controlled Ventilation
- EEM-9 Implement Kitchen Demand Controlled Ventilation
- EEM-10 Implement Laboratory Demand Controlled Ventilation
- EEM-11 Install VFD on Pump Motor
- EEM-12 Convert Constant Volume Single Zone System to Single Zone VAV System
- EEM-13 Install Pool Dehumidification System

SUNY Oswego

Summary of Energy Efficiency Measures (EEM)

EEM No.	Potential EEM	Buildings Affected	Annual Electrical Savings (kWh/yr)	Electrical Peak Demand Savings (kW)	Annual Natural Gas Savings (Therms/yr)	Annual Energy Savings (MMBtu/year)	y Annual Energy Cost Savings) (\$/yr)	Estimated Capital Cost	Simple Payback Period (years)	SIR	IRR	Annual GHG Reduction (MTCO2e)	Campus Site EUI Reduction (kBtu/GSF/yr)	Percent EUI Reduction	Notes
	LIGHTING					-									
EEM-1	Interior LED Lighting Retrofit	SHELDON HALL, J C PARK HALL, CAMPUS CENTER, REC & CONVOCATION CTR, J LANIGAN HALL	142,860	55.8	-1,544	333	\$7,805	\$414,177	53.1	0.3	-13%	8	0.1	0.1%	1
EEM-2	Parking Lot and Roadway LED Retrofit	CAMPUS GROUND	151,247	34.7	0	516	\$8,924	\$1,998,482	224.0	0.1	-23%	17	0.1	0.2%	1
	LIGHTING SUBTOTAL		205,875	63.3	-1,081	594	\$11,710	\$2,412,659	206.0	0.1	-23%	18	0.2	0.2%	
	HVAC AND CONTROLS														
EEM-3	Retro-Commissioning	Campus Wide	815,562	0.0	82,558	11,039	\$81,472	\$246,586	3.0	1.6	18%	532	3.2	4.1%	1
EEM-4	HVAC Scheduling	Campus Wide	640,306	0.0	201,482	22,333	\$119,177	\$4,136	0.0	82.9	2845%	1,144	6.4	8.3%	1
EEM-5	Occupancy Based HVAC Controls	Campus Wide	1,838,301	0.0	207,110	26,983	\$192,132	\$3,730,696	19.4	0.7	-4%	1,312	7.7	10.0%	1, 2
EEM-6	Pump Differential Pressure Reset Control	Campus Wide	164,705	10.2	0	562	\$9,718	\$37,107	3.8	3.9	25%	19	0.2	0.2%	1
EEM-7	Multizone VAV Static Pressure Reset Controls	Campus Wide	192,792	33.8	0	658	\$11,375	\$24,248	2.1	7.0	46%	22	0.2	0.2%	1
EEM-8	Implement Demand Controlled Ventilation	Campus Wide	728	1.0	68,951	6,898	\$27,899	\$40,655	1.5	9.4	65%	366	2.0	2.6%	1
EEM-9	Implement Kitchen Demand Controlled Ventilation	REC & CONVOCATION CTR, PATHFINDER DH, LAKESIDE DH, COOPER DH	108,195	32.2	19,498	2,319	\$14,261	\$192,867	13.5	1.1	1%	116	0.7	0.9%	1
EEM-10	Implement Laboratory Demand Controlled Ventilation	RICHARD S SHINEMAN CENTER	1,714,816	0.0	116,014	17,452	\$148,044	\$503,100	3.4	4.3	28%	814	5.0	6.5%	1
EEM-11	Install VFD on Pump Motor	Campus Wide	294,149	30.7	0	1,004	\$17,355	\$402,611	23.2	0.6	-5%	34	0.3	0.4%	1
EEM-12	Convert CVSZ to SZVAV	Campus Wide	376,296	96.7	0	1,284	\$22,201	\$142,040	6.4	2.3	13%	43	0.4	0.5%	1
EEM-13	Install Pool Dehumidification System	LAKER HALL, M V LEE HALL	4,830	-48.3	38,215	3,838	\$15,724	\$1,099,423	69.9	0.2	-16%	204	1.1	1.4%	1
	HVAC AND CONTROLS SUBTOTAL		4,305,476	109.4	513,680	66,058	\$461,550	\$6,423,470	13.9	1.1	-3%	3,224	18.9	24.5%	
	GRAND TOTAL		4,511,351	172.7	512,599	66,653	\$473,260	\$8,836,129	18.7	0.9	-6%	3,242	19.1	24.7%	
	BuildSmart 2025 Reduction Goal		-	-	-	146,332	-	-	-	-	-	-		-	3
	% of BuildSmart Reduction Goal		-	-	-	46%	-	-	-	-	-	-		-	
	Total of IRR >= 7%		2,733,643	99.2	328,304	42,158	\$293,920	\$997,873	3.4	3.9	21%	2,058	12.0	15.6%	
	% of BuildSmart Reduction Goal		-	-	-	29%	-	-	-	-	-	-		-	

Notes

1 Energy savings will be impacted by interactive effects from other measures. These interactive effects were not considered when calculating energy savings.

2 Measure assumes EEM-3 HVAC Scheduling would be implemented prior to using occupancy based HVAC controls. Measure only accounts for savings during typical building occupied hours.

3 Value provided by NYPA. SUNY has an overall goal of ~4.4 TBtu (4,410,860 MMBTU); SUNY Oswego's goal is 146,332 MMBTU.

4 Subtotals are multiplied by a 0.7 interactive factor to account for interaction between measures.

5 LCCA performed over the expected useful life of each measure (EUL). Annual escalation rates for the utility costs are based on a US Department of Energy (DOE) rate schedule for commercial buildings in the state of New York (Annual Supplement to Handbook 135, Energy Price Indices and Discount Factors for LCC Analysis, NISTIR 85-3273)

ENERGY

SUNY OSWEGO | EEM-1 INTERIOR LED LIGHTING RETROFIT

Energy Opportunity Area: Lighting

Buildings Affected: Sheldon Hall, Park Hall, Marano Campus Center, Lanigan Hall

Table 1. EEM-1 Summary Data

Description	Values	Units
Annual Electrical Energy Savings	142,860	kWh/year
Electrical Peak Demand Savings	55.8	kW
Annual Electrical Energy Cost Savings	\$8,429	\$/year
Annual Natural Gas Savings	-1,544	Therms/year
Annual Fossil Fuel Cost Savings	(\$624)	\$/year
Total Annual Energy Cost Savings	\$7,805	\$/year
Estimated Implementation Cost	\$414,177	\$
Simple Payback Period	53.1	years
Savings to Investment Ratio	0.3	-

Existing Conditions/Baseline

A room-by-room survey of areas that underwent a targeted audit was completed to quantify the types of lighting fixtures and controls that exist in the targeted areas and the potential to upgrade the lighting systems to LED technologies.

Campus interior lighting fixtures are predominantly comprised of linear T8 fluorescent and compact fluorescent lamp (CFL) technologies. In general, fluorescent fixtures are near end of life and maintaining the existing fixtures would not be recommended unless there was a hazardous material concern that could not be accommodated. Building areas that have been renovated more recently have been upgraded with LED technologies. Overall, it is estimated that about 50% of the campus interior lighting has been upgraded to LED fixtures.

Interior lighting is locally controlled through manual switches or occupancy sensors; there is no campus wide control of the fixtures through the building automation system. Daylight is available in many spaces, but daylighting controls were not observed in any buildings.

Recommended Action

Visual comfort and student performance of educational spaces can be improved by replacing fluorescent recessed and surface mounted fixtures with close to the ceiling, linear LED fixtures that provide some uplight on the ceiling in addition to direct illumination on the student work surfaces. Providing vertical illuminance on teaching walls and sidewalls will provide visual relief during presentations and lecture.

Downlights can be replaced with LED retrofit downlights, which are available from several manufacturers in a variety of diameters, trim options, and light output; these formats will minimize ceiling damage.

When purchasing LED fixtures, SUNY Oswego should only consider those that are ENERGY STAR labeled or listed on the DesignLights Consortium (DLC) website. These ratings ensure the fixture meets minimum standards for light quality, reliable life, and energy efficiency, and are typically required by utility energy efficiency programs if incentives are pursued. In general, enclosed spaces, such as private offices, conference rooms, and classrooms, would benefit from vacancy controls (manual ON, automatic OFF). Open offices and public areas, such as restrooms, would benefit from occupancy controls (automatic ON/OFF). Public circulation, such as corridors, lobbies, entrances, and stairwells can dim to minimum required light levels instead of turning completely off based on sensed occupancy. Alternatively, every other or every third fixture could be controlled by occupancy sensors to maintain minimum light levels. Large open areas, such as lobbies, would benefit from local area controllers to activate zoning options and light level options based on the varying needs of the spaces. Areas with ample daylight, in particular the corridor and the food court of Marano Campus Center, should consider daylighting controls to automatically adjust fixture light levels based on available natural light.

This EEM recommends new LED fixtures be specified with onboard sensing for occupancy/vacancy and daylight controls to provide real-time energy tuning for every space. Implementation of onboard sensing technologies eliminates the need to install remote sensors (ceiling or wall mounted) or a head end control system to realize the energy benefits of sophisticated controls. The specification of a single product will include both the new fixture and the controls. Onboard sensors will dim, or turn off, fixtures when enough light is available in the space and will turn off fixtures on the condition of vacancy. An additional benefit of onboard sensing technologies is that the fixture and the control device are of the same manufacturer and covered under a single warranty.

Estimated Energy Savings

A lighting survey was conducted for the targeted areas addressed by this measure. Operating hours were estimated for each space type based on observations and discussions with facility personnel. Savings were calculated based on the difference between the existing fixture wattage and proposed LED replacement wattage and reduction in operating hours due to the installation of recommended lighting controls.

Supporting documents include the lighting survey documenting the type and quantity of fixtures and controls located in each space in the building, along with estimated fixture input power and annual equivalent full load hours (EFLH). Proposed LED fixtures and controls are presented as well with fixture input power and EFLH. In addition to direct energy savings from the proposed lighting retrofit, indirect energy savings were calculated to account for the energy impact on the building heating and cooling systems; the reduction in heat gain to the space from the new LED fixtures will reduce cooling energy requirements and increase heating energy requirements. The basis for indirect savings is listed at the bottom of the lighting survey and analysis spreadsheet provided below.

Table 2 presents estimated savings, implementation costs, and simple payback period that could result from the proposed lighting projects.

Building	Annual Electrical Energy Savings (kWh)	Electric Peak Demand Savings (kW)	Total Natural Gas Savings (therms)	Total Annual Energy Cost Savings	Estimated Implementation Cost	Simple Payback Period
0001 - SHELDON HALL	13,149	9	-142	\$718	\$13,335	18.6
0002 - J C PARK HALL	369	0	-4	\$20	\$1,051	52.1
0003 - CAMPUS CENTER	29,734	6	-321	\$1,624	\$68,918	42.4
003B - REC & CONVOCATION CTR	59,428	12	-642	\$3,247	\$29,653	9.1
0006 - J LANIGAN HALL	40,179	28	-434	\$2,195	\$301,221	137.2

Table 2. EEM-1 Savings

Building	Annual Electrical Energy Savings (kWh)	Electric Peak Demand Savings (kW)	Total Natural Gas Savings (therms)	Total Annual Energy Cost Savings	Estimated Implementation Cost	Simple Payback Period
Total	142,860	55.8	-1,544	\$7,805	\$414,177	53.1

Estimated Project Cost

Costs presented in Table 3 represent the scope of work described previously. Labor costs were estimated based on RS Means 2023. LED fixture costs were estimated based on previous projects and internet research.

Table	3.	EEM-1	Estimated	Project	Costs

Item Description	Quantity	Unit	Unit Cost	Subtotal
Light Fixtures	1	Lump Sum	-	\$281,453
Motion Sensor Controls	1	Lump Sum	-	\$6,688
Daylighting Controls	1	Lump Sum	-	\$1,494
Labor and Materials Subtotal				\$289,635
General Conditions	10%			\$28,963
Labor and Materials Cost Total				\$318,598
Architectural & Engineering Fees	10%			\$31,860
Construction Management Fees	10%			\$31,860
Contingency	10%			\$31,860
Project Cost Subtotal				\$414,177
Agency Administrative Fee	0%			\$0
Total Project Cost				\$414,177

Ramboll - SUNY Oswego | EEM-1 Interior LED Lighting Retrofit

EEM-1 – INTERIOR LED LIGHTING RETROFIT

SUPPORTING DOCUMENTS

Fixture Table

SUNY Oswego

	Existing Fixtures						Proposed Fixtures						Proposed Replacement		
Fixture ID	Description	Lamp Type	Nominal Lamp Watts	# Lamps	Input Watts	Lamp Life (Hrs)	Description	Lamp Type	Nominal Lamp Watts	# Lamps	Input Watts	Lamp/ Fixture Life (Hrs)	Labor	Material	Total
А	4-Lamp F32T8, IS Ballast, NBF	F32T8	32	4	112	24,000	59W LED Troffer	LED	59	1	59	50,000	\$235	\$277	\$511
В	2-Lamp F32T8, IS Ballast, NBF	F32T8	32	2	59	24,000	40W 4ft LED Pendant	LED	40	1	40	50,000	\$201	\$210	\$411
С	1-Lamp MH250	MH250	250	1	295	10,000	150W LED Corn Bulb	LED	150	1	150	50,000	\$64	\$115	\$179
D	4-Lamp F48T5/HO, PS Ballast	F48T5/HO	54	4	234	36,000	96W 8ft LED Pendant	LED	96	1	96	50,000	\$165	\$248	\$413
E	1-Lamp CFQ26W	CFQ26W	26	1	27	15,000	22W LED Recessed Downlight	LED	22	1	22	50,000	\$111	\$32	\$143
F	2-Lamp F32T8, IS Ballast, NBF	F32T8	32	2	59	24,000	36W LED Wall Wash Cove Light	LED	36	1	36	50,000	\$235	\$230	\$464
G	1-Lamp F32T8, IS Ballast, NBF	F32T8	32	1	31	24,000	22W 4ft LED Strip Light	LED	22	1	22	50,000	\$109	\$39	\$148
н	1-Lamp F17T8, IS Ballast, NBF	F17T8	17	1	20	24,000	15W 2ft LED Strip Light	LED	15	1	15	50,000	\$109	\$36	\$145
I	6-Lamp CFT40W	CFT40W	40	6	276	15,000	23W LED PL-L	LED	23	6	138	50,000	\$89	\$111	\$199
J	2-Lamp CFQ18W	CFQ18W	18	2	38	15,000	22W LED Recessed Downlight	LED	22	1	22	50,000	\$111	\$32	\$143
к	50W 4ft LED Pendant	LED	50	1	50	50,000	50W 4ft LED Pendant	LED	50	1	50	50,000	\$0	\$0	\$0
L	15W LED Recessed Downlight	LED	15	1	15	50,000	15W LED Recessed Downlight	LED	15	1	15	50,000	\$0	\$0	\$0
М	68W Linear LED	LED	68	1	68	50,000	68W Linear LED	LED	68	1	68	50,000	\$0	\$0	\$0
N	2-Lamp F32T8, IS Ballast, NBF	F32T8	32	2	59	24,000	40W 4ft LED Pendant	LED	40	1	40	50,000	\$201	\$210	\$411
0	3-Lamp F32T8, IS Ballast, NBF	F32T8	32	3	89	24,000	50W 4ft LED Pendant	LED	50	1	50	50,000	\$143	\$107	\$250
Р	1-Lamp CF42W	CF42W	42	1	48	15,000	23W LED PL-L	LED	23	1	23	50,000	\$15	\$18	\$33
Space Types and Annual Hours

SUNY Oswego

		Annual
Space Type	Description	Hours
OFF	Enclosed Office	1,549
OP OFF	Open Office	3,098
STO	Storage	774
ELEC/MECH	Electrical/Mechanical Space	943
CONF	Conference Room	1,162
CLASS	Classroom	1,549
REST	Restroom	3,098
CORR	Corridor	5,260
STAIR	Stairway	8,760
24/7	24/7 Operation	8,760

Lighting Survey and Proposed Upgrades

SUNY Oswego

Baseline Summary	
Total Connected Load (kW)	72.6
Annual Equivalent Full Load Hours (EFLH)	2.643
Total Annual Energy Use (kWh)	191,952
Proposed Summarv	
Total Connected Load (kW)	39.5
Annual Equivalent Full Load Hours (EFLH)	1.601
Total Annual Energy Use without New Controls (kWh)	101,892
Total Annual Enerov Use with New Motion Controls (kWh)	66.999
Total Annual Energy Use with New Motion + Davlighting Controls (kWh)	63.249
Savinos Summarv	
Total Connected Load Reduction (kW)	33.1
Annual Equivalent Full Load Hours (EFLH)	1.042
Fixture Upgrade Energy Savings (kWh)	90.059
Motion Control Energy Savings (kWh)	34,894
Davlighting Control Energy Savings (kWh)	3.750
Interactive Electric Energy Savings (kWh)	14,157
Total Electric Energy Savings (kWh)	142.860
Interactive Fossil Energy Savings (Therms)	-1.544

	Basic Proj	ject Inform	ation		1	1	1	1	1	Existing	Conditions			East	Candle					Propos	ed Conditi	ions Added Liel	bting Control	le		Connecto	Fixture	Motion	Daylighting	Interactive	Total	Totoractive		
Line Item	Building	Room #	Room Name/Type	Fixture ID	Fixture Qty	Fixture Description	Watts/ Fixture	Installe kW	d Motion Control	Sensor Quantity	# Fixtures Daylighting Controlled Control	Sensor Quantity	# Fixtures EFLI Controlled	High	Low	Fixture Qty	Fixture Description	Watts/ Fixture	Installed kW	Motion Control	Sensor Quantity	# Fixtures Controlled	Daylighting Control	Sensor Quantity	# Fixtures EFL Controlled	Load Reductio (kW)	 Upgrade Energy Savings (kWh) 	Control Energy Savings (kWh)	Control Energy Savings (kWh)	Electric Energy Savings (kWh)	Electric Energy Savings (kWh)	Fossil Energy Savings	Units	Notes
1	0001 - SHELDON	104	Historic Lecture	I	42	6-Lamp CFT40W	276	11.6	NONE		NONE		1,54	TRUE		42	23W LED PL-L	138	5.8	CEILING	1	42	NONE		1,08	4 5.8	8,978	2,693	0	1,284	12,955	-140	Therms	
2	0001 - SHELDON	104	Historic Lecture	L J	5	2-Lamp CFQ18W	38	0.2	NONE		NONE		1,54	TRUE		5	22W LED Recessed	22	0.1	CEILING	0	5	NONE		1,08	4 0.1	124	51	0	19	194	-2	Therms	
3	0002 - J C PARK	315	Lecture Hall	к	8	50W 4ft LED Pendant	50	0.4	NONE		NONE		1,54	TRUE		8	50W 4ft LED Pendant	50	0.4	CEILING	3	8	NONE		1,08	4 0.0	0	186	0	20	206	-2	Therms	
4	0002 - J C PARK	315	Lecture Hall	L	12	15W LED Recessed	15	0.2	NONE		NONE		1,54	TRUE		12	15W LED Recessed	15	0.2	CEILING	0	12	NONE		1,08	4 0.0	0	84	0	9	93	-1	Therms	
5	0002 - J C PARK	315	Lecture Hall	м	2	68W Linear LED	68	0.1	NONE		NONE		1,54	TRUE		2	68W Linear LED	68	0.1	CEILING	0	2	NONE		1,08	4 0.0	0	63	0	7	70	-1	Therms	
6	0003 - CAMPUS	Corridor	Corridor	0	20	3-Lamp F32T8, IS	89	1.8	NONE		NONE		5,26) TRUE		20	50W 4ft LED Pendant	50	1.0	BI- LEVEL	0	20	DAYLIGHT	0	10 2,79	4 0.8	4,103	1,972	493	722	7,291	-79	Therms	
7	0003 - CAMPUS	Corridor	Corridor	в	100	2-Lamp F32T8, IS	59	5.9	NONE		NONE		5,26	TRUE		100	40W 4ft LED Pendant	40	4.0	B1- LEVEL	16	100	DAYLIGHT	4	39 2,90	3 1.9	9,993	7,890	1,538	2,136	21,558	-233	Therms	
8	0003 - CAMPUS	Corridor	Corridor	Р	4	1-Lamp CF42W	48	0.2	NONE		NONE		5,26) TRUE		4	23W LED PL-L	23	0.1	LEVEL	0	4	DAYLIGHT	0	4 2,30	1 0.1	526	181	91	88	886	-10	Therms	
9	003B - REC &	Food	Corridor	с	11	1-Lamp MH250	295	3.2	NONE		NONE		5,26	TRUE		11	150W LED Corn Bulb	150	1.7	BI- LEVEL	2	11	DAYLIGHT	2	11 2,30	1 1.6	8,389	3,254	1,627	1,460	14,731	-159	Therms	
10	003B - REC &	Concourse	Corridor	D	44	4-Lamp F48T5/HO,	234	10.3	NONE		NONE		5,26) TRUE		44	96W 8ft LED Pendant	96	4.2	BI- LEVEL	0	44	DAYLIGHT	0	0 3,28	7 6.1	31,937	8,331	0	4,430	44,698	-483	Therms	
11	0006 - J LANIGAN	101	Lecture Hall	A	93	4-Lamp F32T8, IS	112	10.4	NONE		NONE		1,54	TRUE		93	59W LED Troffer	59	5.5	CEILING	5	93	NONE		1,08	4 4.9	7,635	2,550	0	1,120	11,305	-122	Therms	
12	0006 - J LANIGAN	101	Lecture Hall	E	8	1-Lamp CFQ26W	27	0.2	NONE		NONE		1,54	TRUE		8	22W LED Recessed	22	0.2	CEILING	0	8	NONE		1,08	4 0.0	62	82	0	16	160	-2	Therms	
13	0006 - J LANIGAN	101	Lecture Hall	F	24	2-Lamp F32T8, IS	59	1.4	NONE		NONE		1,54	TRUE		24	36W LED Wall Wash	36	0.9	CEILING	0	24	NONE		1,08	4 0.6	855	401	0	138	1,395	-15	Therms	
14	0006 - J LANIGAN	101	Lecture Hall	G	6	1-Lamp F32T8, IS Ballact_NBE	31	0.2	NONE		NONE		1,54	TRUE		6	22W 4ft LED Strip	22	0.1	CEILING	0	6	NONE		1,08	4 0.1	84	61	0	16	161	-2	Therms	
15	0006 - J LANIGAN	101	Lecture Hall	н	2	1-Lamp F17T8, IS	20	0.0	NONE		NONE		1,54	TRUE		2	15W 2ft LED Strip	15	0.0	CEILING	0	2	NONE		1,08	4 0.0	15	14	0	3	33	0	Therms	
16	0006 - J LANIGAN	102	Lecture Hall	A	24	4-Lamp F32T8, IS Ballast, NPF	112	2.7	NONE		NONE		1,54	TRUE		24	59W LED Troffer	59	1.4	CEILING	2	24	NONE		1,08	4 1.3	1,970	658	0	289	2,917	-32	Therms	
17	0006 - J LANIGAN	102	Lecture Hall	E	6	1-Lamp CFQ26W	27	0.2	NONE		NONE		1,54	TRUE		6	22W LED Recessed	22	0.1	CEILING	0	6	NONE		1,08	4 0.0	46	61	0	12	120	-1	Therms	
18	0006 - J LANIGAN	102	Lecture Hall	F	21	2-Lamp F32T8, IS	59	1.2	NONE		NONE		1,54	TRUE		21	36W LED Wall Wash	36	0.8	CEILING	0	21	NONE		1,08	4 0.5	748	351	0	121	1,220	-13	Therms	
19	0006 - J LANIGAN	102	Lecture Hall	G	5	1-Lamp F32T8, IS Ballact NBE	31	0.2	NONE		NONE		1,54	TRUE		5	22W 4ft LED Strip	22	0.1	CEILING	0	5	NONE		1,08	4 0.0	70	51	0	13	134	-1	Therms	
20	0006 - J LANIGAN	103	Lecture Hall	A	24	4-Lamp F32T8, IS Ballast, NBE	112	2.7	NONE		NONE		1,54	TRUE		24	59W LED Troffer	59	1.4	CEILING	2	24	NONE		1,08	4 1.3	1,970	658	0	289	2,917	-32	Therms	
21	0006 - J LANIGAN	103	Lecture Hall	E	6	1-Lamp CFQ26W	27	0.2	NONE		NONE		1,54	TRUE		6	22W LED Recessed	22	0.1	CEILING	0	6	NONE		1,08	4 0.0	46	61	0	12	120	-1	Therms	
22	0006 - J LANIGAN	103	Lecture Hall	F	21	2-Lamp F32T8, IS	59	1.2	NONE		NONE		1,54	TRUE		21	36W LED Wall Wash	36	0.8	CEILING	0	21	NONE		1,08	4 0.5	748	351	0	121	1,220	-13	Therms	
23	0006 - J LANIGAN	103	Lecture Hall	G	5	1-Lamp F32T8, IS Ballast, NBE	31	0.2	NONE		NONE		1,54	TRUE		5	22W 4ft LED Strip	22	0.1	CEILING	0	5	NONE		1,08	4 0.0	70	51	0	13	134	-1	Therms	
24	0006 - J LANIGAN	104	Lecture Hall	A	38	4-Lamp F32T8, IS Ballast, NBE	112	4.3	NONE		NONE		1,54	TRUE		38	59W LED Troffer	59	2.2	CEILING	3	38	NONE		1,08	4 2.0	3,120	1,042	0	458	4,619	-50	Therms	
25	0006 - J LANIGAN	104	Lecture Hall	E	8	1-Lamp CFQ26W	27	0.2	NONE		NONE		1,54	TRUE		8	22W LED Recessed	22	0.2	CEILING	0	8	NONE		1,08	4 0.0	62	82	0	16	160	-2	Therms	
26	0006 - J LANIGAN	104	Lecture Hall	F	16	2-Lamp F32T8, IS Ballast_NBF	59	0.9	NONE		NONE		1,54	TRUE		16	36W LED Wall Wash Cove Lipht	36	0.6	CEILING	0	16	NONE		1,08	4 0.4	570	268	0	92	930	-10	Therms	
27	0006 - J LANIGAN	104	Lecture Hall	G	6	1-Lamp F32T8, IS	31	0.2	NONE		NONE		1,54	TRUE		6	22W 4ft LED Strip	22	0.1	CEILING	0	6	NONE		1,08	4 0.1	84	61	0	16	161	-2	Therms	
28	0006 - J LANIGAN	104	Lecture Hall	н	2	1-Lamp F17T8, IS Ballast_NBF	20	0.0	NONE		NONE		1,54	TRUE		2	15W 2ft LED Strip	15	0.0	CEILING	0	2	NONE		1,08	4 0.0	15	14	0	3	33	0	Therms	
29	0006 - J LANIGAN	105	Lecture Hall	A	38	4-Lamp F32T8, IS	112	4.3	NONE		NONE		1,54	TRUE		38	59W LED Troffer	59	2.2	CEILING	3	38	NONE		1,08	4 2.0	3,120	1,042	0	458	4,619	-50	Therms	
30	0006 - J LANIGAN	105	Lecture Hall	E	8	1-Lamp CFQ26W	27	0.2	NONE		NONE		1,54	TRUE		8	22W LED Recessed	22	0.2	CEILING	0	8	NONE		1,08	4 0.0	62	82	0	16	160	-2	Therms	
31	0006 - J LANIGAN	105	Lecture Hall	F	16	2-Lamp F32T8, IS	59	0.9	NONE		NONE		1,54	TRUE		16	36W LED Wall Wash	36	0.6	CEILING	0	16	NONE		1,08	4 0.4	570	268	0	92	930	-10	Therms	
32	0006 - J LANIGAN	105	Lecture Hall	G	6	1-Lamp F32T8, IS Ballast NBF	31	0.2	NONE		NONE		1,54	TRUE		6	22W 4ft LED Strip	22	0.1	CEILING	0	6	NONE		1,08	4 0.1	84	61	0	16	161	-2	Therms	
33	0006 - J LANIGAN	105	Lecture Hall	н	2	1-Lamp F17T8, IS	20	0.0	NONE		NONE		1,54	TRUE		2	15W 2ft LED Strip	15	0.0	CEILING	0	2	NONE		1,08	4 0.0	15	14	0	3	33	0	Therms	
34	0006 - J LANIGAN	106	Lecture Hall	A	24	4-Lamp F32T8, IS Ballact_NBE	112	2.7	NONE		NONE		1,54	TRUE		24	59W LED Troffer	59	1.4	CEILING	2	24	NONE		1,08	4 1.3	1,970	658	0	289	2,917	-32	Therms	
35	0006 - J LANIGAN	106	Lecture Hall	E	6	1-Lamp CFQ26W	27	0.2	NONE		NONE		1,54	TRUE		6	22W LED Recessed	22	0.1	CEILING	0	6	NONE		1,08	4 0.0	46	61	0	12	120	-1	Therms	
36	0006 - J LANIGAN	106	Lecture Hall	F	21	2-Lamp F32T8, IS Ballast NBF	59	1.2	NONE		NONE		1,54	TRUE		21	36W LED Wall Wash	36	0.8	CEILING	0	21	NONE		1,08	4 0.5	748	351	0	121	1,220	-13	Therms	
37	0006 - J LANIGAN	106	Lecture Hall	G	5	1-Lamp F32T8, IS Ballast NBF	31	0.2	NONE		NONE		1,54	TRUE		5	22W 4ft LED Strip	22	0.1	CEILING	0	5	NONE		1,08	4 0.0	70	51	0	13	134	-1	Therms	
38	0006 - J LANIGAN	107	Lecture Hall	N	31	2-Lamp F32T8, IS Ballart NBE	59	1.8	NONE		NONE		1,54	TRUE		31	40W 4ft LED Pendant	40	1.2	CEILING	2	31	NONE		1,08	4 0.6	912	576	0	164	1,652	-18	Therms	
39	0006 - J LANIGAN	107	Lecture Hall	E	6	1-Lamp CFQ26W	27	0.2	NONE		NONE		1,54	TRUE		6	22W LED Recessed	22	0.1	CEILING	0	6	NONE		1,08	4 0.0	46	61	0	12	120	-1	Therms	
40	0006 - J LANIGAN	107	Lecture Hall	G	14	1-Lamp F32T8, IS Ballast_NBF	31	0.4	NONE		NONE		1,54	TRUE		14	22W 4ft LED Strip	22	0.3	CEILING	0	14	NONE		1,08	4 0.1	195	143	0	37	376	-4	Therms	
				Total:	740	-	-	73	-	0	o -	0	0 2,64	3 -	-	740	-	-	39.5	-	41	740	-	6	64 1,6	1 33.1	90,059.	5 34,893.6	3,749.5	14,157.3	142,859.8	-1,544.4		

ES Mag Energy Saving Magnetic Ballast IS Instant Start Electronic Ballast RS Rapid Start Electronic Ballast PS Program Start Electronic Ballast

Low Ballast Factor (<0.85) High Ballast Factor (0.96-1.1) Very High Ballast Factor (>1.1)

IS RS PS LBF HBF

Notes: 1 Luistina control savinas cadulated based on the methodolov described in the New York Standard Acorasch for Estimating Energy Savinas from Energy Efficiency Programs, V9 (Issued August 30, 2021), 2 Netatina and cooline interactive effects aculated based on the methodolovy described in the New York Standard Approach for Estimating Energy Savinas from Energy Efficiency Programs, V9 (Issued August 30, 2021), 3 Concidente each demand calculated based on methodolovy described in the New York Standard Approach for Estimating Energy Savinas from Energy Efficiency Programs, V9 (Issued August 30, 2021), 3 Concidente each demand calculated based on methodolovy described in the New York Standard Approach for Estimating Energy Savinas from Energy Efficiency Programs, V9 (Issued August 30, 2021), 3 Concidente each demand calculated based on methodolovy described in the New York Standard Approach for Estimating Energy Savinas from Energy Efficiency Programs, V9 (Issued August 30, 2021), 3 Concidente each demand calculated described in the New York Standard Approach for Estimating Energy Savinas from Energy Efficiency Programs, V9 (Issued August 30, 2021), 3 Concidente each demand calculated described in the New York Standard Approach for Estimating Energy Savinas from Energy Efficiency Programs, V9 (Issued August 30, 2021), 3 Concidente each demand calculated described in the New York Standard Approach for Estimating Energy Savinas from Energy Efficiency Programs, V9 (Issued August 30, 2021), 3 Concidente each methodolovic described in the New York Savinas from Energy Efficiency Programs, V9 (Issued August 30, 2021), 3 Concidente each described and the Savinas from Energy Efficiency Programs, V9 (Issued August 30, 2021), 3 Concidente each methodolovic described in the New York Savinas from Energy Efficiency Savinas from Energy Efficiency Programs, V9 (Issued August 30, 2021), 3 Concidente each end to Savinas from Energy Efficiency Efficiency Savinas from Energy Efficiency Efficiency Efficiency Efficiency

LIFE CYCLE COST ANALYSIS

ECM No.:	EEM-1		
ECM Title:	Interior LED Lighting Retro	ofit	
General Parameters			
Base Date:	1/1/2023		
Service Date:	1/1/2023		
Study Period (Years):	15		
Discount Rate:	3%		
Cost Escalation:	0%		
FEMP UPV Discount Factor (Elect.):	14.96		
FEMP UPV Discount Factor (NG):	13.70		
<u>Cost Data</u>	Baseline	Proposed	Savings
Initial Capital Cost:		\$414,177	(\$414,177)
Annual Electricity Costs:	\$11,325	\$3,732	\$7,593
Annual Natural Gas Costs:	\$0	\$0	\$0
Annual CHP Natural Gas Costs:	\$0	\$0	\$0
Annual CHW Costs:	\$0	\$0	\$0
Annual HTHW Costs:	\$0	\$0	\$0
Annual Water Costs:	\$0	\$0	\$0
Annual OM&R Costs:	\$8,444	\$8,444	\$0
Other Recurring Annual Costs:	\$0	\$0	\$0
Life Cycle Cost Calculations	Baseline	Proposed	<u>Savings</u>
Present Value Investment Costs, I:	\$0	\$414,177	(\$414,177)
Present-Value Capital Replacement Cost, Repl:	\$0	\$0	\$0
Present Value Residual Cost, Res:	\$0	\$0	\$0
Present Value Energy Costs, E:	\$169,409	\$55,821	\$113,588
Present Value Water Cost, W:	\$0	\$0	\$0
Present Value O&M and Other Recurring Costs, OM&R:	\$100,799	\$100,799	\$0
LCC:	\$270,208	\$570,798	(\$300,590)
Savings to Investment Ratio Calculations			
Present Value Energy Cost Savings, DE:	\$113,588		
Present Value Water Cost Savings, DW:	\$0		
Present Value OM&R Cost Savings, DOM&R:	\$0		
SIR:	0.27		

Note: Calculations are in accordance with the National Institute of Standards and Technology, NIST Handbook 135, Life-Cycle Costing Manual for the Federal Energy Management Program, 1995.

SUNY OSWEGO | EEM-2 PARKING LOT AND ROADWAY LED RETROFIT

Energy Opportunity Area: Lighting

Buildings Affected: Campus

Table 1. EEM-2 Summary Data

Description	Values	Units
Annual Electrical Energy Savings	151,247	kWh/year
Electrical Peak Demand Savings	0.0	kW
Annual Electrical Energy Cost Savings	\$8,924	\$/year
Annual Natural Gas Savings	0	Therms/year
Annual Fossil Fuel Cost Savings	\$0	\$/year
Total Annual Energy Cost Savings	\$8,924	\$/year
Estimated Implementation Cost	\$1,998,482	\$
Simple Payback Period	224.0	years
Savings to Investment Ratio	0.07	-

Existing Conditions/Baseline

Campus parking lots and roadways are illuminated with pole mounted lighting fixtures. Most areas have 250W – 400W metal halide or 42W compact fluorescent fixtures. According to facility staff, approximately 30% to 50% of the fixtures have been retrofit with LED fixtures.

Recommended Action

This measure considers the installation of LED lighting technologies in parking lots and roadways that have not been replaced. New LED fixtures can significantly reduce energy consumption, provide higher quality light, and increase service life compared to existing high intensity discharge (HID) technologies. Significant maintenance savings can be achieved as well because of the higher fixture life of LED technology compared to HID technologies. Many LED fixtures have an expected life of 50,000 hours, compared to 10,000 to 24,000 hours for HID lamps. Some LED fixtures claim to last for 100,000 hours. The LED fixtures can be specified with integrated photocell control.

When purchasing LED fixtures, SUNY Oswego should only consider those that are ENERGY STAR labeled or listed on the DesignLights Consortium (DLC) website. These ratings ensure the fixture meets minimum standards for light quality, reliable life, and energy efficiency, and are typically required by utility energy efficiency programs if incentives are pursued.

Estimated Energy Savings

A 2010 electrical distribution infrastructure study conducted by C&S Engineers, Inc. was used to inventory parking lot and roadway lighting fixtures. The savings analysis assumes that 40% of the fixtures have already been replaced. Operating hours were estimated based on observations and discussions with facility personnel. Savings were calculated based on the difference between the existing fixture wattage and proposed LED replacement wattage and estimated annual operating hours.

Supporting documents include the lighting survey documenting the type and quantity of fixtures, along with estimated fixture input power and annual equivalent full load hours (EFLH). Proposed LED fixtures are presented as well with fixture input power and EFLH.

Table 2 presents estimated savings, implementation costs, and simple payback period that could result from the proposed project.

Table 2. EEM-2 Savings

	Baseline	Proposed	Savings
Effective Full Load Hours	4,365	4,365	0
Connected Load (kW)	74.2	39.6	34.7
Exterior Lighting Energy (kWh)	324,018	172,771	151,247

Estimated Project Cost

Costs presented in Table 3 are from the 2010 C&S Engineers, Inc infrastructure study and escalated by 34% to 2022 dollars based on historical consumer price index (CPI) published by the United States Bureau of Labor Statistics¹. This cost includes the replacement of the fixture and any light poles and mounting for fixtures that have not been replaced with LED fixtures. Replacement of light poles greatly increases the project cost but can be justified from an infrastructure renewal perspective since the equipment is near or past its end of life.

Table 3. EEM-2 Estimated Project Costs

Item Description	Quantity	Unit	Unit Cost	Subtotal
Light Fixtures	1	Lump Sum	-	\$1,397,540
Motion Sensor Controls	1	Lump Sum	-	\$0
Daylighting Controls	1	Lump Sum	-	\$0
Labor and Materials Subtotal				\$1,397,540
General Conditions	10%			\$139,754
Labor and Materials Cost Total				\$1,537,294
Architectural & Engineering Fees	10%			\$153,729
Construction Management Fees	10%			\$153,729
Contingency	10%			\$153,729
Project Cost Subtotal				\$1,998,482
Agency Administrative Fee	0%			\$0
Total Project Cost				\$1,998,482

¹ <u>https://www.bls.gov/regions/mid-atlantic/data/consumerpriceindexhistorical_us_table.htm</u>

2010 average CPI = 218.1

2022 average CPI = 292.7

34.2% inflation rate from 2010 to 2022

Ramboll - SUNY Oswego | EEM-2 Parking Lot and Roadway LED Retrofit

EEM-2 – PARKING LOT AND ROADWAY LED RETROFIT

SUPPORTING DOCUMENTS

Fixture Table

SUNY Oswego

		Existing	Fixtures			Proposed Fixtures										
Fixtur e ID	Description	Lamp Life (Hrs)	Description	Lamp Type	Nominal Lamp Watts	# Lamps	Input Watts	Lamp/ Fixture Life (Hrs)	Cost Per Fixture							
А	4-Way Accent Lighting, Fluorescent, 8' height	CFL	42	1	48	15,000	23W LED PL_L Lamp	0	23	1	23	50,000	\$1,072			
В	Accent Lighting, 2'x2' Square, 2' height	CFL	42	1	48	15,000	23W LED PL_L Lamp	0	23	1	23	50,000	\$6,030			
С	Accent Lighting, Compact Fluorescent, 4' height	CFL	42	1	48	15,000	23W LED PL_L Lamp	0	23	1	23	50,000	\$1,072			
D	Dual-Box Head, Metal Halide, 25' height	MH	250	2	590	10,000	2 x 150W LED Box Light	0	150	2	300	50,000	\$7,102			
E	Dual-Oval Head, Metal Halide, 20' height	MH	250	2	590	10,000	2 x 150W LED Cobrahead Light	0	150	2	300	50,000	\$7,370			
F	Globe Accent Lighting, Fluorescent, 4' height	CFL	42	1	48	15,000	23W LED PL_L Lamp	0	23	1	23	50,000	\$1,340			
G	Globe, Fluorescent, 8' height	CFL	42	1	48	15,000	23W LED PL_L Lamp	0	23	1	23	50,000	\$3,350			
н	Lamp Post, Compact Fluorescent, 6' height	CFL	42	1	48	15,000	23W LED PL_L Lamp	0	23	1	23	50,000	\$1,005			
I	Lamp Post, Fluorescent, 8' height	CFL	42	1	48	15,000	23W LED PL_L Lamp	0	23	1	23	50,000	\$1,340			
J	Round, Ground Light, Compact Fluorescent, 8"-10" height	CFL	42	1	48	15,000	23W LED PL_L Lamp	0	23	1	23	50,000	\$174			
к	Single-Box Head, Metal Halide, 20'-25' height	MH	250	1	295	10,000	150W LED Box Light	0	150	1	150	50,000	\$6,030			
L	Single-Globe, Reflective, 15' height	MH	100	1	128	10,000	80W LED Retrofit Lamp	0	80	1	80	50,000	\$3,350			
М	Single-Oval Head, Metal Halide, 20'-25' height	MH	250	1	295	10,000	150W LED Cobrahead Light	0	150	1	150	50,000	\$5,963			
N	Triple-Box Head, Metal Halide, 25' height	MH	250	3	885	10,000	3 x 150W LED Box Light	0	150	3	450	50,000	\$8,308			
0	Dual-Box Head, Metal Halide, 40'-50' height	MH	400	2	916	10,000	2 x 300W LED Shoebox Light	0	300	2	600	50,000	\$8,040			
Р	Single-Box Head, Metal Halide, 50' heightMH400145810,00						300W LED Shoebox Light	0	300	1	300	50,000	\$6,968			

Space Types and Annual Hours

SUNY Oswego

Space Type	Description	Annual Hours
EXT_TC	Exterior (Seasonal Timeclock)	4,563
EXT_PC	Exterior (Photocell Control)	4,365

Lighting Survey and Proposed Upgrades

SUNY Oswego

Baseline Summary							
Total Connected Load (kW)	74.2						
Annual Equivalent Full Load Hours (EFLH)	4,365						
Total Annual Energy Use (kWh)							
Proposed Summary							
Total Connected Load (kW)	39.6						
Annual Equivalent Full Load Hours (EFLH)	4.365						
Total Annual Energy Use (kWh)	172.771						
Savings Summary							
Total Connected Load Reduction (kW)	34.7						
Total Electric Energy Savings (kWh)	151,247						

	Basic Project Information						Exi	iting Condi	tions										Propose	ed Condi	itions													
									Lighting Control				Foot-C	Candle							Added Ligi	hting Contro				Connected	linorado	Control	Control	Electric	Electric	Interactive		
Line Iter	n Description	Fixture ID	Fixture Qty	Fixture Description	Watts/ Fixture	Installed kW	Motion Control	Sensor Quantity	# Fixtures Daylighting Controlled Control	g Sensor Quantity	# Fixtures Controlled		High		Fixture Qty	Fixture Description	Watts/ Fixture	Installed kW	Motion S Control Q	iensor uantity	# Fixtures Controlled	Daylighting Control	Sensor Quantity	# Fixtures Controlled		Load Reduction (kW)	Energy Savings (kWh)	Energy Savings (kWh)	Energy Savings (kWh)	Energy Savings (kWh)	Energy Savings (kWh)	Fossil Energy Savings	Units	Notes
1	4-Way Accent Lighting, Fluorescent, 8' height	А	3	4-Way Accent Lighting, Fluorescent, 8' height	48	0.1	NONE		NONE			4,365			3	23W LED PL_L Lamp	23	0.1	NONE			NONE			4,365	0.1	327	0	0	0	327	0	Therms	
2	Accent Lighting, 2'x2' Square, 2' height	в	5	Accent Lighting, 2'x2' Square, 2' height	48	0.2	NONE		NONE			4,365			5	23W LED PL_L Lamp	23	0.1	NONE			NONE			4,365	0.1	546	0	0	0	546	0	Therms	
3	Accent Lighting, Compact Fluorescent, 4' height	с	3	Accent Lighting, Compact Fluorescent, 4' height	48	0.1	NONE		NONE			4,365			3	23W LED PL_L Lamp	23	0.1	NONE			NONE			4,365	0.1	327	0	0	0	327	0	Therms	
4	Dual-Box Head, Metal Halide, 25' height	D	27	Dual-Box Head, Metal Halide, 25' height	590	15.9	NONE		NONE			4,365			27	2 x 150W LED Box Light	300	8.1	NONE			NONE			4,365	7.8	34,178	0	0	0	34,178	0	Therms	
5	Dual-Oval Head, Metal Halide, 20' height	E	3	Dual-Oval Head, Metal Halide, 20' height	590	1.8	NONE		NONE			4,365			3	2 x 150W LED Cobrahead Light	300	0.9	NONE			NONE			4,365	0.9	3,798	0	0	0	3,798	0	Therms	
6	Globe Accent Lighting, Fluorescent, 4' height	F	4	Globe Accent Lighting, Fluorescent, 4' height	48	0.2	NONE		NONE			4,365			4	23W LED PL_L Lamp	23	0.1	NONE			NONE			4,365	0.1	437	0	0	0	437	0	Therms	
7	Globe, Fluorescent, 8' height	G	30	Globe, Fluorescent, 8' height	48	1.4	NONE		NONE			4,365			30	23W LED PL_L Lamp	23	0.7	NONE			NONE			4,365	0.8	3,274	0	0	0	3,274	0	Therms	
8	Lamp Post, Compact Fluorescent, 6' height	н	6	Lamp Post, Compact Fluorescent, 6' height	48	0.3	NONE		NONE			4,365			6	23W LED PL_L Lamp	23	0.1	NONE			NONE			4,365	0.2	655	0	0	0	655	0	Therms	
9	Lamp Post, Fluorescent, 8' height	I	3	Lamp Post, Fluorescent, 8' height	48	0.1	NONE		NONE			4,365			3	23W LED PL_L Lamp	23	0.1	NONE			NONE			4,365	0.1	327	0	0	0	327	0	Therms	
10	Round, Ground Light, Compact Fluorescent, 8"-10" height	ı	3	Round, Ground Light, Compact Fluorescent, 8"-10" height	48	0.1	NONE		NONE			4,365			3	23W LED PL_L Lamp	23	0.1	NONE			NONE			4,365	0.1	327	0	0	0	327	0	Therms	
11	Single-Box Head, Metal Halide, 20'-25' height	к	67	Single-Box Head, Metal Halide, 20'-25' height	295	19.8	NONE		NONE			4,365			67	150W LED Box Light	150	10.1	NONE			NONE			4,365	9.7	42,406	0	0	0	42,406	0	Therms	
12	Single-Globe, Reflective, 15' height	L	34	Single-Globe, Reflective, 15' height	128	4.4	NONE		NONE			4,365			34	80W LED Retrofit Lamp	80	2.7	NONE			NONE			4,365	1.6	7,124	0	0	0	7,124	0	Therms	
13	Single-Oval Head, Metal Halide, 20'-25' height	м	65	Single-Oval Head, Metal Halide, 20'-25' height	295	19.2	NONE		NONE			4,365			65	150W LED Cobrahead Light	150	9.8	NONE			NONE			4,365	9.4	41,140	0	0	0	41,140	0	Therms	
14	Triple-Box Head, Metal Halide, 25' height	N	1	Triple-Box Head, Metal Halide, 25' height	885	0.9	NONE		NONE			4,365			1	3 x 150W LED Box Light	450	0.5	NONE			NONE			4,365	0.4	1,899	0	0	0	1,899	0	Therms	
15	Dual-Box Head, Metal Halide, 40'-50' height	0	5	Dual-Box Head, Metal Halide, 40'-50' height	916	4.6	NONE		NONE			4,365			5	2 x 300W LED Shoebox Light	600	3.0	NONE			NONE			4,365	1.6	6,897	0	0	0	6,897	0	Therms	
16	Single-Box Head, Metal Halide, 50' height	Р	11	Single-Box Head, Metal Halide, 50' height	458	5.0	NONE		NONE			4,365			11	300W LED Shoebox Light	300	3.3	NONE			NONE			4,365	1.7	7,586	0	0	0	7,586	0	Therms	
		Total:	270	-	-	74.2	-	0	o -	0	0	4,365		-	270	-	-	39.6	-	0	0	-	0	0	4,365	34.7	151,247	0	0	0	151,247	0		

Sulfat Key
 Sulfat Key
 Sulfat Key
 Solar
 Solar

FE⊵

LIFE CYCLE COST ANALYSIS

ECM No.:	EEM-2
ECM Title:	Parking Lot and Roadway LED Retrofit
General Parameters	
Base Date:	1/1/2023
Service Date:	1/1/2023
Study Period (Years):	15
Discount Rate:	3%
Cost Escalation:	0%
EMP UPV Discount Factor (Elect.):	14.96
FEMP UPV Discount Factor (NG):	13.70

<u>Cost Data</u>	Baseline	Proposed	Savings
Initial Capital Cost:		\$1,998,482	(\$1,998,482)
Annual Electricity Costs:	\$19,117	\$10,193	\$8,924
Annual Natural Gas Costs:	\$0	\$0	\$0
Annual Water Costs:	\$0	\$0	\$0
Annual OM&R Costs:	\$41,926	\$41,926	\$0
Other Recurring Annual Costs:	\$0	\$0	\$0

Life Cycle Cost Calculations	Baseline	Proposed	<u>Savings</u>
Present Value Investment Costs, I:	\$0	\$1,998,482	(\$1,998,482)
Present-Value Capital Replacement Cost, Repl:	\$0	\$0	\$0
Present Value Residual Cost, Res:	\$0	\$0	\$0
Present Value Energy Costs, E:	\$285,966	\$152,481	\$133,485
Present Value Water Cost, W:	\$0	\$0	\$0
Present Value O&M and Other Recurring Costs, OM&R:	\$500,512	\$500,512	\$0
LCC:	\$786,478	\$2,651,475	(\$1,864,997)
Savings to Investment Ratio Calculations			

SIR:	0.07	
Present Value OM&R Cost Savings, DOM&R:	\$0	
Present Value Water Cost Savings, DW:	\$0	
Present Value Energy Cost Savings, DE:	\$133,485	
Savings to Investment Ratio Calculations		

Note: Calculations are in accordance with the National Institute of Standards and Technology, NIST Handbook 135, Life-Cycle Costing Manual for the Federal Energy Management Program, 1995.

SUNY OSWEGO | EEM-3 RETRO-COMMISSIONING

Energy Opportunity Area: HVAC, Building Automation System (BAS), Lighting

Buildings Affected: Marano Campus Center, Tyler Hall, Rich Hall, The Village Townhouses, Johnson Hall, Riggs Hall, Waterbury Hall, Scales Hall

Table 1. EEM-3 Summary Data

Description	Values	Units
Annual Electrical Energy Savings	815,562	kWh/year
Electrical Peak Demand Savings	0.0	kW
Annual Electrical Energy Cost Savings	\$48,118	\$/year
Annual Natural Gas Savings	82,558	Therms/year
Annual Natural Gas Cost Savings	\$33,354	\$/year
Total Annual Energy Cost Savings	\$81,472	\$/year
Estimated Implementation Cost	\$246,586	\$
Simple Payback Period	3.0	Years
Savings to Investment Ratio	1.6	-

Recommended Action

This measure considers retro-commissioning (RCx) the campus buildings. RCx is the application of the commissioning process to existing buildings to meet the Current Facility Requirements (CFR) and optimize the building's energy performance and occupant comfort characteristics. Newly constructed buildings are sometimes commissioned to a set of operating parameters that are not necessarily the most energy efficient. Energy efficiency and occupant comfort deteriorate as control schemes are modified, occupancy loads shift, existing equipment ages, key operating parameters drift away from their ideal operating states or setpoints. Frequently, routine maintenance issues are "solved" by compensating for them in ways that are not energy efficient. An example would be to operate a chiller to cool the building when an AHU's economizer feature is not operating properly. Additionally, if a building was not commissioned when constructed, it may be that it was never operating optimally.

It is not uncommon to find that the operating parameters of a building's sub-systems (*i.e.*, for an HVAC system, the temperature setpoints, air and water flows, valve and damper positions) are not well documented. When design operating conditions are misunderstood or unknown, facility staff may operate the equipment based on assumptions that are incorrect. RCx can include the development or revision of documentation, such as system manuals, that describe the building operating sequences and can serve as a basis for training the technicians who operate and service the building.

When performed correctly, RCx can provide significant benefits for the owner such as:

- Improved energy performance (6% median savings achieved per LBNL Study cited below)
- Improved equipment performance
- Increased asset value
- Improved thermal comfort and indoor air quality
- Training opportunities for building maintenance staff
- Improved building documentation (System Manuals)

Confidential

The RCx (also referred to as existing building commissioning or EBCx) process involves functionally testing and adjusting building sub-systems and ultimately demonstrating that they are being operated and maintained according to the CFR. According to the newest (2018) research from Lawrence Berkeley National Laboratory (LBNL) and the Building Commissioning Association (BCxA), building commissioning remains a cost-effective way to improve building operations and reduce energy use. The 2018 study (https://www.energy.gov/eere/buildings/articles/new-doe-research-strengthens-business-case-building-commissioning) is an update to the 2009 study entitled "Building Commissioning – A Golden Opportunity for Reducing Energy Costs and Greenhouse Gas Emissions" and now includes nearly 1,500 new and existing building Cx projects. Of the 684 existing building Cx projects, 112 are higher education buildings.

The results revealed that the most common problems were associated with the HVAC systems and controls. RCx energy savings typically ranged from 3-10% with a median of 6%. Simple payback typically ranged from 1-4 years with a median of 2.2 years. Higher education projects showed similar savings as the whole population and simple paybacks typically within 2-5 years and a median of 3 years.

Larger buildings with HVAC systems that are less than 20 years old, and those that have DDC control systems, are generally good candidates for retro-commissioning. Small buildings and those with pneumatic controls often lack the type of sensors and controls necessary to implement the type of diagnostics and functional testing that can lead to significant performance improvements. Buildings with HVAC systems older than 20 years are approaching the end of their useful design life and would most likely benefit from a more extensive HVAC renovation or system replacement. Buildings with very simple HVAC infrastructure and control strategies also do not benefit as much. It would be more beneficial to upgrade the HVAC systems of such buildings to include energy saving features such as economizers and VFDs, and commission the systems as part of the upgrade project.

Retro-commissioning can provide many non-energy benefits. These may include improved thermal comfort, indoor environmental quality, and productivity; reduced occupant complaints, absenteeism, emergency repair calls, and liability; extended equipment life; and additional maintenance staff training. It is also an important component of LEED for Existing Buildings: Operations & Maintenance for buildings seeking certification.

To fully realize the benefits that RCx can provide, it is a good idea to address major outstanding repair and maintenance issues prior to implementing the project. Retro-commissioning should be performed every three to five years to maintain top levels of building performance and persistence of energy savings.

Estimated Energy Savings

Table 2 presents estimated energy savings that could be potentially achieved from retro-commissioning of campus buildings, along with RCx costs and simple payback periods. The LBNL study referenced above was used as the basis for estimating potential energy savings and costs to perform the commissioning process.

As noted previously, the 2018 LBNL study shows that RCx savings typically range from 3-10% of total building energy use. The percent energy savings were scaled for each building based on the comparison of the actual energy use intensity (EUI) to the CBECS benchmark from the Preliminary Energy Use Analysis (PEA). Buildings that were at or below the CBECS benchmark were assumed to have 3% savings from RCx and buildings that are above the CBECS benchmark are scaled up towards the 10% savings referenced in the LBNL study.

Supporting documents include a detailed analysis spreadsheet showing assumed savings potential (percent savings) and estimated RCx cost for each building and the entire campus, along with simple payback period. Many campus buildings may not be good candidates for RCx, particularly those that are less energy intensive such as residence halls (although kitchen and dining hall HVAC systems and controls could benefit).

Table 2. EEM-3 Savings

Building	Annual Electrical Energy Savings (kWh/year)	Annual Natural Gas Savings (Therms/year)	Total Annual Energy Cost Savings (\$/year)	Estimated Implementation Cost	Simple Payback Period
0003 - CAMPUS CENTER	279,628	24,769	26,505	\$63,820	2.4
003B - REC & CONVOCATION CTR	108,319	16,409	13,020	\$33,472	2.6
0007 - J TYLER HALL	92,893	10,912	9,889	\$33,475	3.4
0041 - JOHNSON HALL	60,646	5,652	5,861	\$17,401	3.0
0014 - RICH HALL	60,373	5,342	5,720	\$15,585	2.7
0043 - RIGGS HALL	45,548	4,556	4,528	\$12,804	2.8
0044 - WATERBURY HALL	44,356	4,291	4,351	\$12,642	2.9
0045 - SCALES HALL	44,356	4,291	4,351	\$12,642	2.9
003A - I POUCHER HALL	42,624	4,513	4,338	\$11,623	2.7
0037 - THE VILLAGE TOWNHOUSES	36,818	1,822	2,908	\$33,121	11.4
Total	815,562	82,558	81,472	\$246,586	3.0

Although the actual performance of retro-commissioning was not including in the scope of services for this project, any deficiencies observed during the Level 1 and Level 2 energy audits were recorded and noted in the individual Building Assessment reports. Based on observations made during the energy audits and a review of the BAS, the following deficiencies listed below are examples that would be addressed through retro-commissioning.

- AHUs running at 100% speed on VFDs in Marano Campus Center
- Manual override of setpoints in Tyler Hall, Rich Hall, and Waterbury Hall
- Economizer being disabled in Waterbury Hall
- Waterbury Hall HV-1 supply fan VFD cover missing

Additionally, retro-commissioning may uncover deficiencies not easily observed during a walkthrough survey, such as

- Dampers and valves that are stuck or do not fully open or close
- Faulty sensors or sensor readings
- Issues in BAS programming and controls
- Optimizing sequence of operation and reset schedules

Estimated Project Cost

Costs presented in Table 3 represent the scope of work described below. According to the 2018 LBNL study previously referenced, the typical cost of commissioning existing buildings ranged from \$0.13/GSF to \$0.48/GSF with a median cost of \$0.25/GSF. The 2018 costs per gross square feet were escalated by 17% to 2022 dollars based on historical consumer price index (CPI) published by the United States

Bureau of Labor Statistics¹. For this project, RCx costs were scaled based on the building type. Simple buildings, such as dormitories, were assumed to be on the lower end of the cost range, while more complex buildings, such as Marano Campus Center, were assumed to be on the higher end.

The RCx implementation costs include development of a CFR and RCx Plan, functional testing, trend data analysis, estimating energy savings associated with correcting deficiencies, and developing a final report to document findings and present recommendations. The cost to correct deficiencies identified during the RCx process is not included in the estimate (*e.g.*, repairs that require capital expenses), although no cost/low cost measures that can often be done by in-house staff are commonly identified. These may include HVAC system and equipment schedule and setpoint adjustments through the BAS, repairing disconnected damper linkages or bound dampers, releasing manual overrides, revising sequence of operations to improve energy efficiency, etc.

Item Description	Qty	Unit	Unit Cost	Subtotal
Retro-Commissioning	1	Lump Sum	\$246,586	\$246,586
Labor and Materials Subtotal				\$246,586
General Conditions	0%			\$0
Labor and Materials Cost Total				\$246,586
Architectural & Engineering Fees	0%			\$0
Construction Management Fees	0%			\$0
Contingency	0%			\$0
Project Cost Subtotal				\$246,586
Agency Administrative Fee	0%			\$0
Total Project Cost				\$246,586

Table 3. EEM-3 Estimated Project Costs

¹ <u>https://www.bls.gov/regions/mid-atlantic/data/consumerpriceindexhistorical_us_table.htm</u> 2018 average CPI = 251.1 2022 average CPI = 292.7 17% inflation rate from 2018 to 2022 Ramboll - SUNY Oswego | EEM-3 Retro-Commissioning

EEM-3 – RETRO-COMMISSIONING

SUPPORTING DOCUMENTS

Confidential

RESULTS: EEM-3 RETRO-COMMISSIONING

		Ai	Annual Energy Use (from PEA) Retro-Commissioning										
Building	Gross Floor Area (SF)	Electric	Natural Gas	Total	EUI	Savings Potential	Electric Savings	Natural Gas Savings	Total Savings	Implemen	tation Cost	Cost Savings	SPB
		(kWh)	(Therms)	(MMBtu)	(kBtu/SF)	(%)	(kWh)	(Therms)	(MMBtu)	\$/SF	\$	\$	Years
0003 - CAMPUS CENTER	185,524	2,796,279	247,693	34,310	184.9	10%	279,628	24,769	3,431	\$0.34	\$63,820	\$26,505	2.4
003B - REC & CONVOCATION CTR	115,421	1,083,194	164,093	20,105	174.2	10%	108,319	16,409	2,011	\$0.29	\$33,472	\$13,020	2.6
0007 - J TYLER HALL	115,430	928,926	109,123	14,082	122.0	10%	92,893	10,912	1,408	\$0.29	\$33,475	\$9,889	3.4
0041 - JOHNSON HALL	79,097	637,247	59,385	8,113	102.6	10%	60,646	5,652	772	\$0.22	\$17,401	\$5,861	3.0
0014 - RICH HALL	53,742	625,929	55,387	7,674	142.8	10%	60,373	5,342	740	\$0.29	\$15,585	\$5,720	2.7
0043 - RIGGS HALL	58,201	472,468	47,260	6,338	108.9	10%	45,548	4,556	611	\$0.22	\$12,804	\$4,528	2.8
0044 - WATERBURY HALL	57,464	465,059	44,990	6,086	105.9	10%	44,356	4,291	580	\$0.22	\$12,642	\$4,351	2.9
0045 - SCALES HALL	57,464	465,059	44,990	6,086	105.9	10%	44,356	4,291	580	\$0.22	\$12,642	\$4,351	2.9
003A - I POUCHER HALL	40,080	426,243	45,133	5,968	148.9	10%	42,624	4,513	597	\$0.29	\$11,623	\$4,338	2.7
0037 - THE VILLAGE TOWNHOUSES	150,551	1,227,258	60,731	10,261	68.2	3%	36,818	1,822	308	\$0.22	\$33,121	\$2,908	11.4
Campus Total	912,974	9,127,663	878,785	119,022	130.4	9%	815,562	82,558	11,039	\$0.27	\$246,586	\$81,472	3.0

LIFE CYCLE COST ANALYSIS

ECM No.:	EEM-3	
ECM Title:	Retro-Commissioning	
General Parameters		
Base Date:	1/1/2023	
Service Date:	1/1/2023	
Study Period (Years):	5	
Discount Rate:	3%	
Cost Escalation:	0%	
FEMP UPV Discount Factor (Elect.):	4.93	
FEMP UPV Discount Factor (NG):	4.64	

Cost Data	Baseline	Proposed	Savings
Initial Capital Cost:		\$246,586	(\$246,586)
Annual Electricity Costs:	\$538,532	\$490,414	\$48,118
Annual Natural Gas Costs:	\$355,029	\$321,676	\$33,354
Annual Water Costs:	\$0	\$0	\$0
Annual OM&R Costs:	\$7,398	\$7,398	\$0
Other Recurring Annual Costs:	\$0	\$0	\$0

1.59

Life Cycle Cost Calculations	Baseline	Proposed	<u>Savings</u>
Present Value Investment Costs, I:	\$0	\$246,586	(\$246,586)
Present-Value Capital Replacement Cost, Repl:	\$0	\$0	\$0
Present Value Residual Cost, Res:	\$0	\$0	\$0
Present Value Energy Costs, E:	\$4,302,557	\$3,910,552	\$392,005
Present Value Water Cost, W:	\$0	\$0	\$0
Present Value O&M and Other Recurring Costs, OM&R:	\$33,879	\$33,879	\$0
LCC:	\$4,336,436	\$4,191,017	\$145,419
Savings to Investment Ratio Calculations			
Present Value Energy Cost Savings, DE:	\$392,005		
Present Value Water Cost Savings, DW:	\$0		
Present Value OM&R Cost Savings, DOM&R:	\$0		

Note:

Calculations are in accordance with the National Institute of Standards and Technology, NIST Handbook 135, Life-Cycle Costing Manual for the Federal Energy Management Program, 1995.

SIR:

SUNY OSWEGO | EEM-4 HVAC SCHEDULING

Energy Opportunity Area: HVAC, Building Automation System (BAS)

Buildings Affected: Campus Wide

Table 1. EEM-4 Summary Data

Description	Values	Units
Annual Electrical Energy Savings	640,306	kWh/year
Electrical Peak Demand Savings	0.0	kW
Annual Electrical Energy Cost Savings	\$37,778	\$/year
Annual Natural Gas Savings	201,482	Therms/year
Annual Natural Gas Cost Savings	\$81,399	\$/year
Total Annual Energy Cost Savings	\$119,177	\$/year
Estimated Implementation Cost	\$4,136	\$
Simple Payback Period	0.0	years
Savings to Investment Ratio	82.9	

Existing Conditions/Baseline

The campus operates HVAC equipment on various building-specific schedules with setbacks implemented in some buildings where applicable. However, many buildings currently operate the HVAC equipment 24/7 with no setbacks during unoccupied hours. A summary of current operating hours and typical occupancy hours for each building is included in the supporting documents.

Most buildings and HVAC equipment on campus are connected to at least one of two building automation systems (BAS), which provide monitoring, direct digital control (DDC), and energy management of building HVAC systems:

- Trane Tracer® Ensemble™
- Carrier i-Vu® 8.0

Recommended Action

There is an opportunity to reduce operating hours by adjusting existing HVAC operating schedules to better reflect actual occupancy hours of the buildings, scheduling temperature setbacks during unoccupied periods (*i.e.*, nights, weekends, and holidays), and scheduling equipment to cycle off at night. HVAC scheduling may be done through the existing building automation systems. Even slight temperature and cycling setbacks could considerably reduce operating costs. The setbacks do not have to be extreme. This will allow space temperatures to float between heating and cooling setpoints so building systems do not have to run. A global reset of space heating and cooling temperature setpoints to the default setpoints for any zones that have local overrides can also have a significant impact on operating costs.

Additionally, this measure considers:

- Scheduling equipment off during unoccupied periods and allowing systems to cycle on to meet unoccupied setpoints.
- Closing outdoor air dampers during unoccupied periods.

Estimated Energy Savings

An hourly analysis was performed using Syracuse-Hancock International Airport TMY3 (Typical Meteorological Year) hourly weather data. Heating and cooling loads were estimated based on assumed load profiles and the application of psychrometric routines. Performance curves were applied to adjust equipment input power for off-design conditions. This measure results in AHU fan, heating, and cooling energy savings and terminal reheat savings.

Supporting documents include a summary of assumptions for this measure and savings for individual buildings. Individual building savings were determine based on percent reduction in building operating hours available. New building operating hours were determined by assuming an operating schedule which better reflects typical building occupancy. Some campus buildings did not have an opportunity to reduce operating hours due to existing HVAC scheduling, required 24/7 building operation, or because they are not currently integrated into the BAS. These buildings were not included in the savings summary.

Table 2 summarizes the baseline and post-retrofit energy consumption and estimated energy savings that result from the measure.

	Baseline	Proposed	Savings
Operating Hours	7,632	5,466	2,166
Fan Energy (kWh)	1,542,480	1,108,605	433,875
Cooling Energy (kWh)	993,209	845,207	148,002
Electric Heating Energy (kWh)	1,215,646	1,157,217	58,429
Total Electrical Energy (kWh)	10,798,824	10,158,518	640,306
Natural Gas Heating Consumption (therms)	528,335	326,853	201,482

Table 2. EEM-4 Savings

Estimated Project Cost

Costs presented in Table 3 represent the scope of work described previously and are based on BAS Engineering Labor costs published in RS Means 2023.

Table 3. EEM-4 Estin	nated Project Costs
----------------------	---------------------

Item Description	Qty	Unit	Unit Cost	Subtotal
HVAC Scheduling	40	Hrs.	\$94	\$3,760
Labor and Materials Subtotal				\$3,760
General Conditions	0%			\$0
Labor and Materials Cost Total				\$3,760

Confidential

Item Description	Qty	Unit	Unit Cost	Subtotal
Architectural & Engineering Fees	0%			\$0
Construction Management Fees	0%			\$0
Contingency	10%			\$376
Project Cost Subtotal				\$4,136
Agency Administrative Fee	0%			\$0
Total Project Cost				\$4,136

Ramboll - SUNY Oswego | EEM-4 HVAC Scheduling

EEM-4 – HVAC SCHEDULING

SUPPORTING DOCUMENTS

Confidential

SUMMARY INPUTS: ECM-4 HVAC SCHEDULING - CAMPUS

EXISTING AHU SUPPLY AIR FLOW

EXISTING AHU SUPPLY TEMPERATURE

POST-RETROFIT AHU SUPPLY AIR FLOW

POST-RETROFIT AHU SUPPLY TEMPERATURE

90 AVG VAV DISCHARGE TEMP (°F) 80 80 75 70 70 -55 53 50 -20 60 20 40 80 100 OUTDOOR AIR TEMPERATURE (°F)

EXISTING AVERAGE VAV DISCHARGE TEMPERATURE

EXISTING COOLING EFFICIENCY

EXISTING HEATING EFFICIENCY

POST-RETROFIT AVERAGE VAV DISCHARGE TEMPERATURE

POST-RETROFIT COOLING EFFICIENCY

POST-RETROFIT HEATING EFFICIENCY

RESULTS: EEM-4 HVAC SCHEDULING - CAMPUS

					Baseline EUI														
						Electric	ity		Natural Gas All Fuels		Electric Savings			Natural Gas Savings		Final EUI			
Building	Building Type	Total Building GSF	Typical Weekly Occupied	Current Operating Hours	Heating EUI	Clg EUI	Fan EUI	Total EUI	Heating EUI	Total EUI	Total EUI	Heatin g (kWh)	Cooling (kWh)	Fan (kWh)	Total (kWh)	Heating (Therms)	Electric	Natural Gas	Total
0003 - REC & CONVOCATION CTR, I POUCHER HALL, CAMPUS CENTER	ACADEMIC	341,025	126	168	0.0	4.0	7.4	46.4	88.6	128.8	175.2	0	55,915	104,571	160,487	54,805	44.8	112.7	157.5
0004 - M V LEE HALL	ACADEMIC	65,000	90	168	0.0	0.0	2.6	14.8	61.5	64.6	79.4	0	0	15,850	15,850	16,215	14.0	39.7	53.6
0014 - RICH HALL	ACADEMIC	53,742	75	168	0.0	4.7	7.9	38.5	82.8	99.0	137.5	0	27,183	47,415	74,598	21,538	33.8	58.9	92.7
0015 - MACKIN HALL	DINING	41,984	126	168	0.0	0.0	6.2	35.9	65.5	125.0	160.8	0	0	12,965	12,965	6,009	34.8	110.7	145.5
0019 - LAKER HALL	ACADEMIC	196,608	90	168	0.0	0.0	2.4	14.5	64.8	68.1	82.6	0	0	44,621	44,621	51,718	13.8	41.7	55.5
0021 - ROMNEY FIELD HOUSE	ACADEMIC	55,000	90	168	0.0	0.0	19.6	129.7	99.1	104.1	233.8	0	0	100,561	100,561	22,119	123.5	63.9	187.3
0023A - RICE CREEK FIELD STATION	ACADEMIC	7,500	77	168	56.1	8.0	9.2	118.0	0.0	0.0	118.0	58,429	6,363	7,504	72,296	0	85.1	0.0	85.1
0026 - CULKIN HALL	ADMIN	63,591	55	168	0.0	4.7	8.1	33.8	46.6	50.6	84.4	0	39,082	69,591	108,673	17,442	28.0	23.2	51.2
0031 - PATHFINDER DH	DINING	33,827	126	168	0.0	4.7	7.4	56.0	56.6	158.6	214.6	0	7,727	12,548	20,275	4,184	54.0	146.2	200.2
0042 - LAKESIDE DH	DINING	27,870	126	168	0.0	4.7	6.6	53.2	52.5	154.2	207.4	0	6,366	9,164	15,531	3,195	51.3	142.7	194.0
0047 - COOPER DH	DINING	33,546	126	168	0.0	3.3	5.4	49.3	58.1	160.0	209.3	0	5,364	9,086	14,450	4,257	47.8	147.3	195.1
Campus		919,693			4.8	3.9	6.1	42.8	61.3	83.8	126.5	58,429	148,002	433,875	640,306	201,482	40.4	61.9	102.2

Existing Schedule Summary

Building	HVAC Operating Schedule Description	Observed Occupancy Schedule Description				
0047 - COOPER DH	24/7	8a.m 8:30 p.m. M-F, 10 a.m 8:30 p.m. weekends				
0031 - PATHFINDER DH	24/7	8 a.m 11 p.m. M-Th, 8 a.m 7:30 p.m. F, 9 a.m 11 p.m. weekends				
0042 - LAKESIDE DH	24/7	7 a.m 11 p.m. M-F, 9 a.m 11 p.m. weekends				
0003 - REC & CONVOCATION CTR, I POUCHER HALL, CAMPUS CENTER	AHU-1 is scheduled to operate in occupied mode 7 a.m 11 p.m. daily, other HVAC systems are 24/7	6:30 a.m 1:30 a.m. daily during academic year, 6:30 a.m 9 p.m. M-F during summer break				
0004 - M V LEE HALL	24/7	6 a.m 9 p.m. daily during academic year. Gym operating hours: 11:30 a.m 10 p.m. daily.				
0019 - LAKER HALL	24/7	6 a.m 11 p.m. M-F, 7 a.m 11 p.m. weekends				
0021 - ROMNEY FIELD HOUSE	24/7	Open 7 days with varying occupancy dependent on sport team practice schedules				
0017 - J PENFIELD LIB	24/7	Building occupied 24/7 during academic year. Library operating hours: 8 a.m 11 p.m. M-Th, 8 a.m 7 p.m. F, 11 a.m 7 p.m Sa, 11 a.m 11 p.m. Sun				
0032 - SENECA HALL	24/7	24/7 during academic year				
0033 - CAYUGA HALL	24/7	24/7 during academic year				
0041 - JOHNSON HALL	24/7	24/7 during academic year				
0043 - RIGGS HALL	24/7	24/7 during academic year				
0044 - WATERBURY HALL	24/7	24/7 during academic year				
0045 - SCALES HALL	24/7	24/7 during academic year				
0037 - TOWNHOUSES	24/7	24/7 during academic year				
0001 - SHELDON HALL	Occupied mode 5 a.m 10 p.m. daily	6 a.m 9 p.m. daily during academic year				
0002 - J C PARK HALL	24/7	Occupied 24/7 during academic year with highest occupancy 8 a.m 9 p.m. M-F				
0006 - J LANIGAN HALL	24/7	24/7 during academic year				
0007 - J TYLER HALL	24/7	Occupied 24/7 during academic year with highest occupancy 8 a.m 9 p.m. M-F				
0008 - RICHARD S SHINEMAN CEN	- 24/7	Occupied 24/7 during academic year with highest occupancy 8 a.m 9 p.m. M-F				
0009 - WILBER HALL	24/7 with unoccupied & nighttime setbacks determined in BAS	Occupied 24/7 during academic year with highest occupancy 8 a.m 9 p.m. M-F				
0010 - MARY WALKER HEALTH CEN	Occupied mode 7 a.m 5:30 p.m. daily	8:30 a.m - 4 p.m. M-F				
0013 - M E MAHAR HALL	7 a.m 10 p.m. M-F	8 a.m 9 p.m. M-Th, 8 a.m 4 p.m. F				
0014 - RICH HALL	24/7	8 a.m 9 p.m. M-Th, 8 a.m 4 p.m. F				
0026 - CULKIN HALL	24/7	8 a.m 5 p.m. M-F				
0011 - COMMISSARY BLDG	24/7	3 a.m 9 p.m. M-F, 8 a.m 9 p.m. weekends				
0012 - MAINTENANCE BLDG	Occupied mode 8 a.m 6 p.m.	7 a.m 4 p.m. daily				
0015 - MACKIN HALL	unk	Dining Hall open 3 p.m 7 p.m M-Th. Offices/classrooms/lounges on upper floors open more regularly. Actual operating hours not listed.				
0020 - GAR-20	unk	8 a.m 5 p.m. M-F				
0022 - KING HALL	24/7	8 a.m 5 p.m. M-F				
0023A - RICE CREEK FIELD STATIC	24/7	8 a.m 4:30 p.m. M-F, 9 a.m 3 p.m. Sat, closed Sun				
0035 - LITTLEPAGE DH	6 a.m 11 p.m. M-F, 8 a.m 1 a.m. weekends	7 a.m 8 p.m. M-F, 9 a.m 12 a.m. weekends				

LIFE CYCLE COST ANALYSIS

ECM No.:	EEM-4		
ECM Title:	HVAC Scheduling		
General Parameters			
Base Date:	1/1/2023		
Service Date:	1/1/2023		
Study Period (Years):	3		
Discount Rate:	3%		
Cost Escalation:	0%		
FEMP UPV Discount Factor (Elect.):	2.95		
FEMP UPV Discount Factor (NG):	2.84		
<u>Cost Data</u>	Baseline	Proposed	Savings
Initial Capital Cost:		\$4,136	(\$4,136
Annual Electricity Costs:	\$637,131	\$599,353	\$37,778
Annual Natural Gas Costs:	\$213,447	\$132,049	\$81,399
Annual OM&R Costs:	\$113	\$113	\$0
Other Recurring Annual Costs:	\$0	\$0	\$0
Life Cycle Cost Calculations	Baseline	Proposed	Savings
Present Value Investment Costs, I:	\$0	\$4,136	(\$4,136)
Present-Value Capital Replacement Cost, Repl:	\$0	\$0	\$0
Present Value Residual Cost, Res:	\$0	\$0	\$0
Present Value Energy Costs, E:	\$2,488,447	\$2,145,414	\$343,033
Present Value Water Cost, W:	\$0	\$0	\$0
Present Value O&M and Other Recurring Costs, OM&R:	\$319	\$319	\$0
LCC:	\$2,488,766	\$2,149,869	\$338,897
Savings to Investment Ratio Calculations			
Present Value Energy Cost Savings, DE:	\$343,033		
Present Value Water Cost Savings, DW:	\$0		
Present Value OM&R Cost Savings, DOM&R:	\$0		
SIR:	82.94		

Note: Calculations are in accordance with the National Institute of Standards and Technology, NIST Handbook 135, Life-Cycle Costing Manual for the Federal Energy Management Program, 1995.

SUNY OSWEGO | EEM-5 OCCUPANCY-BASED HVAC CONTROLS

Energy Opportunity Area: HVAC, Building Automation System (BAS)

Buildings Affected: Rec & Convocation Center/Poucher Hall/Campus Center, Lee Hall, Laker Hall. Romney Field House, Penfield Library, Sheldon Hall, Park Hall, Lanigan Hall, Tyler Hall, Shineman Center, Wilber Hall, Mary Walker Health Center, Mahar Hall, Rich Hall, Culkin Hall

Table 1. EEM-5 Summary Data

Description	Values	Units		
Annual Electrical Energy Savings	1,838,301	kWh/year		
Electrical Peak Demand Savings	0.0	kW		
Annual Electrical Energy Cost Savings	\$108,460	\$/year		
Annual Natural Gas Savings	207,110	Therms/year		
Annual Natural Gas Cost Savings	\$83,672	\$/year		
Total Annual Energy Cost Savings	\$192,132	\$/year		
Estimated Implementation Cost	\$3,730,696	\$		
Simple Payback Period	19.4	years		
Savings to Investment Ratio	0.74			

Existing Conditions/Baseline

Currently, the campus operates HVAC equipment on various building-specific schedules with setbacks in place in some buildings where applicable. Table 2 presents a summary of each building's HVAC operating schedule description and typical occupancy schedule. This information is based on on-site observations, BAS observations and campus staff knowledge.

Table 2. Building Schedule Summary

Building	HVAC Operating Schedule Description	Observed Occupancy Schedule Description
0003 - REC & CONVOCATION CTR, I POUCHER HALL, CAMPUS CENTER	AHU-1 is scheduled to operate in occupied mode 7 a.m 11 p.m. daily, other HVAC systems are 24/7	6:30 a.m 1:30 a.m. daily during academic year, 6:30 a.m 9 p.m. M-F during summer break
0004 - M V LEE HALL	24/7	6 a.m 9 p.m. daily during academic year. Gym operating hours: 11:30 a.m 10 p.m. daily.
0019 - LAKER HALL	24/7	6 a.m 11 p.m. M-F, 7 a.m 11 p.m. weekends
0021 - ROMNEY FIELD HOUSE	24/7	Open 7 days with varying occupancy dependent on sport team practice schedules
0017 - J PENFIELD LIB	24/7	Building occupied 24/7 during academic year. Library operating hours: 8 a.m 11 p.m. M-Th, 8 a.m 7 p.m. F, 11 a.m 7 p.m Sa, 11 a.m 11 p.m. Sun
0001 - SHELDON HALL	Occupied mode 5 a.m 10 p.m. daily	6 a.m 9 p.m. daily during academic year
0002 - J C PARK HALL	24/7	Occupied 24/7 during academic year with highest occupancy 8 a.m 9 p.m. M-F

Building	HVAC Operating Schedule Description	Observed Occupancy Schedule Description
0006 - J LANIGAN HALL	24/7	24/7 during academic year
0007 - J TYLER HALL	24/7	Occupied 24/7 during academic year with highest occupancy 8 a.m 9 p.m. M-F
0008 - RICHARD S SHINEMAN CENTER	24/7	Occupied 24/7 during academic year with highest occupancy 8 a.m 9 p.m. M-F
0009 - WILBER HALL	24/7 with unoccupied & nighttime setbacks determined in BAS	Occupied 24/7 during academic year with highest occupancy 8 a.m 9 p.m. M-F
0010 - MARY WALKER HEALTH CENTER	Occupied mode 7 a.m 5:30 p.m. daily	8:30 a.m - 4 p.m. M-F
0013 - M E MAHAR HALL	7 a.m 10 p.m. M-F	8 a.m 9 p.m. M-Th, 8 a.m 4 p.m. F
0014 - RICH HALL	24/7	8 a.m 9 p.m. M-Th, 8 a.m 4 p.m. F
0026 - CULKIN HALL	24/7	8 a.m 5 p.m. M-F

Most buildings and HVAC equipment on campus are connected to at least one of two building automation systems (BAS), which provide monitoring, direct digital control (DDC), and energy management of building HVAC systems:

- Trane Tracer® Ensemble™
- Carrier i-Vu® 8.0

Recommended Action

This measure estimates the impact of installing occupancy sensors integrated into the BAS for control of HVAC system space temperatures. Occupancy based controls can be installed on HVAC systems to allow for automatic setback of space temperature setpoints in unoccupied zones during normal occupied mode periods. Ceiling mounted occupancy sensors are typical for this application. They can be integrated into the BAS and programmed to automatically provide unoccupied mode control individual zones during scheduled occupancy, when appropriate. When a sensor registers that a space is unoccupied for a certain period (e.g., ten minutes) the space temperature setpoints can revert to unoccupied setpoints until the senor indicates occupancy. The same occupancy sensors can be used to control lighting in the room by using dual contact sensors.

Any zone equipment that serves multiple rooms would need to receive an unoccupied signal from each room before enabling temperature setback in that zone.

Dorm buildings were not considered in this measure given the system types present and lack of room level temperature control in residential buildings throughout campus.

Estimated Energy Savings

An hourly analysis was performed using Syracuse-Hancock International Airport TMY3 (Typical Meteorological Year) hourly weather data. Heating and cooling loads were estimated based on assumed load profiles and the application of psychrometric routines. Performance curves were applied to adjust equipment input power for off-design conditions. This measure results in AHU fan, heating, and cooling energy savings and terminal reheat savings.

Occupancy schedules were generated based on current building occupancy hours and space types looked at in this measure. Energy savings from implementing occupancy-based HVAC controls were estimated under the assumption that EEM-4 HVAC Scheduling is implemented in each building prior to/in conjunction with occupancy-based HVAC controls. EEM-4 reflects savings from operating hour reductions in HVAC schedules. This measure (EEM-5) reflects savings from additional HVAC setbacks during typical building occupied hours in applicable building areas.

Savings are generally higher for single zone HVAC systems and terminal equipment. When applied to multi-zone variable air volume (VAV) systems, VAV terminal box dampers can be closed when the corresponding zone is unoccupied, saving central air handling unit fan energy. Savings are limited on VAV boxes that serve multiple rooms, as all rooms need to be unoccupied to initiate setback.

Supporting documents include assumptions for the measure and individual building energy and cost savings, implementation costs, and simple payback.

Table **3** summarizes the baseline and post-retrofit energy consumption and estimated energy savings that result from the measure.

	Baseline	Proposed	Savings
Fan Energy (kWh)	2,609,723	1,924,392	685,331
Cooling Energy (kWh)	3,443,284	2,290,315	1,152,969
Electric Heating Energy (kWh)	0	0	0
Total Electrical Energy (kWh)	6,053,007	4,214,707	1,838,301
Natural Gas Heating Consumption (therms)	934,963	727,853	207,110

Table 3. EEM-5 Savings

Estimated Project Cost

Aggregated costs for this measure across all buildings are presented in Table 4. These costs represent the scope of work described previously and are based on costs published in RS Means 2023. The number of sensors and control points were estimated based on building square footage relevant to this EEM.

Table 4. EEM-5 Estimated Project Costs

Item Description	Qty	Unit	Unit Cost	Subtotal
Dual Technology Occupancy Sensor (ceiling mounted)	3,345	Ea.	\$245	\$819,455
BAS I/O Points, Engineering, Calibration, Start-up/Checkout Labor	3,345	Lump Sum	\$769	\$2,572,087
Labor and Materials Subtotal				\$3,391,542
General Conditions				\$0
Labor and Materials Cost Total				\$3,391,542
Architectural & Engineering Fees	0%			\$0
Construction Management Fees	0%			\$0
Contingency	10%			\$339,154
Project Cost Subtotal				\$3,730,696
Agency Administrative Fee	10%			\$0
Total Project Cost				\$3,730,696

Ramboll - SUNY Oswego | EEM-5 Occupancy-Based HVAC Controls

EEM-5 – OCCUPANCY-BASED HVAC CONTROLS

SUPPORTING DOCUMENTS

SUMMARY INPUTS: ECM-5 OCCUPANCY BASED HVAC CONTROLS - ACADEMIC

Cooling

75 80.5

On

#

Heating

69.5 65.5

Proposed Space Temp

Proposed Operating Hours

Λ

Unoccupied Setback

Occupied

Monday

PROPOSED AHU SUPPLY TEMPERATURE

PROPOSED AVERAGE VAV DISCHARGE TEMPERATURE

SUMMARY INPUTS: ECM-5 OCCUPANCY BASED HVAC CONTROLS - ACADEMIC

PROBABILITY OF ROOMS BEING OCCUPIED (WEEKDAY)

EXISTING COOLING EFFICIENCY

EXISTING HEATING EFFICIENCY

PROBABILITY OF ROOMS BEING OCCUPIED (WEEKEND)

POST-RETROFIT COOLING EFFICIENCY

POST-RETROFIT HEATING EFFICIENCY

RESULTS: ECM-5 - OCCUPANCY BASED HVAC CONTROLS

	Building Total GSE	Building Type	Building GSF	Electric Savings				Natural Gas Savings Cost Savings			Implementation	SPB (Years)
Building	building fotal doi	building Type	Measure	Heating (kWh)	Cooling (kWh)	Fan (kWh)	Total (kWh)	Heating (Therms)	- cost savings		Cost	or b (rears)
0003 - REC & CONVOCATION CTR, I POUCHER HALL, CAMPUS CENTER	341,025	ACADEMIC	341,025	0	306,084	249,679	555,763	51,422	\$	53,564	\$ 950,948	17.8
0004 - M V LEE HALL	65,000	RECREATION	21,938	0	21,822	0	21,822	4,128	\$	2,955	\$ 61,173	20.7
0019 - LAKER HALL	196,608	RECREATION	1,400	0	1,600	0	1,600	648	\$	356	\$ 3,904	11.0
0021 - ROMNEY FIELD HOUSE	55,000	RECREATION	52,250	0	50,920	0	50,920	7,876	\$	6,186	\$ 145,699	23.6
0017 - J PENFIELD LIB	192,298	ACADEMIC	163,453	0	135,624	0	135,624	18,613	\$	15,522	\$ 455,790	29.4
0001 - SHELDON HALL	119,211	ACADEMIC	59,606	0	49,386	45,195	94,581	6,683	\$	8,280	\$ 166,210	20.1
0002 - J C PARK HALL	66,979	ACADEMIC	3,350	0	3,587	3,311	6,898	526	\$	619	\$ 9,341	15.1
0006 - J LANIGAN HALL	88,200	ACADEMIC	88,200	0	73,078	0	73,078	9,888	\$	8,307	\$ 245,946	29.6
0007 - J TYLER HALL	115,430	ACADEMIC	115,430	0	96,269	87,521	183,790	13,058	\$	16,119	\$ 321,877	20.0
0008 - RICHARD S SHINEMAN CENTER	235,860	ACADEMIC	235,860	0	220,942	178,836	399,777	64,168	\$	49,511	\$ 657,696	13.3
0009 - WILBER HALL	108,933	ACADEMIC	35,948	0	29,785	27,257	57,041	4,030	\$	4,994	\$ 100,241	20.1
0010 - MARY WALKER HEALTH CENTER	33,260	HEALTH	28,271	0	10,295	8,272	18,566	4,980	\$	3,107	\$ 78,834	25.4
0013 - M E MAHAR HALL	91,530	ACADEMIC	82,377	0	65,976	53,720	119,696	8,739	\$	10,592	\$ 229,708	21.7
0014 - RICH HALL	53,742	ACADEMIC	48,368	0	38,340	31,542	69,882	4,459	\$	5,924	\$ 134,874	22.8
0026 - CULKIN HALL	63,591	ADMIN	60,411	0	49,263	0	49,263	7,893	\$	6,095	\$ 168,457	27.6
Campus	1,826,667		1,337,886	0	1,152,969	685,331	1,838,301	207,110	\$	192,132	\$ 3,730,696	19.4

LIFE CYCLE COST ANALYSIS

FCM No.:	EEM-4		
ECM Title:	HVAC Scheduling		
General Parameters	5		
Base Date:	1/1/2023		
Service Date:	1/1/2023		
Study Period (Years):	15		
Discount Rate:	3%		
Cost Escalation:	0%		
FEMP UPV Discount Factor (Elect.):	14.96		
FEMP UPV Discount Factor (NG):	13.70		
<u>Cost Data</u>	Baseline	Proposed	Savings
Initial Capital Cost:		\$3,730,696	(\$3,730,696)
Annual Electricity Costs:			\$108,460
Annual Natural Gas Costs:			\$83,672
Annual OM&R Costs:	\$101,746	\$101,746	\$0
Other Recurring Annual Costs:	\$0	\$0	\$0
Life Cycle Cost Calculations	Baseline	Proposed	Savings
Present Value Investment Costs, I:	\$0	\$3,730,696	(\$3,730,696)
Present-Value Capital Replacement Cost, Repl:	\$0	\$0	\$0
Present Value Residual Cost, Res:	\$0	\$0	\$0
Present Value Energy Costs, E:	\$0	\$0	\$2,768,859
Present Value Water Cost, W:	\$0	\$0	\$0
Present Value O&M and Other Recurring Costs, OM&R:	\$1,214,640	\$1,214,640	\$0
LCC:	\$1,214,640	\$4,945,337	(\$961,837)
Savings to Investment Ratio Calculations			
Present Value Energy Cost Savings, DE:	\$2,768,859		
Present Value Water Cost Savings, DW:	\$0		
Present Value OM&R Cost Savings, DOM&R:	\$0		

Note: Calculations are in accordance with the National Institute of Standards and Technology, NIST Handbook 135, Life-Cycle Costing Manual for the Federal Energy Management Program, 1995.

SIR:

0.74

SUNY OSWEGO | EEM-6 PUMP DIFFERENTIAL PRESSURE RESET CONTROLS

Energy Opportunity Area: HVAC, Building Automation System (BAS)

Buildings Affected: Sheldon Hall, Park Hall, Marano Campus Center, Tyler Hall, Richard S Shineman Center, Wilber Hall, Marty Walker Health Center, Mahar Hall, The Village Townhouses, Johnson Hall, Riggs Hall Scales Hall, Funnelle Hall

Table 1. EEM-6 Summary Data

Description	Values	Units
Annual Electrical Energy Savings	164,705	kWh/year
Electrical Peak Demand Savings	10	
Annual Electrical Energy Cost Savings	\$9,718	\$/year
Annual Fossil Fuel Energy Savings	0	therms/year
Annual Fossil Fuel Cost Savings	\$0	\$/year
Total Annual Energy Cost Savings	\$9,718	\$/year
Estimated Implementation Cost	\$37,107	\$
Simple Payback Period	3.8	years
Savings to Investment Ratio	3.9	-

Existing Conditions/Baseline

The variable flow chilled water (CHW) and hot water (HW) pumps listed in Table 2 are controlled by variable frequency drives (VFDs) that modulate pump speed (and flow) through the building automation system (BAS) to maintain a constant differential pressure across their associated water loops. These pumps deliver chilled or hot water (or glycol) to cooling and heating coils controlled by electronic two-way valves.

Table 2. Chilled Water and Hot Water Pumps Controlled by VFDs

Building	Tag	System	Pump Qty	Pump HP	Fluid
0001 - SHELDON HALL	P-5, P-6	CHW	2	5	Water
0002 - J C PARK HALL	CHP-1, CHP-2	CHW	2	30	20% PG
0003 - CAMPUS CENTER	P-2A, P-2B	HW	2	10	40% PG
0003 - CAMPUS CENTER	P-3A, P-3B	HW	2	15	Water
0003 - CAMPUS CENTER	P-1A, P-1B	CHW	2	25	Water
003A - I POUCHER HALL	P-1, P-2	HW	2	5	Water
003A - I POUCHER HALL	P-5, P-6	CHW	2	8	Water
003B - REC & CONVOCATION CTR	P-1, P-2	HW	2	15	Water
003B - REC & CONVOCATION CTR	P-3, P-4	HW	2	20	Water
003B - REC & CONVOCATION CTR	P-5, P-6	HW	2	15	40% PG
003B - REC & CONVOCATION CTR	P-7, P-9	CHW	2	25	Water
0007 - J TYLER HALL	HWP-1, HWP-2	HW	2	15	Water
0008 - RICHARD S SHINEMAN CENTER	P-11, P-12	Dual Temp	2	50	Water
0008 - RICHARD S SHINEMAN CENTER	P-7, P-8	Dual Temp	2	100	Water
0008 - RICHARD S SHINEMAN CENTER	P-1, P-2	HW	2	20	Water
0008 - RICHARD S SHINEMAN CENTER	P-5, P-6	HW	2	30	Water
0008 - RICHARD S SHINEMAN CENTER	P-3, P-4	HW	2	20	40% PG
0009 - WILBER HALL	HWP-1, HWP-2	HW	2	15	Water
0009 - WILBER HALL	P-1, P-2	HW	2	10	35% PG
0009 - WILBER HALL	P-5, P-6	HW	2	5	35% PG
0009 - WILBER HALL	CWP-3, CWP-4	CHW	2	20 ¹	Water
0010 - MARY WALKER HEALTH CENTER	HW Pumps	HW	2	5	Water
0013 - M E MAHAR HALL	P-1, P-2	CHW	2	10	Water

Confidential
Building	Tag	System	Pump Qty	Pump HP	Fluid
0037 - THE VILLAGE TOWNHOUSES	P-1A, P-1B	Dual Temp	2	15	Water
0037 - THE VILLAGE TOWNHOUSES	P-2A, P-2B	Dual Temp	2	15	Water
0037 - THE VILLAGE TOWNHOUSES	P-3A, P-3B	CHW	2	8	35% PG
0037 - THE VILLAGE TOWNHOUSES	P-4A, P-4B	CHW	2	8	35% PG
0041 - JOHNSON HALL	HX1-HWP1, HX1-HWP2	HW	2	15	Water
0043 - RIGGS HALL	HWP-R-1, HWP-R-2	HW	2	15	Water
0043 - RIGGS HALL	GWP-R-1, GWP-R-2	HW	2	5	35% PG
0045 - SCALES HALL	HWPP-1, HWPP-2	HW	2	5	Water
0048 - FUNNELLE HALL	P-1, P-2	HW	2	8	Water
0048 - FUNNELLE HALL	P-3	HW	1	8	Water
0048 - FUNNELLE HALL	P-4, P-5	HW	2	5	Water

1. Motor hp estimated based on building size

Recommended Action

Differential pressure setpoints for the variable flow pumping systems addressed by this measure are maintained at a constant value through the BAS typically based on original design conditions. At all other conditions a lower setpoint would satisfy all coil loads and reduce pumping energy. This measure considers implementing a differential pressure reset control scheme, which polls the position of each valve in the system through the BAS and dynamically resets the differential pressure setpoint lower until the worst-case valve is nearly fully open. This is the minimum pressure that will satisfy all zones and use the least amount of pumping energy.

Estimated Energy Savings

An hourly analysis was performed to estimate energy savings using Syracuse Hancock International Airport TMY3 (Typical Meteorological Year) hourly weather data. Chilled and hot water flow and pump motor input power were estimated based on assumed load profiles that relate percent flow to outdoor air dry-bulb temperature and a power versus flow curve obtained from the Pacific Northwest National Laboratory PNNL-26917 reference manual document. The baseline analysis uses the "Default (VSD, No Reset)" curve and the proposed differential pressure reset analysis uses the "VSD, DP Reset" curve. The resulting average reduction in differential pressure reduces pump energy use while still maintaining adequate flow through the coils.

Supporting documents include a summary of the assumptions and monthly baseline and post-retrofit conditions. Table 3 summarizes estimated energy and cost savings, implementation cost, and simple payback period for each building considered for this measure.

Table 3. EEM-6 Savings

Building	Annual Electrical Energy Savings (kWh/year)	Electrical Peak Demand Savings (kW)	Total Annual Energy Cost Savings (\$/year)	Estimated Implementation Cost	Simple Payback Period
0001 - SHELDON HALL	848	0.1	\$50	\$1,102	22.0
0002 - J C PARK HALL	7,033	0.8	\$415	\$1,102	2.7
0003 - CAMPUS CENTER	8,240	0.8	\$486	\$3,307	6.8
003A - I POUCHER HALL	2,649	0.3	\$156	\$2,204	14.1
003B - REC & CONVOCATION CTR	16,374	1.4	\$966	\$4,409	4.6
0007 - J TYLER HALL	3,836	0.3	\$226	\$1,102	4.9
0008 - RICHARD S SHINEMAN CENTER	86,579	3.7	\$5,108	\$5,511	1.1
0009 - WILBER HALL	9,462	0.8	\$558	\$4,409	7.9

Confidential

Building	Annual Electrical Energy Savings (kWh/year)	Electrical Peak Demand Savings (kW)	Total Annual Energy Cost Savings (\$/year)	Estimated Implementation Cost	Simple Payback Period
0010 - MARY WALKER HEALTH CENTER	436	0.1	\$26	\$1,102	42.8
0013 - M E MAHAR HALL	1,599	0.3	\$94	\$1,102	11.7
0037 - THE VILLAGE TOWNHOUSES	13,848	1.0	\$817	\$4,409	5.4
0041 - JOHNSON HALL	2,753	0.2	\$162	\$1,102	6.8
0043 - RIGGS HALL	4,433	0.3	\$262	\$2,204	8.4
0045 - SCALES HALL	1,491	0.1	\$88	\$1,102	12.5
0048 - FUNNELLE HALL	5,124	0.3	\$302	\$2,939	9.7
Total	164,705	10.2	\$9,718	\$37,107	3.8

Estimated Project Cost

Costs presented in Table 4 represent the scope of work described previously. The project cost was estimated based on BAS engineering labor costs published in RS Means 2023.

Table 4. EEM-6 Estimated Project Costs

Item Description	Qty	Unit	Unit Cost	Subtotal
BAS Programming	34	Lump Sum	\$992	\$33,734
Materials and Labor Subtotal				\$33,734
General Conditions	0%			\$0
Materials and Installation Cost Total				\$33,734
Architectural & Engineering Fees	0%			\$0
Construction Management Fees	0%			\$0
Contingency	10%			\$3,373
Project Cost Subtotal				\$37,107
Agency Administrative Fee	0%			\$0
Total Project Cost				\$37,107

Ramboll - SUNY Oswego | EEM-6 Pump Differential Pressure Reset Controls

EEM-6 – PUMP DIFFERENTIAL PRESSURE RESET CONTROLS

SUPPORTING DOCUMENTS

Confidential

SUMMARY INPUTS: EEM-6 PUMP DIFFERENTIAL PRESSURE RESET CONTROLS

Building	Tag	Flow (GPM)	Motor HP	Head (ft)	Motor kW
0001 - SHELDON HALL	P-5, P-6	225	5	38	3.0
0002 - J C PARK HALL	CHP-1, CHP-2	650	30	119	19.7
0003 - CAMPUS CENTER	P-2A, P-2B	238	10	65	4.7
0003 - CAMPUS CENTER	P-3A, P-3B	280	15	65	4.9
0003 - CAMPUS CENTER	P-1A, P-1B	647	25	75	12.2
003A - I POUCHER HALL	P-1, P-2	100	5	60	2.1
003A - I POUCHER HALL	P-5, P-6	275	7.5	60	5.3
003B - REC & CONVOCATION CTR	P-1, P-2	384	15	75	7.8
003B - REC & CONVOCATION CTR	P-3, P-4	384	20	110	10.7
003B - REC & CONVOCATION CTR	P-5, P-6	500	15	69	9.6
003B - REC & CONVOCATION CTR	P-7, P-9	600	25	92	13.9
0007 - J TYLER HALL	HWP-1, HWP-2	500	15	70	9.5
0008 - RICHARD S SHINEMAN CENTER	P-11, P-12	2,300	50	56	32.1
0008 - RICHARD S SHINEMAN CENTER	P-7, P-8	2,300	100	99	56.2
0008 - RICHARD S SHINEMAN CENTER	P-1, P-2	708	20	60	10.8
0008 - RICHARD S SHINEMAN CENTER	P-5, P-6	708	30	83	14.7
0008 - RICHARD S SHINEMAN CENTER	P-3, P-4	600	20	71	11.2
0009 - WILBER HALL	HWP-1, HWP-2	230	15	118	7.3
0009 - WILBER HALL	P-1, P-2	150	10	93	4.2
0009 - WILBER HALL	P-5, P-6	125	5	50	2.3
0009 - WILBER HALL	CWP-3, CWP-4	622	20	70	11.0
0010 - MARY WALKER HEALTH CENTER	HW Pumps	75	5	70	1.8
0013 - M E MAHAR HALL	P-1, P-2	322	10	76	7.2
0037 - THE VILLAGE TOWNHOUSES	P-1A, P-1B	396	15	90	9.6
0037 - THE VILLAGE TOWNHOUSES	P-2A, P-2B	396	15	90	9.6
0037 - THE VILLAGE TOWNHOUSES	P-3A, P-3B	240	7.5	55	4.3
0037 - THE VILLAGE TOWNHOUSES	P-4A, P-4B	240	7.5	55	4.3
0041 - JOHNSON HALL	HX1-HWP1, HX1-HWP2	330	15	65	5.8
0043 - RIGGS HALL	HWP-R-1, HWP-R-2	340	15	80	7.3
0043 - RIGGS HALL	GWP-R-1, GWP-R-2	95	5	60	2.1
0045 - SCALES HALL	HWPP-1, HWPP-2	210	5	50	3.3
0048 - FUNNELLE HALL	P-1, P-2	188	7.5	75	4.3
0048 - FUNNELLE HALL	P-3	188	7.5	75	4.3
0048 - FUNNELLE HALL	P-4, P-5	125	5	63	2.4

SUMMARY INPUTS: EEM-6 PUMP DIFFERENTIAL PRESSURE RESET CONTROLS

SUMMARY INPUTS: EEM-6 PUMP DIFFERENTIAL PRESSURE RESET CONTROLS

Existing Conditions

Minimum Flow Ratio: 0.5

Post-Retrofit Conditions

Minimum Flow Ratio: 0.5

77

579

80%

100%

RESULTS: EEM-6 PUMP DIFFERENTIAL PRESSURE RESET CONTROLS

Building	Service	Baseline Pumping Energy (kWh)	Baseline Demand (kW)	Proposed Pumping Energy (kWh)	Proposed Demand (kW)	Pumping Energy Savings (kWh)	Demand Savings (kW)
0001 - SHELDON HALL	CHW	2,093	2.3	1,245	2.2	848	0.1
0002 - J C PARK HALL	CHW	27,523	15.6	20,491	14.8	7,033	0.8
0003 - CAMPUS CENTER	HW	18,230	8.1	14,357	7.8	3,873	0.3
0003 - CAMPUS CENTER	CHW	10,186	9.6	5,820	9.2	4,367	0.5
003A - I POUCHER HALL	HW	3,869	1.7	3,047	1.7	822	0.1
003A - I POUCHER HALL	CHW	4,263	4.0	2,436	3.8	1,827	0.2
003B - REC & CONVOCATION CTR	HW	53,687	23.9	42,281	23.1	11,406	0.8
003B - REC & CONVOCATION CTR	CHW	11,588	11.0	6,620	10.4	4,967	0.6
0007 - J TYLER HALL	HW	18,055	8.0	14,219	7.8	3,836	0.3
0008 - RICHARD S SHINEMAN CENTER	Dual Temp	268,963	76.8	197,313	74.2	71,650	2.6
0008 - RICHARD S SHINEMAN CENTER	HW	70,267	31.3	55,338	30.2	14,929	1.1
0009 - WILBER HALL	HW	26,093	11.6	20,549	11.2	5,544	0.4
0009 - WILBER HALL	CHW	9,140	8.7	5,222	8.2	3,918	0.4
0010 - MARY WALKER HEALTH CENTER	HW	1,993	1.5	1,557	1.5	436	0.1
0013 - M E MAHAR HALL	CHW	6,359	5.5	4,759	5.2	1,599	0.3
0037 - THE VILLAGE TOWNHOUSES	Dual Temp	51,842	16.4	39,424	15.8	12,418	0.6
0037 - THE VILLAGE TOWNHOUSES	CHW	2,833	6.2	1,403	5.8	1,430	0.4
0041 - JOHNSON HALL	HW	13,071	4.9	10,318	4.8	2,753	0.2
0043 - RIGGS HALL	HW	21,047	7.9	16,614	7.7	4,433	0.3
0045 - SCALES HALL	HW	7,080	2.7	5,589	2.6	1,491	0.1
0048 - FUNNELLE HALL	HW	24,325	9.2	19,202	8.9	5,124	0.3
Subtotal	снw	73,985	62.9	47,995	59.6	25,990	3.3
Subtotal	нw	257,719	111.0	203,071	107.2	54,648	3.8
Subtotal	Dual Temp	320,805	93.2	236,737	90.0	84,068	3.2
	Total	652,509	267.0	487,804	256.8	164,705	10.2

LIFE CYCLE COST ANALYSIS

ECM No.:	EEM-6		
ECM Title:	Pump Differential Pressure R	eset Controls	
General Parameters			
Base Date:	1/1/2023		
Service Date:	1/1/2023		
Study Period (Years):	15		
Discount Rate:	3%		
Cost Escalation:	0%		
FEMP UPV Discount Factor (Elect.):	14.96		
FEMP UPV Discount Factor (NG):	13.70		
<u>Cost Data</u>	Baseline	Proposed	Savings
Initial Capital Cost:		\$37,107	(\$37,107)
Annual Electricity Costs:	\$38,498	\$28,780	\$48,118
Annual Natural Gas Costs:	\$0	\$0	\$0
Annual Water Costs:	\$0	\$0	\$0
Annual OM&R Costs:	\$1,012	\$1,012	\$0
Other Recurring Annual Costs:	\$0	\$0	\$0
Life Cycle Cost Calculations	Baseline	Proposed	Savings
Present Value Investment Costs, I:	\$0	\$37,107	(\$37,107)
Present-Value Capital Replacement Cost, Repl:	\$0	\$0	\$0
Present Value Residual Cost, Res:	\$0	\$0	\$0
Present Value Energy Costs, E:	\$575,879	\$430,516	\$145,363
Present Value Water Cost, W:	\$0	\$0	\$0
Present Value O&M and Other Recurring Costs, OM&R:	\$12,081	\$12,081	\$0
LCC:	\$587,960	\$479,705	\$108,255
Savings to Investment Ratio Calculations			
Present Value Energy Cost Savings, DE:	\$145,363		
Present Value Water Cost Savings, DW:	\$0		
Present Value OM&R Cost Savings, DOM&R:	\$0		
SIR:	3.92		

Note: Calculations are in accordance with the National Institute of Standards and Technology, NIST Handbook 135, Life-Cycle Costing Manual for the Federal Energy Management Program, 1995.

SUNY OSWEGO | EEM-7 MULTIZONE VAV DUCT STATIC PRESSURE RESET

Energy Opportunity Area: HVAC, Building Automation System (BAS)

Buildings Affected: Sheldon Hall, Park Hall, Campus Center, Poucher Hall, Rec. & Convocation Center, Tyler Hall, Wilber Hall, Mahar Hall, Rich Hall, Lakeside Dining Hall, Riggs Hall

Table 1. EEM-7 Summary Data

Description	Values	Units
Annual Electrical Energy Savings	192,792	kWh/year
Electrical Peak Demand Savings	33.8	kW
Annual Electrical Energy Cost Savings	\$11,375	\$/year
Annual Natural Gas Savings	0	Therms/year
Annual Natural Gas Cost Savings	\$0	\$/year
Total Annual Energy Cost Savings	\$11,375	\$/year
Estimated Implementation Cost	\$24,248	\$
Simple Payback Period	2.1	years
Savings to Investment Ratio	7.0	-

Existing Conditions/Baseline

The multizone variable air volume (VAV) system fans listed in Table 2 are controlled by variable frequency drives (VFDs) that modulate fan speed (and air flow) to maintain duct static pressure at a constant setpoint. These systems are controlled through the building automation system (BAS).

Table 2. Multizone VAV Systems

Building	Unit	SF Motor HP	RF Motor HP
0001 - SHELDON HALL	AHU-1	7.5	3
0001 - SHELDON HALL	AHU-2	7.5	3
0001 - SHELDON HALL	AHU-3	7.5	3
0001 - SHELDON HALL	AHU-4	7.5	3
0002 - J C PARK HALL	AHU-7	7.5	3
0003 - CAMPUS CENTER	AHU-1	10 ¹	5
0003 - CAMPUS CENTER	AHU-1A	15	5
0003 - CAMPUS CENTER	AHU-1B	15	5
0003 - CAMPUS CENTER	AHU-1C	10	5
0003 - CAMPUS CENTER	AHU-2	30	10
0003 - CAMPUS CENTER	AHU-3	25	7.5
0003 - CAMPUS CENTER	AHU-5	20	10
003A - I POUCHER HALL	AHU-1	15	-
003B - REC & CONVOCATION CTR	AHU-1	40	20
0007 - J TYLER HALL	AHU-1	10	5
0007 - J TYLER HALL	AHU-2	15	7.5

Building	Unit	SF Motor HP	RF Motor HP
0007 - J TYLER HALL	AHU-4	5	2
0009 - WILBER HALL	AHU-2	15	7.5
0013 - M E MAHAR HALL	AC-1	15	-
0014 - RICH HALL	AHU-1	50	20
0014 - RICH HALL	AHU-2	30	15
0042 - LAKESIDE DH	AHU-1	10	-
0043 - RIGGS HALL	AHU-R-1	20	10

1. Motor hp estimated based on space served area

Recommended Action

Duct static pressure setpoints for the VAV systems addressed by this measure are maintained at a constant value through the BAS typically based on original design conditions. VAV terminal box dampers modulate as necessary based on zone heating and cooling requirements and operate at less than maximum design flows most of the time. This measure considers implementing a static pressure reset control scheme, that polls the position of all VAV box dampers on the system and dynamically adjusts the static pressure setpoint so that the worst-case damper is nearly fully open. This is the minimum pressure that will satisfy all zones and use the least amount of fan energy.

Estimated Energy Savings

An hourly analysis was performed to estimate energy savings using Syracuse Hancock International Airport TMY3 (Typical Meteorological Year) hourly weather data. Supply air flow and fan motor input power were estimated based on assumed load profiles that relate percent flow to outdoor air dry-bulb temperature and a power versus flow curve obtained from the Pacific Northwest National Laboratory PNNL-26917 reference manual document. The baseline analysis uses the "Multi Zone VAV with VSD and fixed SP setpoint" curve and the proposed static pressure reset analysis uses the "Multi zone VAV with static pressure reset" curve. The resulting average reduction in duct static pressure reduces fan energy while still maintaining VAV box supply air flow requirements.

Supporting documents include a summary of the assumptions and monthly baseline and post-retrofit conditions.

Table 3 summarizes estimated energy savings, implementation cost, and simple payback period.

Table 3. EEM-7	Multizone V	AV Static Pressure	Reset Savings
----------------	-------------	---------------------------	----------------------

Building	Annual Electrical Energy Savings (kWh/year)	Electrical Peak Demand Savings (kW)	Total Annual Energy Cost Savings (\$/year)	Estimated Implementation Cost	Simple Payback Period (years)
0001 - SHELDON HALL	15,362	2.7	\$906	\$4,409	4.9
0002 - J C PARK HALL	3,732	0.7	\$220	\$1,102	5.0
0003 - CAMPUS CENTER	58,679	10.3	\$3,462	\$7,715	2.2
003A - I POUCHER HALL	4,334	0.8	\$256	\$735	2.9
003B - REC & CONVOCATION CTR	21,597	3.8	\$1,274	\$1,102	0.9
0007 - J TYLER HALL	15,041	2.6	\$887	\$3,307	3.7

Building	Annual Electrical Energy Savings (kWh/year)	Electrical Peak Demand Savings (kW)	Total Annual Energy Cost Savings (\$/year)	Estimated Implementation Cost	Simple Payback Period (years)
0009 - WILBER HALL	7,728	1.4	\$456	\$1,102	2.4
0013 - M E MAHAR HALL	6,927	1.2	\$409	\$735	1.8
0014 - RICH HALL	46,464	8.1	\$2,741	\$2,204	0.8
0042 - LAKESIDE DH	2,408	0.7	\$142	\$735	5.2
0043 - RIGGS HALL	10,519	1.6	\$621	\$1,102	1.8
Total	192,792	33.8	\$11,375	\$24,248	2.1

Estimated Project Cost

Costs presented in Table 4 represent the scope of work described previously and are based on costs published in RS Means 2023.

Table 4. EEM-7 Estimated Project Costs

Item Description	Qty	Unit	Unit Cost	Subtotal
BAS I/O Points, Engineering, Calibration, Start-up/Checkout Labor	23	Ea.	\$958	\$22,044
Labor and Materials Subtotal				\$22,044
General Conditions	0%			\$0
Labor and Materials Cost Total				\$22,044
Architectural & Engineering Fees	0%			\$0
Construction Management Fees	0%			\$0
Contingency	10%			\$2,204
Project Cost Subtotal				\$24,248
Agency Administrative Fee	0%			\$0
Total Project Cost				\$24,248

Ramboll - SUNY Oswego | EEM-7 Multizone VAV Duct Static Pressure Reset

EEM-7 – MULTIZONE VAV DUCT STATIC PRESSURE RESET

SUPPORTING DOCUMENTS

SUMMARY INPUTS: EEM-7 MULTIZONE VAV STATIC PRESSURE RESET CONTROLS

Building	Unit	Supply CFM	Supply Fan HP	Supply Fan kW	Return CFM	Return Fan HP	Return Fan kW
0001 - SHELDON HALL	AHU-1	4,390	7.5	4.3	4,090	3	1.7
0001 - SHELDON HALL	AHU-2	4,975	7.5	5.7	4,350	3	2.0
0001 - SHELDON HALL	AHU-3	4,765	7.5	5.0	3,450	3	1.9
0001 - SHELDON HALL	AHU-4	4,500	7.5	4.5	4,375	3	1.8
0002 - J C PARK HALL	AHU-7	5,600	7.5	4.6	5,600	3	1.9
0003 - CAMPUS CENTER	AHU-1	9,635	10	6.5	8,086	5	2.2
0003 - CAMPUS CENTER	AHU-1A	7,250	15	7.4	6,100	5	2.5
0003 - CAMPUS CENTER	AHU-1B	6,750	15	8.5	5,200	5	2.4
0003 - CAMPUS CENTER	AHU-1C	5,300	10	4.7	4,300	5	1.9
0003 - CAMPUS CENTER	AHU-2	15,740	30	18.7	12,600	10	6.2
0003 - CAMPUS CENTER	AHU-3	11,700	25	15.8	9,400	8	3.7
0003 - CAMPUS CENTER	AHU-5	11,200	20	14.9	11,025	10	4.9
003A - I POUCHER HALL	AHU-1	10,000	15	7.4	-	-	-
003B - REC & CONVOCATION CTR	AHU-1	30,000	40	25.8	21,000	20	10.6
0007 - J TYLER HALL	AHU-1	20,350	10	8.0	15,550	5	2.3
0007 - J TYLER HALL	AHU-2	21,000	15	9.2	19,700	8	2.9
0007 - J TYLER HALL	AHU-4	6,900	5	2.4	5,590	2	1.2
0009 - WILBER HALL	AHU-2	9,000	15	8.7	9,000	8	4.6
0013 - M E MAHAR HALL	AC-1	14,400	15	11.8	-	-	-
0014 - RICH HALL	AHU-1	24,700	50	32.6	24,700	20	14.4
0014 - RICH HALL	AHU-2	13,300	30	22.1	13,300	15	9.1
0042 - LAKESIDE DH	AHU-1	9,120	10	5.8	-	-	-
0043 - RIGGS HALL	AHU-R-1	12,000	20	13.5	12,000	10	7.2

SUMMARY INPUTS: EEM-7 MULTIZONE VAV STATIC PRESSURE RESET CONTROLS

Exisitng Conditions

Post-Retrofit Conditions

RESULTS: EEM-7 MULTIZONE VAV STATIC PRESSURE RESET CONTROLS

Building	Baseline Fan Energy (kWh)	Proposed Fan Energy (kWh)	Fan Savings (kWh)
0001 - SHELDON HALL	49,076	33,714	15,362
0002 - J C PARK HALL	11,923	8,191	3,732
0003 - CAMPUS CENTER	187,452	128,774	58,679
003A - I POUCHER HALL	13,847	9,512	4,334
003B - REC & CONVOCATION CTR	68,993	47,396	21,597
0007 - J TYLER HALL	48,050	33,008	15,041
0009 - WILBER HALL	24,689	16,960	7,728
0013 - M E MAHAR HALL	22,129	15,202	6,927
0014 - RICH HALL	148,433	101,969	46,464
0042 - LAKESIDE DH	7,020	4,612	2,408
0043 - RIGGS HALL	29,754	19,235	10,519
Total	611,365	418,573	192,792

LIFE CYCLE COST ANALYSIS

ECM No.:	EEM-7	
ECM Title:	Multizone VAV Static Pressure Reset Controls	
General Parameters		
Base Date:	1/1/2023	
Service Date:	1/1/2023	
Study Period (Years):	15	
Discount Rate:	3%	
Cost Escalation:	0%	
FEMP UPV Discount Factor (Elect.):	14.96	
FEMP UPV Discount Factor (NG):	13.70	

Savings	Proposed	Baseline	<u>Cost Data</u>
(\$24,248)	\$24,248		Initial Capital Cost:
\$11,375	\$24,696	\$36,071	Annual Electricity Costs:
\$0	\$0	\$0	Annual Natural Gas Costs:
\$0	\$0	\$0	Annual CHP Natural Gas Costs:
\$0	\$0	\$0	Annual CHW Costs:
\$0	\$0	\$0	Annual HTHW Costs:
\$0	\$0	\$0	Annual Water Costs:
\$0	\$661	\$661	Annual OM&R Costs:
\$0	\$0	\$0	Other Recurring Annual Costs:
Savings	Proposed	Baseline	Life Cycle Cost Calculations
(\$24,248)	\$24,248	\$0	Present Value Investment Costs, I:
\$0	\$0	\$0	Present-Value Capital Replacement Cost, Repl:
\$0	\$0	\$0	Present Value Residual Cost, Res:
\$170,151	\$369,416	\$539,567	Present Value Energy Costs, E:
\$0	\$0	\$0	Present Value Water Cost, W:
\$0	\$7,895	\$7,895	Present Value O&M and Other Recurring Costs, OM&R:
\$145,902	\$401,560	\$547,462	LCC:
			Savings to Investment Ratio Calculations
		\$170,151	Present Value Energy Cost Savings, DE:
		\$0	Present Value Water Cost Savings, DW:
		\$0	Present Value OM&R Cost Savings, DOM&R:
		7.02	SIR:

Note: Calculations are in accordance with the National Institute of Standards and Technology, NIST Handbook 135, Life-Cycle Costing Manual for the Federal Energy Management Program, 1995.

SUNY OSWEGO | EEM-8 IMPLEMENT DEMAND CONTROLLED VENTILATION

Energy Opportunity Area: HVAC, Building Automation System (BAS)

Buildings Affected: Campus Center, Cayuga Hall, Cooper Dining Hall, Lee Hall, Lanigan Hall, Laker Hall, Pathfinder Dining Hall, Romney Field House

Table 1. EEM-8 Summary Data

Description	Values	Units
Annual Electrical Energy Savings	728	kWh/year
Electrical Peak Demand Savings	1.0	kW
Annual Electrical Energy Cost Savings	\$43	\$/year
Annual Natural Gas Savings	68,951	Therms/year
Annual Natural Gas Cost Savings	\$27,856	\$/year
Total Annual Energy Cost Savings	\$27,899	\$/year
Total Project Cost	\$40,655	\$
Simple Payback Period	1.5	Years
Savings to Investment Ratio	9.4	-

Existing Conditions/Baseline

Table 2 presents the air handling units (AHU) that serve densely occupied spaces in the buildings analyzed as part of the targeted energy audits completed for this study.

The Swetman Gym units provide heating and ventilation to the gymnasium. Based on a review of campus-provided drawings, the units together provide 12,000 cfm to the space with a combined minimum outside air flow of 7,500 cfm.

The Cayuga Hall units provide heating and ventilation to four lounges in the dorm. Based on a review of campus-provided drawings, the units together provide 4,200 cfm with an estimated combined minimum outside air flow of 1,210 cfm.

The Cooper Dining Hall unit provides heating, cooling, and ventilation to the dining area. Based on a review of campus-provided drawings, the unit provides 20,700 cfm to the space with an estimated minimum outside air flow of 8,733 cfm.

The Lee Hall unit provides heating and ventilation to the main gymnasium. Based on a review of campusprovided drawings, the unit provides 18,000 cfm to the space with an estimated minimum outside airflow of 2,880 cfm.

The Lanigan Hall unit provides heating, cooling, and ventilation to Lecture Hall 101. Based on a review of campus-provided drawings, the unit provides 12,350 cfm to the space with an estimated minimum outside air flow of 3,549 cfm.

Three of the Laker Hall units provide heating and ventilation to the main gymnasium. Based on a review of campus-provided drawings, the units together provide 90,000 cfm to the space with a combined minimum outside air flow of 37,500 cfm.

The fourth Laker Hall unit provides heating and ventilation to the auxiliary gymnasium. Based on a review of campus-provided drawings, the unit provides 29,000 cfm to the space with a minimum outside air flow of 5,800 cfm.

The Pathfinder Dining Hall unit provides heating, cooling, and ventilation to the dining area. Based on a review of campus-provided drawings, the unit provides 31,892 cfm to the space with an estimated minimum outside air flow of 6,924 cfm.

The Romney Field House unit provides heating and ventilation to the field house. Based on the building's size and outside air ventilation requirements, it is estimated that the unit provides 44,000 cfm to the space with a minimum outside air flow of 14,080 cfm.

Building	Unit	Serves	Supply Fan CFM	Estimated Minimum Outside Air CFM
0003 – CAMPUS CENTER	S-3	Swetman Gym (North)	6,000	3,750
0003 - CAMPUS CENTER	S-4	Swetman Gym (South)	6,000	3,750
0033 – CAYUGA HALL	HV-2	East Lounge	600	207
0033 – CAYUGA HALL	HV-3	West Lounge	600	242
0033 – CAYUGA HALL	HV-4	Main Lounge	1,500	393
0033 – CAYUGA HALL	HV-5	Basement Lounge	1,500	368
0047 – COOPER DINING HALL	AC-2	Dining Area	20,700	8,733
0004 – M V LEE HALL	HV-2	Main Gym	18,000	2,880
0006 – J LANIGAN HALL	AC-3	Lecture Hall 101	12,350	3,549
0019 – LAKER HALL	HV-4	Main Gym (East)	30,000	12,500
0019 – LAKER HALL	HV-5	Main Gym (Center)	30,000	12,500
0019 – LAKER HALL	HV-6	Main Gym (West)	30,000	12,500
0019 – LAKER HALL	HV-7	Auxiliary Gym	29,000	5,800
0031 – PATHFINDER DINING HALL	SF-1	Dining Area	31,892	6,924
0021 - ROMNEY FIELD HOUSE	AHU-1	Field House	44,000	14,080

Table 2. AHUs Serving Densely Occupied Spaces

Recommended Action

This measure considers the implementation of demand controlled ventilation (DCV) to vary outside air volume through mixed air damper control based on space carbon dioxide (CO₂) concentration and exhaust

air requirements. The DCV routine would allow the outside air dampers to close below the minimum ventilation position when space carbon dioxide concentration is below an upper setpoint (e.g., 800 ppm), reducing heating and cooling energy requirements. Additionally, outside air dampers can be closed completely during morning warm up before occupants arrive further reducing energy requirements.

Typically, single zone air handling systems that serve densely occupied spaces that experience widely varying occupancy patterns, including assembly areas such as lecture halls, auditoriums, dining halls, and gymnasiums, are good candidates for DCV. The units listed in Table 2 were identified as potential candidates for DCV.

 CO_2 sensors would be provided in the return ductwork of the AHU serving the space or directly in the space. CO_2 sensors already exist in Romney Field House but may not be communicating with the AHU dampers. Outputs from the CO_2 sensors would indicate to the BAS the level of outside air necessary to satisfy ventilation requirements for the actual occupancy. Ongoing BAS programming support and periodic calibration of the CO_2 sensors are recommended to ensure persistent energy savings from DCV.

Ramboll did not study implementing DCV on multizone AHUs, as multiple CO₂ sensors and outdoor airflow measuring stations would be required to ensure zones are not under ventilated, increasing the cost of the measure considerably. The outside air fraction would need to be reset to satisfy the worst performing zone, reducing the energy savings potential. These two issues combined typically result in longer than desired paybacks.

Estimated Energy Savings

An hourly analysis was performed using Syracuse Hancock International Airport TMY3 (Typical Meteorological Year) hourly weather data. Heating and cooling loads were estimated based on assumed load profiles and the application of psychrometric routines. Performance curves were applied to adjust equipment input power for off-design conditions. The analysis estimates potential ventilation air flow reductions that can be achieved through DCV. Savings are generated by the reduction in ventilation heating and cooling loads.

Supporting documents include a summary of the assumptions and monthly baseline and post-retrofit conditions. Romney Field House is not included in the supporting documents because AHU specifications were not available. Savings for this building were estimated based on the results of the DCV analyses for the other gyms.

Table 3 summarizes estimated energy savings, implementation cost, and simple payback period.

Table 3. EEM-8 Savings

Building	Annual Electrical Energy Savings (kWh/year)	Annual Natural Gas Savings (Therms/year)	Total Annual Energy Cost Savings (\$/year)	Estimated Implementation Cost	Simple Payback Period
0003 - CAMPUS CENTER	0	6,739	\$2,723	\$4,772	1.8
0033 – CAYUGA HALL	0	1,322	\$534	\$9,545	17.9
0047 – COOPER DINING HALL	389	11,110	\$4,511	\$8,869	2.0
0004 - M V LEE HALL	0	866	\$350	\$2,386	6.8
0006 – J LANIGAN HALL	125	858	\$354	\$2,386	6.7

Building	Annual Electrical Energy Savings (kWh/year)	Annual Natural Gas Savings (Therms/year)	Total Annual Energy Cost Savings (\$/year)	Estimated Implementation Cost	Simple Payback Period
0019 – LAKER HALL	0	38,302	\$15,474	\$9,545	0.6
0031 – PATHFINDER DINING HALL	214	6,303	\$2,559	\$2,386	0.9
0021 – ROMNEY FIELD HOUSE	0	3,451	\$1,394	\$766	0.5
Total	728	68,951	\$27,899	\$40,655	1.5

Estimated Project Cost

Costs presented in Table 4 represent the scope of work described previously. The project cost was estimated based on duct mounted CO_2 sensors from Grainger and BAS engineering labor costs published in RS Means 2023.

Table 4. EEM-8 Estimated Project Costs

Item Description	Qty	Unit	Unit Cost	Subtotal
Duct Mounted CO ₂ Sensor	18	Ea.	\$497	\$8,952
BAS I/O Points, Engineering, Calibration, Start-up/Checkout Labor	1	Lump Sum	\$28,008	\$28,008
Labor and Materials Subtotal				\$36,960
General Conditions	0%			\$0
Labor and Materials Cost Total				\$36,960
Architectural & Engineering Fees	0%			\$0
Construction Management Fees	0%			\$0
Contingency	10%			\$3,696
Project Cost Subtotal				\$40,655
Agency Administrative Fee	0%			\$0
Total Project Cost				\$40,655

Ramboll - SUNY Oswego | EEM-8 Implement Demand Controlled Ventilation

EEM-8 – IMPLEMENT DEMAND CONTROLLED VENTILATION

SUPPORTING DOCUMENTS

SUMMARY INPUTS: EEM-8 IMPLEMENT DEMAND CONTROLLED VENTILATION - MARANO CAMPUS CENTER

Baseline

Unit	Supply CFM	Minimum Outdoor Air Flow CFM
S-3	6,000	3,750
S-4	6,000	3,750
Total	12,000	7,500

BASELINE

OUTDOOR AIR TEMPERATURE (°F)

BASELINE SUPPLY AIR TEMPERATURE VS OUTDOOR AIR

BASELINE RETURN AIR CONDITIONS

Post	-Reti	ofit
FUSI	-Reu	UIIL

Unit	Supply CFM	Minimum Outdoor Air Flow CFM	DCV Minimum Outdoor Air Flow CFM
S-3	6,000	3,750	864
S-4	6,000	3,750	864
Total	12,000	7,500	1,728

POST-RETROFIT

SUPPLY AIR FLOW VS OUTDOOR AIR

OUTDOOR AIR TEMPERATURE (°F)

POST-RETROFIT

SUPPLY AIR TEMPERATURE VS OUTDOOR AIR

BASELINE RETURN AIR CONDITIONS

SUMMARY INPUTS: EEM-8 IMPLEMENT DEMAND CONTROLLED VENTILATION - MARANO CAMPUS CENTER

Baseline Hou	rly Fraction	of Design O	utdoor Air F	low	Post-Retrofit	Hourly Frac	tion of Desig	gn Outdoor /	Air Flow
	Wee	kday	Wee	kend		Wee	kday	Weekend	
Hour Beginning	Unit On/Off	Outdoor Air	Unit On/Off	Outdoor Air	Hour Beginning	Unit On/Off	Outdoor Air	Unit On/Off	Outdoor Air
0	0	0%	0	0%	0	0	0%	0	0%
1	0	0%	0	0%	1	0	0%	0	0%
2	0	0%	0	0%	2	0	0%	0	0%
3	0	0%	0	0%	3	0	0%	0	0%
4	0	0%	0	0%	4	0	0%	0	0%
5	0	0%	0	0%	5	0	0%	0	0%
6	0	0%	0	0%	6	0	0%	0	0%
7	1	100%	0	0%	7	1	23%	0	0%
8	1	100%	0	0%	8	1	25%	0	0%
9	1	100%	1	100%	9	1	25%	1	26%
10	1	100%	1	100%	10	1	25%	1	26%
11	1	100%	1	100%	11	1	25%	1	28%
12	1	100%	1	100%	12	1	26%	1	28%
13	1	100%	1	100%	13	1	26%	1	29%
14	1	100%	1	100%	14	1	28%	1	29%
15	1	100%	1	100%	15	1	28%	1	28%
16	1	100%	1	100%	16	1	29%	1	28%
17	1	100%	1	100%	17	1	29%	1	26%
18	1	100%	1	100%	18	1	29%	1	26%
19	1	100%	1	100%	19	1	29%	1	26%
20	1	100%	1	100%	20	1	29%	1	26%
21	1	100%	1	100%	21	1	28%	1	23%
22	1	100%	0	0%	22	1	26%	0	0%
23	0	0%	0	0%	23	0	0%	0	0%

RESULTS: EEM-8 IMPLEMENT DEMAND CONTROLLED VENTILATION - MARANO CAMPUS CENTER

Baseline Montly	Operational Data					
Month	Average OAT _{DB} (F)	Operating Hours	Average Supply Air Flow (CFM) ¹	Average Outdoor Air Flow (CFM) ¹	Electric Consumption (kWh)	Natural Gas Consumption (Therms)
Jan	26.0	457	12,000	7,536	0	1,923
Feb	25.4	424	12,000	7,500	0	1,817
Mar	37.4	451	12,000	7,901	0	1,127
Apr	47.9	450	12,000	8,909	0	479
Мау	59.9	316	12,000	10,122	0	9
Jun	66.4	320	12,000	9,217	0	2
Jul	71.8	336	12,000	8,384	0	0
Aug	68.0	316	12,000	8,853	0	0
Sep	60.7	437	12,000	9,930	0	46
Oct	49.5	466	12,000	9,275	0	310
Nov	40.9	444	12,000	8,197	0	881
Dec	27.7	433	12,000	7,526	0	1,725
Annual	48.6	4,850	12,000	8,561	0	8,319

Baseline Montly Operational Data

Proposed Montly Operational Data

Month	Average OAT _{DB} (F)	Operating Hours	Average Supply Air Flow (CFM) ¹	Average Outdoor Air Flow (CFM) ¹	Electric Consumption (kWh)	Natural Gas Consumption (Therms)
Jan	26.0	457	12,000	2,229	0	454
Feb	25.4	424	12,000	2,117	0	438
Mar	37.4	451	12,000	3,706	0	192
Apr	47.9	450	12,000	6,269	0	25
May	59.9	316	12,000	8,222	0	0
Jun	66.4	320	12,000	5,981	0	0
Jul	71.8	336	12,000	3,956	0	0
Aug	68.0	316	12,000	4,982	0	0
Sep	60.7	437	12,000	8,208	0	0
Oct	49.5	466	12,000	7,784	0	7
Nov	40.9	444	12,000	4,738	0	113
Dec	27.7	433	12,000	2,115	0	351
Annual	48.6	4,850	12,000	4,961	0	1,579

Montly Operational Savings

Month	Average OAT _{DB} (F)	Operating Hours	Average Supply Air Flow (CFM) ¹	Average Outdoor Air Flow (CFM) ¹	Electric Consumption (kWh)	Natural Gas Consumption (Therms)
Jan	-	0	0	5,306	0	1,469
Feb	-	0	0	5,383	0	1,380
Mar	-	0	0	4,195	0	935
Apr	-	0	0	2,640	0	454
Мау	-	0	0	1,900	0	9
Jun	-	0	0	3,236	0	2
Jul	-	0	0	4,428	0	0
Aug	-	0	0	3,870	0	0
Sep	-	0	0	1,722	0	46
Oct	-	0	0	1,491	0	304
Nov	-	0	0	3,459	0	768
Dec	-	0	0	5,411	0	1,374
Annual	-	0	0	3,600	0	6,739

1. Average air flow rates over hours when fan operates, including economizer operation.

SUMMARY INPUTS: EEM-8 IMPLEMENT DEMAND CONTROLLED VENTILATION - CAYUGA HALL

Baseline

Unit	Supply CFM	Minimum Outdoor Air Flow CFM
HV-2	600	207
HV-3	600	242
HV-4	1,500	393
HV-5	1,500	368
Total	4,200	1,210

Post-Retrofit Minimum **DCV** Minimum Outdoor Air Outdoor Air Supply CFM Unit Flow Flow CFM CFM HV-2 600 207 44 HV-3 600 242 51 HV-4 1,500 393 83 HV-5 1,500 368 77 4,200 1,210 Total 255

BASELINE

OUTDOOR AIR TEMPERATURE (°F)

BASELINE SUPPLY AIR TEMPERATURE VS OUTDOOR AIR

BASELINE RETURN AIR CONDITIONS

POST-RETROFIT

SUPPLY AIR TEMPERATURE VS OUTDOOR AIR

OUTDOOR AIR TEMPERATURE (°F)

BASELINE RETURN AIR CONDITIONS

SUMMARY INPUTS: EEM-8 IMPLEMENT DEMAND CONTROLLED VENTILATION - CAYUGA HALL

Baseline Hou	Baseline Hourly Fraction of Design Outdoor Air Flow				Post-Retrofit	Hourly Frac	tion of Desi	gn Outdoor /	Air Flow
	Wee	kday	Wee	kend		Wee	kday	Weekend	
Hour Beginning	Unit On/Off	Outdoor Air	Unit On/Off	Outdoor Air	Hour Beginning	Unit On/Off	Outdoor Air	Unit On/Off	Outdoor Air
0	1	100%	1	100%	0	1	29%	1	29%
1	1	100%	1	100%	1	1	25%	1	25%
2	1	100%	1	100%	2	1	25%	1	25%
3	1	100%	1	100%	3	1	25%	1	25%
4	1	100%	1	100%	4	1	25%	1	25%
5	1	100%	1	100%	5	1	25%	1	25%
6	1	100%	1	100%	6	1	25%	1	25%
7	1	100%	1	100%	7	1	25%	1	25%
8	1	100%	1	100%	8	1	29%	1	29%
9	1	100%	1	100%	9	1	41%	1	41%
10	1	100%	1	100%	10	1	41%	1	41%
11	1	100%	1	100%	11	1	41%	1	41%
12	1	100%	1	100%	12	1	41%	1	41%
13	1	100%	1	100%	13	1	41%	1	41%
14	1	100%	1	100%	14	1	41%	1	41%
15	1	100%	1	100%	15	1	41%	1	41%
16	1	100%	1	100%	16	1	45%	1	45%
17	1	100%	1	100%	17	1	61%	1	61%
18	1	100%	1	100%	18	1	92%	1	92%
19	1	100%	1	100%	19	1	92%	1	92%
20	1	100%	1	100%	20	1	92%	1	92%
21	1	100%	1	100%	21	1	68%	1	68%
22	1	100%	1	100%	22	1	53%	1	53%
23	1	100%	1	100%	23	1	29%	1	29%

RESULTS: EEM-8 IMPLEMENT DEMAND CONTROLLED VENTILATION - CAYUGA HALL

Daseille Mul	ntiy Operational Data					
Month	Average OAT _{DB} (F)	Operating Hours	Average Supply Air Flow (CFM) ¹	Average Outdoor Air Flow (CFM) ¹	Electric Consumption (kWh)	Natural Gas Consumption (Therms)
Jan	26.0	744	4,200	1,240	0	509
Feb	25.4	672	4,200	1,219	0	475
Mar	37.4	744	4,200	1,578	0	277
Apr	47.9	720	4,200	2,161	0	81
May	59.9	432	4,200	3,044	0	7
Jun	66.4	0	4,200	2,623	0	0
Jul	71.8	0	4,200	2,915	0	0
Aug	68.0	144	4,200	2,533	0	0
Sep	60.7	720	4,200	1,825	0	7
Oct	49.5	744	4,200	1,234	0	41
Nov	40.9	720	4,200	1,939	0	174
Dec	27.7	744	0	0	0	457
Annual	48.6	6,384	0	0	0	2,029

Baseline Montly Operational Data

Proposed Montly Operational Data

Month	Average OAT _{DB} (F)	Operating Hours	Average Supply Air Flow (CFM) ¹	Average Outdoor Air Flow (CFM) ¹	Electric Consumption (kWh)	Natural Gas Consumption (Therms)
Jan	26.0	744	4,200	573	0	196
Feb	25.4	672	4,200	578	0	204
Mar	37.4	744	4,200	1,139	0	97
Apr	47.9	720	4,200	1,941	0	13
May	59.9	432	4,200	2,914	0	0
Jun	66.4	0	4,200	2,316	0	0
Jul	71.8	0	4,200	2,749	0	0
Aug	68.0	144	4,200	2,440	0	0
Sep	60.7	720	4,200	1,513	0	0
Oct	49.5	744	4,200	536	0	5
Nov	40.9	720	4,200	1,556	0	51
Dec	27.7	744	0	0	0	141
Annual	48.6	6,384	0	0	0	707

Montly Operational Savings

Month	Average OAT _{DB} (F)	Operating Hours	Average Supply Air Flow (CFM) ¹	Average Outdoor Air Flow (CFM) ¹	Electric Consumption (kWh)	Natural Gas Consumption (Therms)
Jan	-	0	0	667	0	313
Feb	-	0	0	641	0	271
Mar	-	0	0	439	0	180
Apr	-	0	0	220	0	68
Мау	-	0	0	130	0	7
Jun	-	0	0	307	0	0
Jul	-	0	0	166	0	0
Aug	-	0	0	93	0	0
Sep	-	0	0	312	0	7
Oct	-	0	0	699	0	36
Nov	-	0	0	383	0	124
Dec	-	0	0	0	0	316
Annual	-	0	0	0	0	1,322

1. Average air flow rates over hours when fan operates, including economizer operation.

SUMMARY INPUTS: EEM-8 IMPLEMENT DEMAND CONTROLLED VENTILATION - COOPER DINING HALL

Baseline

Unit	Supply CFM	Minimum Outdoor Air Flow CFM
AC-2	20,700	8,733
Total	20,700	8,733

BASELINE

BASELINE SUPPLY AIR TEMPERATURE VS OUTDOOR AIR

BASELINE RETURN AIR CONDITIONS

<u>Post-Retrofit</u> Unit	Supply CFM	Minimum Outdoor Air Flow CFM	DCV Minimum Outdoor Air Flow CFM
AC-2	20,700	8,733	1,690
Total	20,700	8,733	1,690

POST-RETROFIT

OUTDOOR AIR TEMPERATURE (°F)

POST-RETROFIT SUPPLY AIR TEMPERATURE VS OUTDOOR AIR

BASELINE RETURN AIR CONDITIONS

SUMMARY INPUTS: EEM-8 IMPLEMENT DEMAND CONTROLLED VENTILATION - COOPER DINING HALL

Baseline Hou	rly Fraction	of Design O	utdoor Air Fl	low	Post-Retrofit	Hourly Frac	tion of Desi	gn Outdoor /	Air Flow
	Wee	kday	Wee	kend		Wee	kday	Wee	kend
Hour Beginning	Unit On/Off	Outdoor Air	Unit On/Off	Outdoor Air	Hour Beginning	Unit On/Off	Outdoor Air	Unit On/Off	Outdoor Air
0	1	100%	1	100%	0	1	19%	1	19%
1	1	100%	1	100%	1	1	19%	1	19%
2	1	100%	1	100%	2	1	19%	1	19%
3	1	100%	1	100%	3	1	19%	1	19%
4	1	100%	1	100%	4	1	19%	1	19%
5	1	100%	1	100%	5	1	23%	1	19%
6	1	100%	1	100%	6	1	27%	1	19%
7	1	100%	1	100%	7	1	52%	1	19%
8	1	100%	1	100%	8	1	52%	1	23%
9	1	100%	1	100%	9	1	52%	1	27%
10	1	100%	1	100%	10	1	35%	1	56%
11	1	100%	1	100%	11	1	60%	1	60%
12	1	100%	1	100%	12	1	84%	1	60%
13	1	100%	1	100%	13	1	76%	1	48%
14	1	100%	1	100%	14	1	52%	1	44%
15	1	100%	1	100%	15	1	35%	1	35%
16	1	100%	1	100%	16	1	40%	1	76%
17	1	100%	1	100%	17	1	60%	1	92%
18	1	100%	1	100%	18	1	84%	1	76%
19	1	100%	1	100%	19	1	84%	1	72%
20	1	100%	1	100%	20	1	60%	1	48%
21	1	100%	1	100%	21	1	27%	1	27%
22	1	100%	1	100%	22	1	23%	1	23%
23	1	100%	1	100%	23	1	19%	1	19%

RESULTS: EEM-8 IMPLEMENT DEMAND CONTROLLED VENTILATION - COOPER DINING HALL

Baseline Montly	Operational Data					
Month	Average OAT _{DB} (F)	Operating Hours	Average Supply Air Flow (CFM) ¹	Average Outdoor Air Flow (CFM) ¹	Electric Consumption (kWh)	Natural Gas Consumption (Therms)
Jan	26.0	744	20,700	8,820	0	3,747
Feb	25.4	672	20,700	8,745	0	3,477
Mar	37.4	744	20,700	9,990	1,835	2,231
Apr	47.9	720	20,700	12,093	2,945	850
Мау	59.9	432	20,700	15,681	5,056	90
Jun	66.4	0	20,700	14,370	0	0
Jul	71.8	0	20,700	15,226	0	0
Aug	68.0	144	20,700	13,337	5,452	0
Sep	60.7	720	20,700	10,777	12,607	121
Oct	49.5	744	20,700	8,792	1,959	502
Nov	40.9	720	20,700	11,373	734	1,522
Dec	27.7	744	0	0	0	3,449
Annual	48.6	6,384	0	0	30,588	15,988

Baseline Montly Operational Data

Proposed Montly Operational Data

Month	Average OAT _{DB} (F)	Operating Hours	Average Supply Air Flow (CFM) ¹	Average Outdoor Air Flow (CFM) ¹	Electric Consumption (kWh)	Natural Gas Consumption (Therms)
Jan	26.0	744	20,700	3,585	0	1,320
Feb	25.4	672	20,700	3,824	0	1,404
Mar	37.4	744	20,700	6,094	1,906	665
Apr	47.9	720	20,700	9,845	2,989	127
Мау	59.9	432	20,700	14,678	5,093	2
Jun	66.4	0	20,700	12,343	0	0
Jul	71.8	0	20,700	13,866	0	0
Aug	68.0	144	20,700	12,075	5,226	0
Sep	60.7	720	20,700	7,816	12,272	3
Oct	49.5	744	20,700	3,125	1,959	45
Nov	40.9	720	20,700	8,129	754	387
Dec	27.7	744	0	0	0	926
Annual	48.6	6,384	0	0	30,199	4,878

Montly Operational Savings

Month	Average OAT _{DB} (F)	Operating Hours	Average Supply Air Flow (CFM) ¹	Average Outdoor Air Flow (CFM) ¹	Electric Consumption (kWh)	Natural Gas Consumption (Therms)
Jan	-	0	0	5,235	0	2,426
Feb	-	0	0	4,921	0	2,073
Mar	-	0	0	3,896	-71	1,566
Apr	-	0	0	2,247	-44	723
May	-	0	0	1,003	-37	88
Jun	-	0	0	2,027	0	0
Jul	-	0	0	1,359	0	0
Aug	-	0	0	1,262	226	0
Sep	-	0	0	2,961	336	118
Oct	-	0	0	5,667	0	457
Nov	-	0	0	3,244	-20	1,136
Dec	-	0	0	0	0	2,523
Annual	-	0	0	0	389	11,110

1. Average air flow rates over hours when fan operates, including economizer operation.

SUMMARY INPUTS: EEM-8 IMPLEMENT DEMAND CONTROLLED VENTILATION - LAKER HALL

Baseline

Unit	Supply CFM	Minimum Outdoor Air Flow CFM
HV-7	29,000	5,800
Total	29,000	5,800

BASELINE

BASELINE RETURN AIR CONDITIONS

<u>Post-Retrofit</u> Unit	Supply CFM	Minimum Outdoor Air Flow CFM	DCV Minimum Outdoor Air Flow CFM
HV-7	29,000	5,800	1,260
Total	29,000	5,800	1,260

POST-RETROFIT

OUTDOOR AIR TEMPERATURE (°F)

POST-RETROFIT SUPPLY AIR TEMPERATURE VS OUTDOOR AIR

BASELINE RETURN AIR CONDITIONS

SUMMARY INPUTS: EEM-8 IMPLEMENT DEMAND CONTROLLED VENTILATION - LAKER HALL

Baseline Hou	rly Fraction	of Design O	utdoor Air F	low	Post-Retrofit	Hourly Frac	tion of Desi	gn Outdoor /	Air Flow
	Wee	kday	Wee	kend		Wee	kday	Wee	kend
Hour Beginning	Unit On/Off	Outdoor Air	Unit On/Off	Outdoor Air	Hour Beginning	Unit On/Off	Outdoor Air	Unit On/Off	Outdoor Air
0	0	0%	0	0%	0	0	0%	0	0%
1	0	0%	0	0%	1	0	0%	0	0%
2	0	0%	0	0%	2	0	0%	0	0%
3	0	0%	0	0%	3	0	0%	0	0%
4	0	0%	0	0%	4	0	0%	0	0%
5	0	0%	0	0%	5	0	0%	0	0%
6	0	0%	0	0%	6	0	0%	0	0%
7	1	100%	0	0%	7	1	25%	0	0%
8	1	100%	0	0%	8	1	25%	0	0%
9	1	100%	1	100%	9	1	25%	1	25%
10	1	100%	1	100%	10	1	23%	1	28%
11	1	100%	1	100%	11	1	23%	1	28%
12	1	100%	1	100%	12	1	23%	1	28%
13	1	100%	1	100%	13	1	23%	1	28%
14	1	100%	1	100%	14	1	23%	1	28%
15	1	100%	1	100%	15	1	25%	1	28%
16	1	100%	1	100%	16	1	28%	1	28%
17	1	100%	1	100%	17	1	28%	1	28%
18	1	100%	1	100%	18	1	28%	1	28%
19	1	100%	1	100%	19	1	28%	1	28%
20	1	100%	1	100%	20	1	28%	1	25%
21	1	100%	1	100%	21	1	25%	1	25%
22	1	100%	0	0%	22	1	23%	0	0%
23	0	0%	0	0%	23	0	0%	0	0%

RESULTS: EEM-8 IMPLEMENT DEMAND CONTROLLED VENTILATION - LAKER HALL

Dasenne Montry	Operational Data					
Month	Average OAT _{DB} (F)	Operating Hours	Average Supply Air Flow (CFM) ¹	Average Outdoor Air Flow (CFM) ¹	Electric Consumption (kWh)	Natural Gas Consumption (Therms)
Jan	26.0	457	29,000	6,344	0	1,409
Feb	25.4	424	29,000	5,992	0	1,324
Mar	37.4	451	29,000	9,531	0	615
Apr	47.9	450	29,000	15,409	0	103
May	59.9	454	29,000	21,233	0	1
Jun	66.4	450	29,000	15,797	0	0
Jul	71.8	469	29,000	12,280	0	0
Aug	68.0	454	29,000	15,748	0	0
Sep	60.7	447	29,000	20,035	0	1
Oct	49.5	466	29,000	18,862	0	29
Nov	40.9	444	29,000	11,818	0	375
Dec	27.7	433	29,000	6,241	0	1,173
Annual	48.6	5,399	29,000	13,340	0	5,030

Baseline Montly Operational Data

Proposed Montly Operational Data

Month	Average OAT _{DB} (F)	Operating Hours	Average Supply Air Flow (CFM) ¹	Average Outdoor Air Flow (CFM) ¹	Electric Consumption (kWh)	Natural Gas Consumption (Therms)
Jan	26.0	457	29,000	3,011	0	408
Feb	25.4	424	29,000	2,502	0	366
Mar	37.4	451	29,000	7,607	0	148
Apr	47.9	450	29,000	14,616	0	1
May	59.9	454	29,000	20,144	0	0
Jun	66.4	450	29,000	13,503	0	0
Jul	71.8	469	29,000	9,163	0	0
Aug	68.0	454	29,000	13,271	0	0
Sep	60.7	447	29,000	18,849	0	0
Oct	49.5	466	29,000	18,746	0	0
Nov	40.9	444	29,000	10,636	0	69
Dec	27.7	433	29,000	3,167	0	316
Annual	48.6	5,399	29,000	11,344	0	1,308

Montly Operational Savings

Month	Average OAT _{DB} (F)	Operating Hours	Average Supply Air Flow (CEM) ¹	Average Outdoor Air Flow	Electric Consumption (kWh)	Natural Gas Consumption (Therms)
Jan	-	0	0	3,332	0	1,001
Feb	-	0	0	3,490	0	959
Mar	-	0	0	1,924	0	467
Apr	-	0	0	793	0	102
May	-	0	0	1,089	0	1
Jun	-	0	0	2,294	0	0
Jul	-	0	0	3,117	0	0
Aug	-	0	0	2,477	0	0
Sep	-	0	0	1,186	0	1
Oct	-	0	0	116	0	29
Nov	-	0	0	1,182	0	306
Dec	-	0	0	3,075	0	857
Annual	-	0	0	1,997	0	3,723

1. Average air flow rates over hours when fan operates, including economizer operation.

SUMMARY INPUTS: EEM-8 IMPLEMENT DEMAND CONTROLLED VENTILATION - LAKER HALL

Baseline

Unit	Supply CFM	Minimum Outdoor Air Flow CFM
HV-4	30,000	12,500
HV-5	30,000	12,500
HV-6	30,000	12,500
Total	90,000	37,500

BASELINE

OUTDOOR AIR TEMPERATURE (°F)

BASELINE SUPPLY AIR TEMPERATURE VS OUTDOOR AIR

BASELINE RETURN AIR CONDITIONS

Post-Retrofit							
Unit	Supply CFM	Minimum Outdoor Air Flow CFM	DCV Minimum Outdoor Air Flow CFM				
HV-4	30,000	12,500	1,320				
HV-5	30,000	12,500	1,320				
HV-6	30,000	12,500	1,320				
Total	90,000	37,500	3,960				

POST-RETROFIT

OUTDOOR AIR TEMPERATURE (°F)

POST-RETROFIT

BASELINE RETURN AIR CONDITIONS

SUMMARY INPUTS: EEM-8 IMPLEMENT DEMAND CONTROLLED VENTILATION - LAKER HALL

Baseline Hourly Fraction of Design Outdoor Air Flow				Post-Retrofit Hourly Fraction of Design Outdoor Air Flow					
	Weekday		Weekend			Wee	kday Weekend		
Hour Beginning	Unit On/Off	Outdoor Air	Unit On/Off	Outdoor Air	Hour Beginning	Unit On/Off	Outdoor Air	Unit On/Off	Outdoor Air
0	0	0%	0	0%	0	0	0%	0	0%
1	0	0%	0	0%	1	0	0%	0	0%
2	0	0%	0	0%	2	0	0%	0	0%
3	0	0%	0	0%	3	0	0%	0	0%
4	0	0%	0	0%	4	0	0%	0	0%
5	0	0%	0	0%	5	0	0%	0	0%
6	0	0%	0	0%	6	0	0%	0	0%
7	1	100%	0	0%	7	1	12%	0	0%
8	1	100%	0	0%	8	1	12%	0	0%
9	1	100%	1	100%	9	1	12%	1	12%
10	1	100%	1	100%	10	1	12%	1	13%
11	1	100%	1	100%	11	1	12%	1	13%
12	1	100%	1	100%	12	1	12%	1	13%
13	1	100%	1	100%	13	1	12%	1	13%
14	1	100%	1	100%	14	1	12%	1	13%
15	1	100%	1	100%	15	1	12%	1	13%
16	1	100%	1	100%	16	1	13%	1	13%
17	1	100%	1	100%	17	1	13%	1	13%
18	1	100%	1	100%	18	1	13%	1	13%
19	1	100%	1	100%	19	1	13%	1	13%
20	1	100%	1	100%	20	1	13%	1	12%
21	1	100%	1	100%	21	1	12%	1	12%
22	1	100%	0	0%	22	1	12%	0	0%
23	0	0%	0	0%	23	0	0%	0	0%

RESULTS: EEM-8 IMPLEMENT DEMAND CONTROLLED VENTILATION - LAKER HALL

baseline Montry Operational Data							
Month	Average OAT _{DB} (F)	Operating Hours	Average Supply Air Flow (CFM) ¹	Average Outdoor Air Flow (CFM) ¹	Electric Consumption (kWh)	Natural Gas Consumption (Therms)	
Jan	26.0	457	90,000	38,130	0	9,653	
Feb	25.4	424	90,000	37,594	0	9,140	
Mar	37.4	451	90,000	43,421	0	5,120	
Apr	47.9	450	90,000	55,672	0	1,692	
May	59.9	454	90,000	71,040	0	74	
Jun	66.4	450	90,000	59,482	0	10	
Jul	71.8	469	90,000	52,164	0	0	
Aug	68.0	454	90,000	59,955	0	0	
Sep	60.7	447	90,000	67,828	0	68	
Oct	49.5	466	90,000	61,715	0	776	
Nov	40.9	444	90,000	47,467	0	3,695	
Dec	27.7	433	90,000	37,954	0	8,530	
Annual	48.6	5,399	90,000	52,842	0	38,759	

Baseline Montly Operational Data

Proposed Montly Operational Data

Month	Average OAT _{DB} (F)	Operating Hours	Average Supply Air Flow (CFM) ¹	Average Outdoor Air Flow (CFM) ¹	Electric Consumption (kWh)	Natural Gas Consumption (Therms)
Jan	26.0	457	90,000	9,452	0	1,301
Feb	25.4	424	90,000	7,902	0	1,174
Mar	37.4	451	90,000	23,679	0	476
Apr	47.9	450	90,000	45,386	0	4
May	59.9	454	90,000	62,563	0	0
Jun	66.4	450	90,000	42,018	0	0
Jul	71.8	469	90,000	28,596	0	0
Aug	68.0	454	90,000	41,317	0	0
Sep	60.7	447	90,000	58,558	0	0
Oct	49.5	466	90,000	58,177	0	0
Nov	40.9	444	90,000	33,038	0	223
Dec	27.7	433	90,000	9,897	0	1,002
Annual	48.6	5,399	90,000	35,283	0	4,179

Montly Operational Savings

	Average OAT _{DB} (F)	Operating Hours	Average Supply Air	Average Outdoor Air	Electric Concumption	Natural Gas
Month			Flow Flow		(kWb)	Consumption
			(CFM) ¹	(CFM) ¹	(RWII)	(Therms)
Jan	-	0	0	28,678	0	8,352
Feb	-	0	0	29,692	0	7,966
Mar	-	0	0	19,742	0	4,644
Apr	-	0	0	10,287	0	1,689
Мау	-	0	0	8,477	0	74
Jun	-	0	0	17,464	0	10
Jul	-	0	0	23,568	0	0
Aug	-	0	0	18,638	0	0
Sep	-	0	0	9,270	0	68
Oct	-	0	0	3,538	0	776
Nov	-	0	0	14,429	0	3,473
Dec	-	0	0	28,058	0	7,528
Annual	-	0	0	17,559	0	34,580

1. Average air flow rates over hours when fan operates, including economizer operation.
SUMMARY INPUTS: EEM-8 IMPLEMENT DEMAND CONTROLLED VENTILATION - LANIGAN HALL

Baseline

Unit	Minimum Supply CFM Flow CFM	
AC-3	12,350	3,549
Total	12,350	3,549

BASELINE

BASELINE RETURN AIR CONDITIONS

<u>Post-Retrofit</u> Unit	Supply CFM	Minimum Outdoor Air Flow CFM	DCV Minimum Outdoor Air Flow CFM
AC-3	12,350	3,549	324
Total	12,350	3,549	324

POST-RETROFIT

OUTDOOR AIR TEMPERATURE (°F)

POST-RETROFIT SUPPLY AIR TEMPERATURE VS OUTDOOR AIR

BASELINE RETURN AIR CONDITIONS

SUMMARY INPUTS: EEM-8 IMPLEMENT DEMAND CONTROLLED VENTILATION - LANIGAN HALL

Baseline Hourly Fraction of Design Outdoor Air Flow		Post-Retrofit	Hourly Frac	tion of Desi	gn Outdoor /	Air Flow			
	Wee	kday	Wee	kend		Wee	kday	Wee	kend
Hour Beginning	Unit On/Off	Outdoor Air	Unit On/Off	Outdoor Air	Hour Beginning	Unit On/Off	Outdoor Air	Unit On/Off	Outdoor Air
0	0	0%	0	0%	0	0	0%	0	0%
1	0	0%	0	0%	1	0	0%	0	0%
2	0	0%	0	0%	2	0	0%	0	0%
3	0	0%	0	0%	3	0	0%	0	0%
4	0	0%	0	0%	4	0	0%	0	0%
5	0	0%	0	0%	5	0	0%	0	0%
6	0	0%	0	0%	6	0	0%	0	0%
7	1	100%	0	0%	7	1	9%	0	0%
8	1	100%	0	0%	8	1	95%	0	0%
9	1	100%	0	0%	9	1	95%	0	0%
10	1	100%	0	0%	10	1	95%	0	0%
11	1	100%	0	0%	11	1	95%	0	0%
12	1	100%	0	0%	12	1	95%	0	0%
13	1	100%	0	0%	13	1	95%	0	0%
14	1	100%	0	0%	14	1	95%	0	0%
15	1	100%	0	0%	15	1	95%	0	0%
16	1	100%	0	0%	16	1	23%	0	0%
17	1	100%	0	0%	17	1	23%	0	0%
18	1	100%	0	0%	18	1	23%	0	0%
19	1	100%	0	0%	19	1	23%	0	0%
20	1	100%	0	0%	20	1	23%	0	0%
21	1	100%	0	0%	21	1	9%	0	0%
22	0	0%	0	0%	22	0	0%	0	0%
23	0	0%	0	0%	23	0	0%	0	0%

RESULTS: EEM-8 IMPLEMENT DEMAND CONTROLLED VENTILATION - LANIGAN HALL

Dasenne montry	Operational Data					
Month	Average OAT _{DB} (F)	Operating Hours	Average Supply Air Flow (CFM) ¹	Average Outdoor Air Flow (CFM) ¹	Electric Consumption (kWh)	Natural Gas Consumption (Therms)
Jan	26.0	270	12,350	3,797	0	491
Feb	25.4	300	12,350	3,607	0	586
Mar	37.4	240	12,350	4,712	681	276
Apr	47.9	300	12,350	6,907	1,502	83
May	59.9	243	12,350	9,149	2,668	2
Jun	66.4	240	12,350	7,669	4,378	0
Jul	71.8	264	12,350	5,449	7,333	0
Aug	68.0	219	12,350	5,679	6,207	0
Sep	60.7	285	12,350	9,102	3,939	0
Oct	49.5	315	12,350	8,168	656	26
Nov	40.9	270	12,350	5,199	233	202
Dec	27.7	150	12,350	3,583	0	314
Annual	48.6	3,096	12,350	6,190	27,597	1,981

Baseline Montly Operational Data

Proposed Montly Operational Data

Month	Average OAT _{DB} (F)	Operating Hours	Average Supply Air Flow (CFM) ¹	Average Outdoor Air Flow (CFM) ¹	Electric Consumption (kWh)	Natural Gas Consumption (Therms)
Jan	26.0	270	12,350	2,659	0	295
Feb	25.4	300	12,350	2,322	0	343
Mar	37.4	240	12,350	3,832	694	155
Apr	47.9	300	12,350	6,485	1,524	33
May	59.9	243	12,350	8,908	2,708	0
Jun	66.4	240	12,350	7,215	4,417	0
Jul	71.8	264	12,350	4,646	7,232	0
Aug	68.0	219	12,350	4,968	6,099	0
Sep	60.7	285	12,350	8,815	3,908	0
Oct	49.5	315	12,350	8,032	656	4
Nov	40.9	270	12,350	4,548	234	102
Dec	27.7	150	12,350	2,320	0	191
Annual	48.6	3,096	12,350	5,526	27,472	1,123

Montly Operational Savings

Month	Average OAT _{DB} (F)	Operating Hours	Average Supply Air Flow	Average Outdoor Air Flow	Electric Consumption	Natural Gas Consumption
			(CFM) ¹	(CFM) ¹	((((((((((((((((((((((((((((((((((((((((Therms)
Jan	-	0	0	1,138	0	196
Feb	-	0	0	1,285	0	243
Mar	-	0	0	880	-13	121
Apr	-	0	0	422	-22	50
Мау	-	0	0	241	-40	2
Jun	-	0	0	454	-39	0
Jul	-	0	0	803	101	0
Aug	-	0	0	711	108	0
Sep	-	0	0	287	31	0
Oct	-	0	0	136	0	21
Nov	-	0	0	651	-1	100
Dec	-	0	0	1,263	0	124
Annual	-	0	0	664	125	858

1. Average air flow rates over hours when fan operates, including economizer operation.

SUMMARY INPUTS: EEM-8 IMPLEMENT DEMAND CONTROLLED VENTILATION - LEE HALL

Baseline

Unit	Minimum Supply CFM Flow CFM	
HV-2	18,000	2,880
Total	18,000	2,880

BASELINE

BASELINE RETURN AIR CONDITIONS

<u>Post-Retrofit</u> Unit	Supply CFM	Minimum Outdoor Air Flow CFM	DCV Minimum Outdoor Air Flow CFM
HV-2	18,000	2,880	1,620
Total	18,000	2,880	1,620

POST-RETROFIT

OUTDOOR AIR TEMPERATURE (°F)

POST-RETROFIT SUPPLY AIR TEMPERATURE VS OUTDOOR AIR

BASELINE RETURN AIR CONDITIONS

SUMMARY INPUTS: EEM-8 IMPLEMENT DEMAND CONTROLLED VENTILATION - LEE HALL

Baseline Hou	Baseline Hourly Fraction of Design Outdoor Air Flow		Post-Retrofit	Hourly Frac	tion of Desi	gn Outdoor /	Air Flow		
	Wee	kday	Wee	kend		Wee	kday	Wee	kend
Hour Beginning	Unit On/Off	Outdoor Air	Unit On/Off	Outdoor Air	Hour Beginning	Unit On/Off	Outdoor Air	Unit On/Off	Outdoor Air
0	0	0%	0	0%	0	0	0%	0	0%
1	0	0%	0	0%	1	0	0%	0	0%
2	0	0%	0	0%	2	0	0%	0	0%
3	0	0%	0	0%	3	0	0%	0	0%
4	0	0%	0	0%	4	0	0%	0	0%
5	0	0%	0	0%	5	0	0%	0	0%
6	0	0%	0	0%	6	0	0%	0	0%
7	1	100%	0	0%	7	1	56%	0	0%
8	1	100%	0	0%	8	1	56%	0	0%
9	1	100%	1	100%	9	1	56%	1	56%
10	1	100%	1	100%	10	1	56%	1	56%
11	1	100%	1	100%	11	1	68%	1	68%
12	1	100%	1	100%	12	1	72%	1	72%
13	1	100%	1	100%	13	1	72%	1	72%
14	1	100%	1	100%	14	1	72%	1	72%
15	1	100%	1	100%	15	1	72%	1	72%
16	1	100%	1	100%	16	1	72%	1	72%
17	1	100%	1	100%	17	1	72%	1	72%
18	1	100%	1	100%	18	1	72%	1	72%
19	1	100%	1	100%	19	1	72%	1	72%
20	1	100%	1	100%	20	1	72%	1	72%
21	1	100%	1	100%	21	1	72%	1	72%
22	1	100%	0	0%	22	1	64%	0	0%
23	0	0%	0	0%	23	0	0%	0	0%

RESULTS: EEM-8 IMPLEMENT DEMAND CONTROLLED VENTILATION - LEE HALL

Baseline Montly	Baseline Montly Operational Data										
Month	Average OAT _{DB} (F)	Operating Hours	Average Supply Air Flow (CFM) ¹	Average Outdoor Air Flow (CFM) ¹	Electric Consumption (kWh)	Natural Gas Consumption (Therms)					
Jan	26.0	457	18,000	3,309	0	671					
Feb	25.4	424	18,000	3,053	0	625					
Mar	37.4	451	18,000	5,531	0	280					
Apr	47.9	450	18,000	9,384	0	34					
May	59.9	316	18,000	12,322	0	0					
Jun	66.4	320	18,000	8,888	0	0					
Jul	71.8	336	18,000	5,850	0	0					
Aug	68.0	316	18,000	7,426	0	0					
Sep	60.7	437	18,000	12,278	0	0					
Oct	49.5	466	18,000	11,668	0	8					
Nov	40.9	444	18,000	7,072	0	161					
Dec	27.7	433	18,000	3,244	0	542					
Annual	48.6	4,850	18,000	7,406	0	2,322					

Proposed Montly Operational Data

Month	Average OAT _{DB} (F)	Operating Hours	Average Supply Air Flow (CFM) ¹	Average Outdoor Air Flow (CFM) ¹	Electric Consumption (kWh)	Natural Gas Consumption (Therms)
Jan	26.0	457	18,000	2,508	0	438
Feb	25.4	424	18,000	2,244	0	410
Mar	37.4	451	18,000	5,083	0	175
Apr	47.9	450	18,000	9,200	0	10
May	59.9	316	18,000	11,991	0	0
Jun	66.4	320	18,000	8,336	0	0
Jul	71.8	336	18,000	5,078	0	0
Aug	68.0	316	18,000	6,737	0	0
Sep	60.7	437	18,000	12,028	0	0
Oct	49.5	466	18,000	11,638	0	1
Nov	40.9	444	18,000	6,795	0	91
Dec	27.7	433	18,000	2,455	0	331
Annual	48.6	4,850	18,000	6,924	0	1,456

Montly Operational Savings

			Average Supply Air	Average Outdoor Air	Electric Consumption	Natural Gas
Month	Average OAT _{DB} (F)	Operating Hours	Flow	Flow	(kWb)	Consumption
			(CFM) ¹	(CFM) ¹	((((((((((((((((((((((((((((((((((((((((Therms)
Jan	-	0	0	801	0	233
Feb	-	0	0	809	0	215
Mar	-	0	0	448	0	105
Apr	-	0	0	184	0	24
Мау	-	0	0	330	0	0
Jun	-	0	0	552	0	0
Jul	-	0	0	772	0	0
Aug	-	0	0	689	0	0
Sep	-	0	0	250	0	0
Oct	-	0	0	30	0	7
Nov	-	0	0	277	0	70
Dec	-	0	0	790	0	212
Annual	-	0	0	482	0	866

1. Average air flow rates over hours when fan operates, including economizer operation.

SUMMARY INPUTS: EEM-8 IMPLEMENT DEMAND CONTROLLED VENTILATION - PATHFINDER DINING HALL

Baseline

Unit	Supply CFM	Minimum Outdoor Air Flow CFM
SF-1	31,892	6,924
Total	31,892	6,924

BASELINE

BASELINE RETURN AIR CONDITIONS

<u>Post-Retrofit</u> Unit	Supply CFM	Minimum Outdoor Air Flow CFM	DCV Minimum Outdoor Air Flow CFM	
SF-1	31,892	6,924	1,340	
Total	31,892	6,924	1,340	

POST-RETROFIT

OUTDOOR AIR TEMPERATURE (°F)

POST-RETROFIT SUPPLY AIR TEMPERATURE VS OUTDOOR AIR

BASELINE RETURN AIR CONDITIONS

SUMMARY INPUTS: EEM-8 IMPLEMENT DEMAND CONTROLLED VENTILATION - PATHFINDER DINING HALL

Baseline Hourly Fraction of Design Outdoor Air Flow		Post-Retrofit	Hourly Frac	tion of Desig	gn Outdoor /	Air Flow			
	Wee	kday	Wee	kend		Wee	kday	Wee	kend
Hour Beginning	Unit On/Off	Outdoor Air	Unit On/Off	Outdoor Air	Hour Beginning	Unit On/Off	Outdoor Air	Unit On/Off	Outdoor Air
0	1	100%	1	100%	0	1	23%	1	19%
1	1	100%	1	100%	1	1	19%	1	19%
2	1	100%	1	100%	2	1	19%	1	19%
3	1	100%	1	100%	3	1	19%	1	19%
4	1	100%	1	100%	4	1	19%	1	19%
5	1	100%	1	100%	5	1	23%	1	19%
6	1	100%	1	100%	6	1	27%	1	23%
7	1	100%	1	100%	7	1	40%	1	27%
8	1	100%	1	100%	8	1	52%	1	40%
9	1	100%	1	100%	9	1	52%	1	52%
10	1	100%	1	100%	10	1	35%	1	68%
11	1	100%	1	100%	11	1	60%	1	84%
12	1	100%	1	100%	12	1	84%	1	84%
13	1	100%	1	100%	13	1	76%	1	60%
14	1	100%	1	100%	14	1	52%	1	35%
15	1	100%	1	100%	15	1	35%	1	44%
16	1	100%	1	100%	16	1	40%	1	44%
17	1	100%	1	100%	17	1	60%	1	68%
18	1	100%	1	100%	18	1	84%	1	84%
19	1	100%	1	100%	19	1	84%	1	35%
20	1	100%	1	100%	20	1	84%	1	76%
21	1	100%	1	100%	21	1	60%	1	72%
22	1	100%	1	100%	22	1	48%	1	64%
23	1	100%	1	100%	23	1	35%	1	48%

RESULTS: EEM-8 IMPLEMENT DEMAND CONTROLLED VENTILATION - PATHFINDER DINING HALL

baseline monthy	Operational Data					
Month	Average OAT _{DB} (F)	Operating Hours	Average Supply Air Flow (CFM) ¹	Average Outdoor Air Flow (CFM) ¹	Electric Consumption (kWh)	Natural Gas Consumption (Therms)
Jan	26.0	744	31,892	7,267	0	2,874
Feb	25.4	672	31,892	7,041	0	2,682
Mar	37.4	744	31,892	10,407	2,618	1,470
Apr	47.9	720	31,892	15,528	4,138	340
May	59.9	432	31,892	22,643	7,053	24
Jun	66.4	0	31,892	18,738	0	0
Jul	71.8	0	31,892	21,560	0	0
Aug	68.0	144	31,892	18,837	7,201	0
Sep	60.7	720	31,892	12,641	17,057	21
Oct	49.5	744	31,892	7,227	2,707	168
Nov	40.9	720	31,892	13,402	1,049	856
Dec	27.7	744	0	0	0	2,514
Annual	48.6	6,384	0	0	41,824	10,949

Baseline Montly Operational Data

Proposed Montly Operational Data

Month	Average OAT _{DB} (F)	Operating Hours	Average Supply Air Flow (CFM) ¹	Average Outdoor Air Flow (CFM) ¹	Electric Consumption (kWh)	Natural Gas Consumption (Therms)
Jan	26.0	744	31,892	4,025	0	1,335
Feb	25.4	672	31,892	3,855	0	1,322
Mar	37.4	744	31,892	8,413	2,664	632
Apr	47.9	720	31,892	14,624	4,181	58
May	59.9	432	31,892	22,102	7,110	0
Jun	66.4	0	31,892	17,220	0	0
Jul	71.8	0	31,892	20,791	0	0
Aug	68.0	144	31,892	18,455	7,049	0
Sep	60.7	720	31,892	11,270	16,835	0
Oct	49.5	744	31,892	3,909	2,707	14
Nov	40.9	720	31,892	11,611	1,064	294
Dec	27.7	744	0	0	0	991
Annual	48.6	6,384	0	0	41,610	4,646

Montly Operational Savings

Month	Average OAT _{DB} (F)	Operating Hours	Average Supply Air Flow (CFM) ¹	Average Outdoor Air Flow (CFM) ¹	Electric Consumption (kWh)	Natural Gas Consumption (Therms)
Jan	-	0	0	3,242	0	1,539
Feb	-	0	0	3,186	0	1,360
Mar	-	0	0	1,994	-46	838
Apr	-	0	0	904	-43	282
May	-	0	0	541	-57	24
Jun	-	0	0	1,518	0	0
Jul	-	0	0	769	0	0
Aug	-	0	0	382	152	0
Sep	-	0	0	1,370	222	21
Oct	-	0	0	3,318	0	154
Nov	-	0	0	1,791	-14	562
Dec	-	0	0	0	0	1,523
Annual	-	0	0	0	214	6,303

1. Average air flow rates over hours when fan operates, including economizer operation.

LIFE CYCLE COST ANALYSIS

ECM No.:	EEM-8		
ECM Title:	Implement Demand Contr	olled Ventilation	
General Parameters			
Base Date:	1/1/2023		
Service Date:	1/1/2023		
Study Period (Years):	15		
Discount Rate:	3%		
Cost Escalation:	0%		
FEMP UPV Discount Factor (Elect.):	14.96		
FEMP UPV Discount Factor (NG):	13.70		
Cost Data	Baseline	Proposed	Savings
Initial Capital Cost:		\$40,655	(\$40,655)
Annual Electricity Costs:	\$537.695	¢537.652	\$43
Annual Electricity costs.	4557,655	4337,032	υ÷υ
Annual Natural Gas Costs:	\$317,191	\$289,335	\$27,856
Annual Water Costs:	\$0	\$0	\$0
Annual OM&R Costs:	\$1,109	\$1,109	\$0
Other Recurring Annual Costs:	\$0	\$0	\$0
,			
Life Cycle Cost Calculations	Baseline	Proposed	Savings
Present Value Investment Costs, I:	\$0	\$40,655	(\$40,655)
Present-Value Capital Replacement Cost, Repl:	\$0	\$0	\$0
Present Value Residual Cost, Res:	\$0	\$0	\$0
Present Value Energy Costs, E:	\$12,389,228	\$12,006,909	\$382,320
Present Value Water Cost, W:	\$0	\$0	\$0
Present Value O&M and Other Recurring Costs, OM&R:	\$13,237	\$13,237	\$0
LCC:	\$12,402,465	\$12.060.801	\$341.664
	, , , ,	1 / /	
Savings to Investment Ratio Calculations			
Present Value Energy Cost Savings, DE:	\$382,320		
Present Value Water Cost Savings, DW:	\$0		
Present Value OM&R Cost Savings, DOM&R:	\$0		
SIR:	9.40		

Note:

Calculations are in accordance with the National Institute of Standards and Technology, NIST Handbook 135, Life-Cycle Costing Manual for the Federal Energy Management Program, 1995.

SUNY OSWEGO | EEM-9 IMPLEMENT KITCHEN DEMAND CONTROL VENTILATION

Energy Opportunity Area: HVAC, Building Automation System (BAS)

Buildings Affected: Marano Campus Center, Pathfinder Dining Hall, Lakeside Dining Hall, Cooper Dining Hall

Table 1. EEM-9 Summary Data

Description	Values	Units
Annual Electrical Energy Savings	108,195	kWh/year
Electrical Peak Demand Savings	32.2	kW
Annual Electrical Energy Cost Savings	\$6,384	\$/year
Annual Natural Gas Savings	19,498	Therms/year
Annual Natural Gas Cost Savings	\$7,877	\$/year
Total Annual Energy Cost Savings	\$14,261	\$/year
Estimated Implementation Cost	\$192,867	\$
Simple Payback Period	13.5	years
Savings to Investment Ratio	1.1	-

Existing Conditions/Baseline

The exhaust fans (EF) listed in Table 2 are connected to various kitchen hoods to help remove air contaminants resulted from cooking. These exhaust fans, along with their respective makeup air units (MAU) are currently scheduled through the building automation system (BAS) to run at full speed during building operation hours.

Marano Campus Center does not have dedicated makeup air units serving the kitchen and café, and the air volume supplied to the space through terminal units is inadequate to replace the air exhausted by the kitchen hoods. The makeup air to these spaces is assumed to be transfer air coming from the food court on the lower level and the lobby on the main level. Pathfinder Dining Hall, Lakeside Dining Hall, and Cooper Dining Hall all have makeup air units that serve their kitchen area. In the case of Pathfinder Dining Hall and Lakeside Dining Hall where exhaust air is more than makeup air supplied directly to the space, remaining makeup air is assumed to be transfer air from nearby dining area.

Building	Location	EF Tag	EF CFM	MAU Tag	MAU CFM
003B - REC & CONVOCATION CTR	Crossroad Café	EF-15	3,650	-	-
003B - REC & CONVOCATION CTR	Palates	EF-17	1,750	-	-
003B - REC & CONVOCATION CTR	Kitchen	EF-13	10,490	-	-
003B - REC & CONVOCATION CTR	Kitchen	EF-16	2,750	-	-
003B - REC & CONVOCATION CTR	Dishwasher	EF-19	750	-	-
0031 - PATHFINDER DH	Kitchen	HRU-1	11,205	HRU-1	8,964
0042 - LAKESIDE DH	Kitchen	EF-1	15,000	MAU-1	12,000

Building	Location	EF Tag	EF CFM	MAU Tag	MAU CFM
0042 - LAKESIDE DH	Kitchen	EF-2	2,100	-	-
0042 - LAKESIDE DH	Kitchen	EF-3	1,750	-	-
0042 - LAKESIDE DH	Kitchen	EF-4	1,500	-	-
0042 - LAKESIDE DH	Dishwasher	EF-5	1,100	-	-
0047 - COOPER DH	Kitchen	E-1	5,290	HV-1	13,870
0047 - COOPER DH	Kitchen	E-2	6,750	-	-

The Commissary Building kitchen exhaust system was original included in the study, but the implementation of the measure for this system is unwarranted because of the building's low exhaust volume and short hours of operation.

The exhaust fans and makeup air unit do not need to operate at full speed in order to properly capture cooking heat and odors. The systems are designed to meet the exhaust and makeup needs at full speed when all the cooking equipment is being used. Most hours, the cooking equipment below the hoods is not fully utilized, so a reduced flow rate (and fan speed) would suffice.

Recommended Action

This measure considers installing controls that automatically vary exhaust and makeup air fan speed, and air volume through variable frequency drives (VFDs) or electronically commuted motors based on monitored hood exhaust temperature and detected cooking vapor. This system can substantially reduce fan energy for the exhaust and makeup air fans and would also reduce the amount of heating and cooling energy required because of reduced makeup air volume. A system with heat and particulate sensors can provide signals to control fan speed and/or outdoor air damper position automatically.

Additionally, the units should be rebalanced to ensure they are meeting the proper makeup air requirements. The systems should be properly commissioned to ensure they are operating as intended by the original sequence of operations and any adjustments to the programming for the additional controls recommended under this measure.

Estimated Energy Savings

An hourly analysis was performed using Syracuse Hancock International Airport TMY3 (Typical Meteorological Year) hourly weather data. Air flow and fan power were reduced from the design conditions based on the observed occupancy schedule. Design exhaust flows and makeup air supplied directly to the spaces were taken from design drawings. Transfer air is assumed to contribute to fan energy savings, but not heating and cooling energy savings.

Supporting documents include a summary of the assumptions and monthly baseline and post-retrofit conditions. Table 3 summarizes the baseline and post-retrofit energy consumption and estimated energy savings that result from the reduced makeup air flow for each building.

Building	Annual Electrical Energy Savings (kWh/year)	Annual Natural Gas Savings (Therms/year)	Total Annual Energy Cost Savings (\$/year)	Estimated Implementation Cost	Simple Payback Period (years)
003B - REC & CONVOCATION CTR	13,997	0	\$826	\$55,988	67.8
0031 - PATHFINDER DH	23,668	5,236	\$3,512	\$36,360	10.4
0042 - LAKESIDE DH	55,707	7,875	\$6,468	\$61,727	9.5
0047 - COOPER DH	14,823	6,387	\$3,455	\$38,792	11.2
Total	108,195	19,498	\$14,261	\$192,867	13.5

Table 3. EEM-9 Savings

The analysis for the Marano Campus Center shows a high payback period because a large portion of this measure's savings comes from reduced makeup air fan energy and heating/cooling energy, both of which does not apply for this building. The remaining buildings make good candidates for this measure.

Estimated Project Cost

Costs presented in Table 4 represent the scope of work described previously. The cost estimate is based on RS Means 2023 and previous vendor estimates for the purchase, installation, commissioning, and owner training related to a demand-controlled kitchen exhaust and ventilation air system retrofit. Detailed cost estimation for individual building system can be found in supporting documents.

Table 4. EEM-9 Estimated Project Costs

Item Description	Qty	Unit	Unit Cost	Subtotal
003B - REC & CONVOCATION CTR	1	Lump Sum	\$39,152	\$39,152
0031 - PATHFINDER DH	1	Lump Sum	\$25,427	\$25,427
0042 - LAKESIDE DH	1	Lump Sum	\$43,166	\$43,166
0047 - COOPER DH	1	Lump Sum	\$27,127	\$27,127
Labor and Materials Subtotal				\$134,872
General Conditions	10%			\$13,487
Labor and Materials Cost Total				\$148,359
Architectural & Engineering Fees	10%			\$14,836
Construction Management Fees	10%			\$14,836
Contingency	10%			\$14,836
Project Cost Subtotal				\$192,867
Agency Administrative Fee	0%			\$0
Total Project Cost				\$192,867

Ramboll - SUNY Oswego | EEM-9 Implement Kitchen Demand Control Ventilation

EEM-9 – IMPLEMENT KITCHEN DEMAND CONTROL VENTILATION

SUPPORTING DOCUMENTS

SUMMARY INPUTS: EEM-9 IMPLEMENT KITCHEN DEMAND CONTROL VENTILATION - REC AND CONVOCATION CTR

Existing Exhaust Fan Design Conditions

Location	Exhaust Fan	Exhaust CFM	Motor HP	Motor Eff.	Motor kW		Motor Control	Makeup Air System
Crossroad Café	EF-15	3,650	3	86	.5%	1.6	None	-
Palates	EF-17	1,750	2	2 84	.0%	0.8	None	-
Kitchen	EF-13	10,490	8	88	.5%	4.3	None	-
Kitchen	EF-16	2,750	2	2 84	.0%	1.4	None	-
Dishwasher	EF-19	750	1	82	.5%	0.1	None	-

Existing Makeup Air Design Conditions									
Unit	Outdoor Air CFM	Motor HP	Motor Eff	Motor kW	Notes				
-	-	-	-	-					

Existing Transfer Air Design Conditions

Unit	Suuply CFM	Motor HP	Motor Eff	Motor kW	Notes
AHU-1	30,000	40	93.0%	26.2	

Calculation Inputs

Exhaust CFM	19,390
Exhaust kW	8.22
Makeup Air CFM	-
Makeup Air kW	-
Transfer Air CFM	19,390
Transfer Air kW	16.90

Hourly Exhaust Flow Weekdays

	% of Full Flow						
Hour	On/Off Schedule	Baseline Post-Retrofit					
0 to 1	0	1.0	0.0				
1 to 2	0	1.0	0.0				
2 to 3	0	1.0	0.0				
3 to 4	0	1.0	0.0				
4 to 5	0	1.0	0.1				
5 to 6	0	1.0	0.3				
6 to 7	1	1.0	0.5				
7 to 8	1	1.0	0.8				
8 to 9	1	1.0	1.0				
9 to 10	1	1.0	0.7				
10 to 11	1	1.0	0.5				
11 to 12	1	1.0	0.3				
12 to 13	1	1.0	0.9				
13 to 14	1	1.0	0.6				
14 to 15	1	1.0	0.3				
15 to 16	1	1.0	0.4				
16 to 17	1	1.0	1.0				
17 to 18	1	1.0	0.8				
18 to 19	1	1.0	0.6				
19 to 20	0	1.0	0.3				
20 to 21	0	1.0	0.2				
21 to 22	0	1.0	0.2				
22 to 23	0	1.0	0.1				
23 to 24	0	1.00	0.0				

Weekends			
		% of Fi	III Flow
Hour	On/Off Schedule	Baseline	Post-Retrofit
0 to 1	0	1.0	0.0
1 to 2	0	1.0	0.0
2 to 3	0	1.0	0.0
3 to 4	0	1.0	0.0
4 to 5	0	1.0	0.1
5 to 6	0	1.0	0.3
6 to 7	0	1.0	0.5
7 to 8	0	1.0	0.8
8 to 9	0	1.0	1.0
9 to 10	0	1.0	0.7
10 to 11	0	1.0	0.5
11 to 12	0	1.0	0.3
12 to 13	0	1.0	0.9
13 to 14	0	1.0	0.6
14 to 15	0	1.0	0.3
15 to 16	0	1.0	0.4
16 to 17	0	1.0	1.0
17 to 18	0	1.0	0.8
18 to 19	0	1.0	0.6
19 to 20	0	1.0	0.3
20 to 21	0	1.0	0.2
21 to 22	0	1.0	0.2
22 to 23	0	1.0	0.1
23 to 24	0	1.0	0.0

RESULTS: EEM-9 IMPLEMENT KITCHEN DEMAND CONTROL VENTILATION - REC AND CONVOCATION CTR

Baseline Montly Operational Data									
Month	Average OAT _{DB} (F)	Operating Hours	Electric Consumption (kWh)	Electric Peak Demand (kW)	Natural Gas Consumption				
Jan	26.0	234	1,924	8.2	0				
Feb	25.4	260	2,138	8.2	0				
Mar	37.4	208	1,710	8.2	0				
Apr	47.9	260	2,138	8.2	0				
Мау	59.9	221	1,817	8.2	0				
Jun	66.4	260	2,138	8.2	0				
Jul	71.8	286	2,351	8.2	0				
Aug	68.0	221	1,817	8.2	0				
Sep	60.7	247	2,031	8.2	0				
Oct	49.5	273	2,244	8.2	0				
Nov	40.9	234	1,924	8.2	0				
Dec	27.7	130	1,069	8.2	0				
Annual	48.6	2,834	23,299	8.2	0				

Proposed Montly Operational Data

Month	Average OAT _{DB} (F)	Operating Hours	Electric Consumption	Electric Peak	Natural Gas
Jan	26.0	234	965	8.4	0
Feb	25.4	260	1,072	8.4	0
Mar	37.4	208	857	8.4	0
Apr	47.9	260	1,072	8.4	0
Мау	59.9	221	454	8.4	0
Jun	66.4	260	420	1.7	0
Jul	71.8	286	462	1.7	0
Aug	68.0	221	357	1.7	0
Sep	60.7	247	1,018	8.4	0
Oct	49.5	273	1,125	8.4	0
Nov	40.9	234	965	8.4	0
Dec	27.7	130	536	8.4	0
Annual	48.6	2,834	9,302	8.4	0

Montly Operational Savings

Month	Average OAT _{en} (F)	Operating Hours	Electric Consumption	Electric Peak	Natural Gas
Honta	Ateluge CATEB (1)	operating nours	(kWh)	Demand (kW)	Consumption
Jan	-	0	959	-0.2	0
Feb	-	0	1,066	-0.2	0
Mar	-	0	853	-0.2	0
Apr	-	0	1,066	-0.2	0
Мау	-	0	1,362	-0.2	0
Jun	-	0	1,718	6.5	0
Jul	-	0	1,890	6.5	0
Aug	-	0	1,460	6.5	0
Sep	-	0	1,012	-0.2	0
Oct	-	0	1,119	-0.2	0
Nov	-	0	959	-0.2	0
Dec	-	0	533	-0.2	0
Annual	-	0	13,997	6.5	0

COST ESTIMATE: EEM-9 IMPLEMENT KITCHEN DEMAND CONTROL VENTILATION - REC AND CONVOCATION CTR

Item Description	Qty	Unit	Unit Cost	Subtotal
Variable frequency drive, 3 hp	1	Ea.	\$2,925	\$2,925
Variable frequency drive, 7.5 hp	1	Ea.	\$3,850	\$3,850
Inverter drive, 0.5 hp	1	Ea.	\$1,091	\$1,091
Inverter drive, 1 hp	1	Ea.	\$1,141	\$1,141
Inverter drive, 2 hp	1	Ea.	\$1,152	\$1,152
System controller, sensors, low voltage cabling, system commissioning and owner training	1	Lump Sum	\$25,987	\$25,987
BAS I/O Points, Engineering, Calibration, Start-up/Checkout Labor	9	Per Point	\$334	\$3,006
Labor and Materials Subtotal				\$39,152
General Conditions	10%			\$3,915
Labor and Materials Cost Total				\$43,068
Architectural & Engineering Fees	10%			\$4,307
Construction Management Fees	10%			\$4,307
Contingency	10%			\$4,307
Project Cost Subtotal				\$55,988
Agency Administrative Fee	0%			\$0
Total Project Cost				\$55,988

SUMMARY INPUTS: EEM-9 IMPLEMENT KITCHEN DEMAND CONTROL VENTILATION - PATHFINDER DH

Existing Exhaust Fan Design Conditions

Location	Exhaust Fan	Exhaust CFM	Motor HP	N	Notor Eff.	Motor kW		Motor Control	Makeup Air System
Kitchen	HRU-1	11,205		10	89.5%		6.7	None	HRU-1
Existing Makeun	Air Design Con	ditions							

Unit	Outdoor Air CFM	Motor HP	Motor Eff	Motor kW	Notes
HRU-1	8,964	5	87.5%	3.4	

Existing Transfer Air Design Conditions

Unit	Suuply CFM	Motor HP	Motor Eff	Motor kW	Notes
AHU-1	31,829	20	91.0%	6.6	

Calculation Inputs

Exhaust CFM	11205
Exhaust kW	6.67
Makeup Air CFM	8964
Makeup Air kW	3.41
Transfer Air CFM	2241
Transfer Air kW	0.46

Hourly Exhaust Flow Weekdays

	% of Full Flow					% of Full Flo
Hour	On/Off Schedule	Baseline	Post-Retrofit	Hour	On/Off Schedule Baselin	ne Post-
0 to 1	C	1.0	0.0	0 to 1	0	1.0
1 to 2	C	1.0	0.0	1 to 2	0	1.0
2 to 3	C	1.0	0.0	2 to 3	0	1.0
3 to 4	C	1.0	0.0	3 to 4	0	1.0
4 to 5	C	1.0	0.1	4 to 5	0	1.0
5 to 6	1	1.0	0.3	5 to 6	0	1.0
6 to 7	1	1.0	0.5	6 to 7	1	1.0
7 to 8	1	1.0	0.8	7 to 8	1	1.0
3 to 9	1	1.0	1.0	8 to 9	1	1.0
9 to 10	1	1.0	0.7	9 to 10	1	1.0
10 to 11	1	1.0	0.5	10 to 11	1	1.0
l1 to 12	1	1.0	0.3	11 to 12	1	1.0
12 to 13	1	1.0	0.9	12 to 13	1	1.0
l3 to 14	1	1.0	0.6	13 to 14	1	1.0
l4 to 15	1	1.0	0.3	14 to 15	1	1.0
15 to 16	1	1.0	0.4	15 to 16	1	1.0
16 to 17	1	1.0	1.0	16 to 17	1	1.0
17 to 18	1	1.0	0.8	17 to 18	1	1.0
18 to 19	1	1.0	0.6	18 to 19	1	1.0
19 to 20	1	1.0	0.3	19 to 20	1	1.0
20 to 21	1	1.0	0.2	20 to 21	1	1.0
21 to 22	1	1.0	0.2	21 to 22	1	1.0
22 to 23	1	1.0	0.1	22 to 23	1	1.0
23 to 24	C	1.0	0.0	23 to 24	0	1.0

Weekends

0.0 0.0 0.0 0.0 0.1 0.3 0.5 0.8 1.0 0.7 0.5 0.3 0.9 0.6 0.3 0.4 1.0 0.8 0.6 0.3 0.2 0.2 0.1 0.0

RESULTS: EEM-9 IMPLEMENT KITCHEN DEMAND CONTROL VENTILATION - PATHFINDER DH

Baseline Montly	Operational Data				
Month	Average OAT _{DB} (F)	Operating Hours	Electric Consumption (kWh)	Electric Peak Demand (kW)	Natural Gas Consumption (Therms)
Jan	26.0	426	4,293	10.1	2,002
Feb	25.4	496	4,999	10.1	2,391
Mar	37.4	407	4,102	10.1	1,507
Apr	47.9	462	4,656	10.1	1,076
Мау	59.9	319	3,215	10.1	322
Jun	66.4	0	0	0.0	0
Jul	71.8	0	0	0.0	0
Aug	68.0	107	1,078	10.1	6
Sep	60.7	495	4,989	10.1	465
Oct	49.5	514	5,180	10.1	1,147
Nov	40.9	460	4,636	10.1	1,449
Dec	27.7	231	2,328	10.1	1,122
Annual	48.6	3,917	39,477	10.1	11,487

Proposed Montly Operational Data

Month	Average OAT (E)	Operating Hours	Electric Consumption	Electric Peak Demand	Natural Gas Consumption
Month	Average OATDB (1)	operating riours	(kWh)	(kW)	(Therms)
Jan	26.0	426	1,801	10.3	1,106
Feb	25.4	496	2,099	10.3	1,324
Mar	37.4	407	1,723	10.3	827
Apr	47.9	462	1,952	10.3	582
Мау	59.9	319	830	10.3	124
Jun	66.4	0	0	0.0	0
Jul	71.8	0	0	0.0	0
Aug	68.0	107	211	2.1	2
Sep	60.7	495	2,097	10.3	243
Oct	49.5	514	2,174	10.3	623
Nov	40.9	460	1,948	10.3	800
Dec	27.7	231	976	10.3	619
Annual	48.6	3,917	15,810	10.3	6,250

Montly Operational Savings

Month	Average OAT _{DB} (F)	Operating Hours	Electric Consumption	Electric Peak Demand	Natural Gas Consumption
			(KWh)	(KW)	(Inerms)
Jan	-	0	2,493	-0.2	896
Feb	-	0	2,900	-0.2	1,067
Mar	-	0	2,379	-0.2	680
Apr	-	0	2,705	-0.2	494
Мау	-	0	2,385	-0.2	197
Jun	-	0	0	0.0	0
Jul	-	0	0	0.0	0
Aug	-	0	867	8.0	4
Sep	-	0	2,892	-0.2	222
Oct	-	0	3,006	-0.2	524
Nov	-	0	2,688	-0.2	648
Dec	-	0	1,352	-0.2	503
Annual	-	0	23,668	8.0	5,236

COST ESTIMATE: EEM-9 IMPLEMENT KITCHEN DEMAND CONTROL VENTILATION - PATHFINDER DH

Item Description	Qty	Unit	Unit Cost	Subtotal
Variable frequency drive, 5 hp	1	Ea.	\$3,175	\$3,175
Variable frequency drive, 10 hp	1	Ea.	\$4,100	\$4,100
System controller, sensors, low voltage cabling, system commissioning and owner training	1	Lump Sum	\$16,816	\$16,816
BAS I/O Points, Engineering, Calibration, Start-up/Checkout Labor	4	Per Point	\$334	\$1,336
Labor and Materials Subtotal				\$25,427
General Conditions	10%			\$2,543
Labor and Materials Cost Total				\$27,969
Architectural & Engineering Fees	10%			\$2,797
Construction Management Fees	10%			\$2,797
Contingency	10%			\$2,797
Project Cost Subtotal				\$36,360
Agency Administrative Fee	0%			\$0
Total Project Cost				\$36,360

SUMMARY INPUTS: EEM-9 IMPLEMENT KITCHEN DEMAND CONTROL VENTILATION - LAKESIDE DH

Existing Exhaust Fan Design Conditions									
Location	Exhaust Fan	Exhaust CFM	Motor HP	r	Motor Eff.	Motor kW	Motor Control	Makeup Air System	
Kitchen	EF-1	15,000	1	10	89.5%	5.5	None	MUA-1	
Kitchen	EF-2	2,100		2	84.0%	1.4	None	MUA-1	
Kitchen	EF-3	1,750		2	84.0%	1.5	None	MUA-1	
Kitchen	EF-4	1,500		1	82.5%	0.9	None	MUA-1	
Dishwasher	EF-5	1,100		0	82.5%	0.2	None	MUA-1	

Existing Makeup Air Design Conditions							
Unit	Outdoor Air CFM	Motor HP	Motor Eff	Motor kW	Notes		
MUA-1	12,000	10	89.5%	5.7			

Existing Transfer Air Design Conditions

Unit	Suuply CFM	Motor HP	Motor Eff	Motor kW	Notes
AHU-1	9,120	10	89.5%	5.9	

Calculation Inputs

Exhaust CFM	21,450
Exhaust kW	9.54
Makeup Air CFM	12,000
Makeup Air kW	5.67
Transfer Air CFM	9,450
Transfer Air kW	5.92

Hourly Exhaust Flow Weekdays

	% of Full Flow				
Hour	On/Off Schedule	Baseline	Post-Retrofit		
0 to 1	0	1.0	0.0		
1 to 2	0	1.0	0.0		
2 to 3	0	1.0	0.0		
3 to 4	0	1.0	0.0		
4 to 5	1	1.0	0.1		
5 to 6	1	1.0	0.3		
6 to 7	1	1.0	0.5		
7 to 8	1	1.0	0.8		
8 to 9	1	1.0	1.0		
9 to 10	1	1.0	0.7		
10 to 11	1	1.0	0.5		
11 to 12	1	1.0	0.3		
12 to 13	1	1.0	0.9		
13 to 14	1	1.0	0.6		
14 to 15	1	1.0	0.3		
15 to 16	1	1.0	0.4		
16 to 17	1	1.0	1.0		
17 to 18	1	1.0	0.8		
18 to 19	1	1.0	0.6		
19 to 20	1	1.0	0.3		
20 to 21	1	1.0	0.2		
21 to 22	1	1.0	0.2		
22 to 23	1	1.0	0.1		
23 to 24	0	1.0	0.0		

Weekends			
		% of Fi	III Flow
Hour	On/Off Schedule	Baseline	Post-Retrofit
0 to 1	0	1.0	0.0
1 to 2	0	1.0	0.0
2 to 3	0	1.0	0.0
3 to 4	0	1.0	0.0
4 to 5	0	1.0	0.1
5 to 6	0	1.0	0.3
6 to 7	1	1.0	0.5
7 to 8	1	1.0	0.8
8 to 9	1	1.0	1.0
9 to 10	1	1.0	0.7
10 to 11	1	1.0	0.5
11 to 12	1	1.0	0.3
12 to 13	1	1.0	0.9
13 to 14	1	1.0	0.6
14 to 15	1	1.0	0.3
15 to 16	1	1.0	0.4
16 to 17	1	1.0	1.0
17 to 18	1	1.0	0.8
18 to 19	1	1.0	0.6
19 to 20	1	1.0	0.3
20 to 21	1	1.0	0.2
21 to 22	1	1.0	0.2
22 to 23	1	1.0	0.1
23 to 24	0	1.0	0.0

RESULTS: EEM-9 IMPLEMENT KITCHEN DEMAND CONTROL VENTILATION - LAKESIDE DH

Baseline Montly Operational Data								
Month	Average OAT _{DB} (F)	Operating Hours	Electric Consumption (kWh)	Electric Peak Demand (kW)	Natural Gas Consumption			
Jan	26.0	444	6,750	15.2	2,801			
Feb	25.4	516	7,845	15.2	3,340			
Mar	37.4	423	6,431	15.2	2,120			
Apr	47.9	482	7,328	15.2	1,534			
Мау	59.9	408	6,203	15.2	534			
Jun	66.4	550	8,362	15.2	307			
Jul	71.8	554	8,423	15.2	50			
Aug	68.0	408	6,203	15.2	44			
Sep	60.7	514	7,815	15.2	664			
Oct	49.5	535	8,134	15.2	1,617			
Nov	40.9	478	7,267	15.2	2,030			
Dec	27.7	241	3,664	15.2	1,572			
Annual	48.6	5,553	84,426	15.2	16,614			

Proposed Montly Operational Data

Manth		Oneveting House	Electric Consumption	Electric Peak	Natural Gas
monun	Average UAT _{DB} (F)	operating Hours	(kWh)	Demand (kW)	Consumption
Jan	26.0	444	2,770	15.5	1,517
Feb	25.4	516	3,225	15.5	1,814
Mar	37.4	423	2,647	15.5	1,138
Apr	47.9	482	3,003	15.5	807
Мау	59.9	408	1,516	15.5	198
Jun	66.4	550	1,638	3.1	93
Jul	71.8	554	1,650	3.1	15
Aug	68.0	408	1,215	3.1	13
Sep	60.7	514	3,219	15.5	338
Oct	49.5	535	3,342	15.5	858
Nov	40.9	478	2,991	15.5	1,098
Dec	27.7	241	1,502	15.5	849
Annual	48.6	5,553	28,719	15.5	8,739

Montly Operational Savings

Month		Operating Hours	Electric Consumption	Electric Peak	Natural Gas
Honen	Average OATDB (1)	operating nours	(kWh)	Demand (kW)	Consumption
Jan	-	0	3,981	-0.3	1,284
Feb	-	0	4,620	-0.3	1,526
Mar	-	0	3,784	-0.3	983
Apr	-	0	4,325	-0.3	726
Мау	-	0	4,687	-0.3	336
Jun	-	0	6,724	12.1	215
Jul	-	0	6,773	12.1	35
Aug	-	0	4,988	12.1	31
Sep	-	0	4,595	-0.3	326
Oct	-	0	4,792	-0.3	759
Nov	-	0	4,276	-0.3	931
Dec	-	0	2,162	-0.3	723
Annual	-	0	55,707	12.1	7,875

COST ESTIMATE: EEM-9 IMPLEMENT KITCHEN DEMAND CONTROL VENTILATION - LAKESIDE DH

Item Description	Qty	Unit	Unit Cost	Subtotal
Variable frequency drive, 10 hp	2	Ea.	\$4,100	\$8,200
Inverter drive, 1 hp	1	Ea.	\$1,107	\$1,107
Inverter drive, 2 hp	2	Ea.	\$1,152	\$2,304
System controller, sensors, low voltage cabling, system commissioning and owner training	1	Lump Sum	\$27,881	\$27,881
Calibration, Start-up/Checkout Labor	11	Per Point	\$334	\$3,674
Labor and Materials Subtotal				\$43,166
General Conditions	10%			\$4,317
Labor and Materials Cost Total				\$47,482
Architectural & Engineering Fees	10%			\$4,748
Construction Management Fees	10%			\$4,748
Contingency	10%			\$4,748
Project Cost Subtotal				\$61,727
Agency Administrative Fee	0%			\$0
Total Project Cost				\$61.727

SUMMARY INPUTS: EEM-9 IMPLEMENT KITCHEN DEMAND CONTROL VENTILATION - COOPER DH

Existing Exhaust Fan Design Conditions

Location	Exhaust Fan Exhaust CEM Motor HD		Motor HP	Motor Eff. Mo		Motor kW	Motor Control	Makeup Air
Eocation	Exilaust Fall	Exhaust CIPI Plotor IIP					Motor control	System
Kitchen	E-1	5,290		2	84.0%	1.4	None	HV-1
Kitchen	E-2	6,750		3	86.5%	2.1	None	HV-1

Existing Makeup Air Design Conditions

Unit	Outdoor Air CFM Motor HP		Motor Eff	Motor kW	No	tes
HV-1	13,870	5	87.5%	3	4	

Existing Transfer Air Design Conditions

Unit	Suuply CFM	Motor HP	Motor Eff	Motor kW	Notes
N/A	-	-	-	-	

Calculation Inputs

Exhaust CFM	12,040
Exhaust kW	3.49
Makeup Air CFM	13,870
Makeup Air kW	3.41
Transfer Air CFM	-
Transfer Air kW	-

Hourly Exhaust Flow Weekdays

Weekdays		% of Fi	II Flow
Hour	On/Off Schedule	Baseline	Post-Retrofit
0 to 1	0	1.0	0.0
1 to 2	0	1.0	0.0
2 to 3	0	1.0	0.0
3 to 4	0	1.0	0.0
4 to 5	0	1.0	0.1
5 to 6	1	1.0	0.3
6 to 7	1	1.0	0.5
7 to 8	1	1.0	0.8
8 to 9	1	1.0	1.0
9 to 10	1	1.0	0.7
10 to 11	1	1.0	0.5
11 to 12	1	1.0	0.3
12 to 13	1	1.0	0.9
13 to 14	1	1.0	0.6
14 to 15	1	1.0	0.3
15 to 16	1	1.0	0.4
16 to 17	1	1.0	1.0
17 to 18	1	1.0	0.8
18 to 19	1	1.0	0.6
19 to 20	1	1.0	0.3
20 to 21	1	1.0	0.2
21 to 22	0	1.0	0.2
22 to 23	0	1.0	0.1
23 to 24	0	1.0	0.0

weekenus				
		% of Full Flow		
Hour	On/Off Schedule	Baseline	Post-Retrofit	
0 to 1	0	1.0	0.0	
1 to 2	0	1.0	0.0	
2 to 3	0	1.0	0.0	
3 to 4	0	1.0	0.0	
4 to 5	0	1.0	0.1	
5 to 6	0	1.0	0.3	
6 to 7	0	1.0	0.5	
7 to 8	1	1.0	0.8	
8 to 9	1	1.0	1.0	
9 to 10	1	1.0	0.7	
10 to 11	1	1.0	0.5	
11 to 12	1	1.0	0.3	
12 to 13	1	1.0	0.9	
13 to 14	1	1.0	0.6	
14 to 15	1	1.0	0.3	
15 to 16	1	1.0	0.4	
16 to 17	1	1.0	1.0	
17 to 18	1	1.0	0.8	
18 to 19	1	1.0	0.6	
19 to 20	1	1.0	0.3	
20 to 21	1	1.0	0.2	
21 to 22	0	1.0	0.2	
22 to 23	0	1.0	0.1	
23 to 24	0	1.0	0.0	

Weekends

RESULTS: EEM-9 IMPLEMENT KITCHEN DEMAND CONTROL VENTILATION - COOPER DH

Baseline Montly Operational Data						
Month	Average OAT _{DB} (F)	Operating Hours	Electric Consumption (kWh)	Electric Peak Demand (kW)	Natural Gas Consumption	
Jan	26.0	372	2,567	6.9	2,694	
Feb	25.4	432	2,981	6.9	3,205	
Mar	37.4	354	2,443	6.9	1,999	
Apr	47.9	404	2,788	6.9	1,417	
Мау	59.9	278	1,918	6.9	394	
Jun	66.4	0	0	0.0	0	
Jul	71.8	0	0	0.0	0	
Aug	68.0	342	2,360	6.9	23	
Sep	60.7	430	2,967	6.9	568	
Oct	49.5	448	3,092	6.9	1,488	
Nov	40.9	400	2,760	6.9	1,931	
Dec	27.7	202	1,394	6.9	1,512	
Annual	48.6	3,662	25,272	6.9	15,231	

Proposed Montly Operational Data

Manth		On eaching House	Electric Consumption	Electric Peak	Natural Gas
Month	Average OATDB (F)	Operating Hours	(kWh)	Demand (kW)	Consumption
Jan	26.0	372	1,157	7.1	1,581
Feb	25.4	432	1,346	7.1	1,887
Mar	37.4	354	1,104	7.1	1,170
Apr	47.9	404	1,255	7.1	821
Мау	59.9	278	512	7.1	160
Jun	66.4	0	0	0.0	0
Jul	71.8	0	0	0.0	0
Aug	68.0	342	463	1.4	7
Sep	60.7	430	1,343	7.1	325
Oct	49.5	448	1,395	7.1	870
Nov	40.9	400	1,248	7.1	1,137
Dec	27.7	202	627	7.1	885
Annual	48.6	3,662	10,448	7.1	8,843

Montly Operational Savings

Month	Average OAT _{DB} (F)	Operating Hours	Electric Consumption	Electric Peak	Natural Gas
			(KWN)	Demand (KW)	Consumption
Jan	-	0	1,411	-0.2	1,112
Feb	-	0	1,635	-0.2	1,318
Mar	-	0	1,339	-0.2	829
Apr	-	0	1,533	-0.2	597
Мау	-	0	1,407	-0.2	234
Jun	-	0	0	0.0	0
Jul	-	0	0	0.0	0
Aug	-	0	1,897	5.5	16
Sep	-	0	1,625	-0.2	243
Oct	-	0	1,697	-0.2	618
Nov	-	0	1,513	-0.2	794
Dec	-	0	767	-0.2	627
Annual	-	0	14,823	5.5	6,387

COST ESTIMATE: EEM-9 IMPLEMENT KITCHEN DEMAND CONTROL VENTILATION - COOPER DH

Item Description	Qty	Unit	Unit Cost	Subtotal
Variable frequency drive, 3 hp	1	Ea.	\$2,925	\$2,925
Variable frequency drive, 5 hp	1	Ea.	\$3,175	\$3,175
Inverter drive, 2 hp	1	Ea.	\$1,152	\$1,152
System controller, sensors, low voltage cabling, system commissioning and owner training	1	Lump Sum	\$17,871	\$17,871
BAS I/O Points, Engineering, Calibration, Start-up/Checkout Labor	6	Per Point	\$334	\$2,004
Labor and Materials Subtotal				\$27,127
General Conditions	10%			\$2,713
Labor and Materials Cost Total				\$29,840
Architectural & Engineering Fees	10%			\$2,984
Construction Management Fees	10%			\$2,984
Contingency	10%			\$2,984
Project Cost Subtotal				\$38,792
Agency Administrative Fee	0%			\$0
Total Project Cost				\$38,792

LIFE CYCLE COST ANALYSIS

ECM No.:	EEM-9	
ECM Title:	Implement Kitchen Demar	nd Control Ventilation
General Parameters		
Base Date:	1/1/2023	
Service Date:	1/1/2023	
Study Period (Years):	15	
Discount Rate:	3%	
Cost Escalation:	0%	
FEMP UPV Discount Factor (Elect.):	14.96	
FEMP UPV Discount Factor (NG):	13.70	

<u>Cost Data</u>	Baseline	Proposed	<u>Savings</u>
Initial Capital Cost:		\$192,867	(\$192,867)
Annual Electricity Costs:	\$10,176	\$3,792	\$6,384
Annual Natural Gas Costs:	\$17,506	\$9,628	\$7,877
Annual CHP Natural Gas Costs:	\$0	\$0	\$0
Annual CHW Costs:	\$0	\$0	\$0
Annual HTHW Costs:	\$0	\$0	\$0
Annual Water Costs:	\$0	\$0	\$0
Annual OM&R Costs:	\$4,046	\$4,046	\$0
Other Recurring Annual Costs:	\$0	\$0	\$0
Life Cycle Cost Calculations	Baseline	Proposed	<u>Savings</u>
Present Value Investment Costs, I:	\$0	\$192,867	(\$192,867)
Present-Value Capital Replacement Cost, Repl:	\$0	\$0	\$0
Present Value Residual Cost, Res:	\$0	\$0	\$0
Present Value Energy Costs, E:	\$392,074	\$188,655	\$203,419
Present Value Water Cost, W:	\$0	\$0	\$0
Present Value O&M and Other Recurring Costs, OM&R:	\$48,303	\$48,303	\$0
LCC:	\$440,377	\$429,824	\$10,553
Savings to Investment Ratio Calculations			
Present Value Energy Cost Savings, DE:	\$203,419		
Present Value Water Cost Savings, DW:	\$0		
Present Value OM&R Cost Savings, DOM&R:	\$0		
SIR:	1.05		

Note: Calculations are in accordance with the National Institute of Standards and Technology, NIST Handbook 135, Life-Cycle Costing Manual for the Federal Energy Management Program, 1995.

SUNY OSWEGO | EEM-10 LABORATORY DEMAND CONTROLLED VENTILATION

Energy Opportunity Area: HVAC, Building Automation System (BAS), Special Systems (Laboratories)

Buildings Affected: Richard S. Shineman Center

Table 1. EEM-10 Summary Data

Description	Values	Units
Annual Electrical Energy Savings	1,714,816	kWh/year
Electrical Peak Demand Savings	489	kW
Annual Electrical Energy Cost Savings	\$101,174	\$/year
Annual Natural Gas Savings	116,014	Therms/year
Annual Natural Gas Cost Savings	\$46,870	\$/year
Total Annual Energy Cost Savings	\$148,044	\$/year
Estimated Implementation Cost	\$503,100	\$
Simple Payback Period	3.4	Years
Savings to Investment Ratio	4.3	-

Existing Conditions/Baseline

Richard S. Shineman Center is an academic building opened in 2013 which houses classrooms and lab spaces for the University's science and engineering departments. Building research facilities include lab spaces for molecular and cell culture biology, chemistry, earth science, botany and zoology, and biochemistry.

Heating, ventilation, and air conditioning (HVAC) systems in the building include two air handling units (AHU) which serve variable air volume (VAV) boxes in all building lab spaces. Other HVAC systems serve non-lab space types throughout the building and are not included in this measure. Lab air handling units AHU-3 and AHU-4 are 100% outdoor air units serving VAV boxes ranging from 300 cfm to 7,500 cfm. AHU-3 and AHU-4 operate in conjunction with lab exhaust fans LEF-1, LEF-2, LEF-3 and LEF-4. General zone exhaust ranges from 250 cfm to 3,900 cfm.

AHUs operate in occupied mode 24/7 and are controlled through Trane Tracer® Ensemble[™] building automation system (BAS).

Recommended Action

Laboratory spaces require vast amounts of outdoor air and high air change rates to maintain a safe and healthy environment for occupants. Due to this, buildings which house lab spaces are energy intensive and present a significant opportunity for energy savings and carbon reduction.

Laboratory demand controlled ventilation (DCV) based on sensed contaminant uses an air sampling system with a centralized suite of sensors. The system measures critical lab air quality parameters in real time and dynamically adjusts ventilation rates to provide the appropriate amount of air needed to the space. This system can significantly reduce a space's minimum air change rate when the lab room air is sensed to be "clean" and results in energy savings during those periods, which is about 98% of the time in a typical campus lab space. Lab DCV also enhances occupant safety when contaminants are detected by increasing the space's air change rates during those periods to meet ASHRAE lab ventilation requirements.

In addition to energy savings, EHS professional staff would have access to indoor environmental quality (IEQ) data, enabling them to verify safety and proper lab protocols. This strategy of optimizing air flows based on real-time conditions is a fundamental component of a "Smart Lab" approach. It is currently being applied successfully in over one thousand laboratory buildings including various SUNY labs (Binghamton (3), Stony Brook (4), Oneonta, Plattsburgh).

Estimated Energy Savings

The Lab DCV control combines real-time sensing and continuous monitoring of indoor environments with existing VAV air distribution system controls to allow reductions to baseline air exchange rates, resulting in heating, cooling, and fan energy savings. Shineman lab spaces analyzed under this EEM currently have VAV terminals for both supply and general lab exhaust and some variable flow fume hoods.

Savings were estimated using a calculation tool developed by Aircuity that accounts for weather, supply and exhaust air flow, applicable lab zone space volume, fume hoods, utility rates, thermal loads by zone, fan system data, and several other inputs. The tool estimates potential air flow reductions that can be achieved during occupied and unoccupied periods using ambient OA temperature bin models to quantify the associated heating, cooling, and fan energy savings. The full analysis is included in the Supporting Documents. **Table 2** and **Table 3** summarize the estimated reduction in air change rates and overall air flow from implementing Lab DCV.

Table 2. EEM-10 Reduction in Air Change Rates

	Day Supply ACH	Night Supply ACH	High Ventilation Max/Purge Supply ACH
Baseline	10	10	N/A
Proposed	4	4	12

Table 3. EEM-10 Estimated Air Flow Savings

	Average Day CFM	Average Night CFM	Average CFM
Baseline	79,687	79,687	79,687
Proposed	36,229	33,712	34,611
Savings	43,459	45,976	45,077

Estimated Project Cost

The estimated project cost is a turnkey solution provided by Aircuity, and includes:

- Equipment
- Installation Labor
- Engineering
- Project Management
- BMS Integration

• Start up / Commissioning

A net capital cost of \$503,100 was quoted for Lab DCV implementation in Shineman lab spaces.

Table 4. EEM-10 Estimated Project Costs

Item Description	Qty	Unit	Unit Cost	Subtotal
Aircuity Lab DCV Budget Estimate	1	Lump Sum	\$503,100	\$503,100
Labor and Materials Subtotal				\$503,100
General Conditions	0%			\$0
Labor and Materials Cost Total				\$503,100
Architectural & Engineering Fees	0%			\$0
Construction Management Fees	0%			\$0
Contingency	0%			\$0
Project Cost Subtotal				\$503,100
Agency Administrative Fee	0%			\$0
Total Project Cost				\$503,100

Ramboll - SUNY Oswego | EEM-10 Laboratory Demand Controlled Ventilation

Ramboll - SUNY Oswego | EEM-10 Laboratory Demand Controlled Ventilation

EEM-10 – LABORATORY DEMAND CONTROLLED VENTILATION

SUPPORTING DOCUMENTS

LIFE CYCLE COST ANALYSIS

ECM No.:	EEM-10		
ECM Title:	Laboratory Demand Controlled Ventilat	tion	
General Parameters			
Base Date:	1/1/2023		
Service Date:	1/1/2023		
Study Period (Years):	15		
Discount Rate:	3%		
Cost Escalation:	0%		
FEMP UPV Discount Factor (Elect.):	14.96		
FEMP UPV Discount Factor (NG):	13.70		
<u>Cost Data</u>	Baseline	Proposed	Savings
Initial Capital Cost:		\$503,100	(\$503,100)
Annual Electricity Costs:	\$154,726	\$53,552	\$101,174
Annual Natural Gas Costs:	\$61,657	\$14,787	\$46,870
Annual CHP Natural Gas Costs:	\$0	\$0	\$0
Annual CHW Costs:	\$0	\$0	\$0
Annual HTHW Costs:	\$0	\$0	\$0
Annual Water Costs:	\$0	\$0	\$0
Annual OM&R Costs:	\$15,093	\$15,093	\$0
Other Recurring Annual Costs:	\$0	\$0	\$0
Life Cycle Cost Calculations	Baseline	Proposed	Savings
Present Value Investment Costs, I:	\$0	\$503,100	(\$503,100)
Present-Value Capital Replacement Cost, Repl:	\$0	\$0	\$0
Present Value Residual Cost, Res:	\$0	\$0	\$0
Present Value Energy Costs, E:	\$3,159,289	\$1,003,669	\$2,155,620
Present Value Water Cost, W:	\$0	\$0	\$0
Present Value O&M and Other Recurring Costs, OM&R:	\$180,179	\$180,179	\$0
LCC:	\$3,339,468	\$1,686,948	\$1,652,520
Savings to Investment Ratio Calculations			
Present Value Energy Cost Savings, DE:	\$2,155,620		
Present Value Water Cost Savings, DW:	\$0		
Present Value OM&R Cost Savings, DOM&R:	\$0		
SIR:	4.3		

Note: Calculations are in accordance with the National Institute of Standards and Technology, NIST Handbook 135, Life-Cycle Costing Manual for the Federal Energy Management Program, 1995.

Laboratory Ventilation Savings Analysis for SUNY Oswego Shineman

City Location is Oswego (Using weather data from Syracuse, New York)

Submitted by Walt King

May 5, 2023

Copyright 2023

Confidentiality Note: This document, and the software program that created it, is copyrighted and intended for use only by the individual or entity to which it is addressed and may contain information that is privileged, confidential, and exempt from disclosure under applicable law. If the reader is not the intended recipient or the employee or agent responsible for delivering the document to the intended recipient, you are hereby notified that any dissemination, distribution or copying of this communication is strictly prohibited. If you have received this communication in error, please contact the sender immediately and destroy the material in its entirety, whether electronic or hard copy.

Aircuity Energy Savings and ROI Budget Estimate

Re: SUNY Oswego, Shineman Optimization Project - Budget Estimate

Aircuity is pleased to provide this Budget Estimate for your critical environment. Aircuity's enabling technology will increase lab safety while providing your organization significant carbon and energy reduction to help achieve mission critical objectives.

This Budget Estimate is based upon:

- > Assumption of an existing or separately installed VAV lab control system
- > Energy costs of \$ 0.06/kWh & \$ 0.40/Therm
- > 39 lab spaces and a total approximate demand controlled area of 30,537 square feet
- > Current or Baseline Minimum Air change rate of 15.80 ACH Occupied & 15.80 ACH Unocc periods.
- > Proposed minimum air change rate of 4.00 ACH Day and 4.00 ACH Night periods.
- > "Rule of thumb" installation pricing
- > Conservative estimate for air change rate reduction

This budgetary estimate does not include:

- > Utility rebate incentives
- Localized installation pricing variations
- > Further potential air change rate reduction

The goal of this budgetary estimate is to provide you with an approximate cost and payback analysis for a typical project given the provided parameters. Should you wish to proceed with a more detailed conceptual and/or investment grade analysis, please contact us.

Budget Estimate Financial Overview

Project Cost:	\$503,100
Capital Savings from Downsizing HVAC if applicable:	
Utility Rebate Incentive if applicable:	
Net Capital Cost:	\$503,100
Projected Annual Energy Savings:	\$149,120
Simple Energy Payback:	3.3 years
CO2 Reduction in Metric tons of CO2:	1,435
CO2 Reduction in equivalent avg. cars:	278
Reduction from Baseline HVAC Energy:	68%

Note: Aircuity's Budgetary Analysis has proven to reasonably accurate based on the quality of the assumptions used, and is an approved incentive tool by some utilities, but it should be utilized at this stage to simply gauge interest and confirm desire to proceed with more detailed analysis.

Thank You!

Thank you for your interest in Aircuity's Safe, Smart and Efficient Airside Solutions!

Proposed Laboratory System Cashflow Savings Analysis

	Мау	5, 2023
Customer Name	SUNY Oswego	
Project Name	Shineman	
City	Oswego (Using weather data from Syracuse, New York)	
Submitted by	Walt King	

Project Capital Costs	\$503,100
Diversity Savings & Dpt Sensors	\$0
Utility Incentive/Rebate	\$0
Net Capital Cost (Savings)	\$503,100

Energy Units Saved:
1,714,816 kWh Electricity saved annually
116,014 Therms Heating saved annually
489 kW peak reduction via Max Bin Method

1st Year Savings	\$149,120
Simple Energy Payback	3.3 years

10 Years of Cashflow Analysis

	Energy	Net Recurring	Annual	Net Capital	Net Annual	Cumulative
Year	Savings	Costs	Savings	Costs	Savings	Savings
2023	\$149,120	\$0	\$149,120	(\$503,100)	(\$353,980)	(\$353,980)
2024	\$153,593	(\$31,092)	\$122,502		\$122,502	(\$231,479)
2025	\$158,201	(\$32,024)	\$126,177		\$126,177	(\$105,302)
2026	\$162,947	(\$32,985)	\$129,962		\$129,962	\$24,659
2027	\$167,835	(\$33,975)	\$133,861		\$133,861	\$158,520
2028	\$172,870	(\$34,994)	\$137,877		\$137,877	\$296,397
2029	\$178,056	(\$36,044)	\$142,013		\$142,013	\$438,410
2030	\$183,398	(\$37,125)	\$146,273		\$146,273	\$584,683
2031	\$188,900	(\$38,239)	\$150,661		\$150,661	\$735,344
2032	\$194,567	(\$39,386)	\$155,181		\$155,181	\$890,525
Totals	\$1,709,488	(\$315,863)	\$1,393,625	(\$503,100)	\$890,525	\$890,525
1st year energy savings represents a 68% reduction from base case.					10 Yrs NPV =	\$422,814
					10 Yrs IRR =	23.9%
					10 Yrs Cum.	¢000 525
					Savings	⊅090,5 25

Environmental Impact

May 5, 2023

Customer	SUNY Oswego
Project	Shineman
City	Oswego (Using weather data from Syracuse, New York)
Submitted by	Walt King

Annual CO2 Emission Rates for Power	Generation in	US National		
New York	New York			
CO ₂ (lb/MWh)	439.1	997.1		

Fossil Fuel Used	lb CO₂/ MMBtu
Heating: Gas	207.91
Reheat: SameAsHeating	207.91
Other Fuel Type:	

Base Design Annual Emissions

					CO ₂			Carbon	
Annual Energy Units		Equivalent MMBTUs	Equivalent MBTUs	Lbs	Short Tons	Metric Tons	Lbs	Short Tons	Metric Tons
Total kWh	2,622,472	8,950	8,950,495	1,151,637	576	522	314,083	157	142
Total Therms	152,616	15,262	15,261,619	3,173,043	1,587	1,439	865,375	433	392
Total Units		24,212	24,212,115	4,324,681	2,162	1,961	1,179,458	590	535

Proposed Design Annual Emissions

					CO ₂			Carbon	
Annual E	nergy Units	Equivalent MMBTUs	Equivalent MBTUs	Lbs	Short Tons	Metric Tons	Lbs	Short Tons	Metric Tons
Total kWh	907,655	3,098	3,097,827	398,589	199	181	108,706	54	49
Total Therms	36,602	3,660	3,660,208	760,994	380	345	207,544	104	94
Total Units		6,758	6,758,035	1,159,583	580	526	316,250	158	143

Annual Lab DCV Emissions Savings

					CO ₂			Carbon	
Annual Energy Units Saved		Equivalent MMBTUs	Equivalent MBTUs	Lbs	Short Tons	Metric Tons	Lbs	Short Tons	Metric Tons
Total kWh	1,714,816	5,853	5,852,669	753,048	377	342	205,377	103	93
Total Therms	116,014	11,601	11,601,411	2,412,049	1,206	1,094	657,832	329	298
Total Units		17,454	17,454,079	3,165,097	1,583	1,435	863,208	432	391

Saving 1,435 metric tons of CO2 emissions is equivalent to:

- ✓ 175,083 gallons of gasoline burned (278 average cars).
- ✓ 391 metric tons of carbon.
- ✓ The annual CO2 emissions from 122 average American households.

Base and Proposed System Energy Cost Savings Summary

		May 3, 2023		
Customer Name	ustomer Name SUNY Oswego			
Project Name	Shineman			
City	Oswego (Using weather data from Syracuse, New York)			
Submitted by	Walt King			

	Base Design in CFM	Proposed Design in CFM	CFM Flow Savings
Average Day Airflow	88,689.2	35,575.1	53,114.1
Average Night Airflow	88,689.2	33,154.7	55,534.5
Average Airflow	88,689.2	34,019.2	54,670.1
Average Annual \$/CFM	\$ 2.48	\$ 2.09	\$ 2.73

Energy Inflation Rate 3.0%

Year	Base Design Energy	Proposed Design	Energy	Cumulative
icai	Costs (USD)	Energy Costs (USD)	Savings (USD)	Savings (USD)
2023	220,106	70,986	149,120	149,120
2024	226,709	73,116	153,593	302,713
2025	233,510	75,309	158,201	460,914
2026	240,515	77,569	162,947	623,860
2027	247,731	79,896	167,835	791,696
2028	255,163	82,292	172,870	964,566
2029	262,818	84,761	178,056	1,142,623
2030	270,702	87,304	183,398	1,326,021
2031	278,823	89,923	188,900	1,514,921
2032	287,188	92,621	194,567	1,709,488
10 Yr Savings	\$ 2,523,265	\$ 813,777	\$ 1,709,488	\$ 1,709,488

Energy Savings & Capital Cost Analysis Basic Assumptions

							111ay 0, 202
ustomer Name	SUNY Osweg	0			For US Weath	er Stations, Actual	Airport Locatio
roject Name	Shineman				Syracuse Han	cock International A	Airport
ty	Oswego			Weather Station:	New York, Sy	racuse	
ubmitted by	Walt King					Budget Estima	ite
Building & Finan	cial Assumption	ns			Baseli	ne & Proposed D	esign Data
Number of Zones	30				Tho	mal Loads by Zon	
Ava Zone Area (sa ft)	783				Normal	Modorato	
Total sq. ft (calculated)	30 537				Activity		High Activity
Ava Ceilina Height	10 00				Low Load	Medium Load	High Load
Total # of Fume Hoods	35			% of Zones	80%	10%	10%
	800			Number of Zones	31	4	4
	800		De	n Cambel of Zenes	6.00	10.00	12.00
	60%	Onon	RU RU	Om Feak W/It (Day	0.00	8.00	12.00
Avg Day FH Sash Opening	00%	Open		Avg Peak vv/nt (Day) 4.00	8.00	12.00
Avg Nite FH Sash Opening	25%	Open		Avg W/ft ² (Day) 3.00	6.00	9.00
		1		Avg Peak W/ft ² Nite	e 2.00	4.00	9.00
Annual Inflation Rate	3%			Avg Watts/ft ² Nite	e 1.50	3.00	6.00
Energy Inflation Rate	3%						
Hurdle Rate	8%		Ba	ase Day Supply ACH	15.80	15.80	15.80
Financial Analysis Period	10 Yrs		Bas	e Night Supply ACH	15.80	15.80	15.80
		1	_				
Incentive/Rebate \$/kWh			Proposed No	ormal Day Sup. ACH	4.00	4.00	4.00
Incentive/Rebate \$/Therm	\$-		Proposed Nor	mal Night Sup. ACH	4.00	4.00	4.00
Incentive/Rebate \$/kW	\$-		High Vent M	ax/Purge Sup. ACH	12.00	12.00	12.00
		Energ	gy Cost & H\	AC System Assu	mptions		
	Cooling Method		Electric		Oc	c Cooling Set Point	7
	Heating Method		Gas		Occ Heatir	ng/Reheat Set Point	7
	ReHeat Method	Sar	meAsHeating				
		^			UnOc	c Cooling Set Point	7
	Electric \$/kWh	\$	0.0600		UnOcc Heatir	ng/Reheat Set Point	1
	Vater \$/I on-Hour	\$	0.1817	(Not used)			,
Gas/OII/OI	Stoom \$/1 000 lb	\$ \$	12 4000	(Not used)		Base SA Temp	
	Stearn \$/1,000 lb.	φ	12.4000	(Not used)		ofrigoration System	
E	vanorative Cooling		None		Heating Efficiency	/ Heat Pump COP	07
(Triage	rs Wet Bulb Recalc)		None				0.7
Proposed Roor	n Cooling Method	VA	V Air System		Heat Red	coverv System Type	Sensible On
Base Design Roor	n Cooling Method	Same	eAsProposed		Heat	Recovery Efficiency	75
					Heat Reco	very Installed Price	\$ 443,44
(DA Humidification		None		Annual H	eat Recovery Costs	\$ 8,90
Humidifica	tion RH Set Point		45%		Extra Static	from Heat Recovery	0.7
		I	Fan System	Assumptions & D	ata		
Supply Fan Tota	l Static - (No HR)		5.00	in w.c.		Exhaust Fan Co	ntrol Strategy
Sup	ply Fan Efficiency		70%			Staged Fans w/ E	Bypass Damper
Exhaust Fan Tota	l Static - (No HR)		4.50	in w.c.	Show Exhaust	Fan Control Savings	No
Exhau	ust Fan Efficiency		60%		Numb	per of Exhaust Fans	4
	One lite I O	0				a local a al Y	
	Capital Cost	Saving	ys & Diversi	ly Assumptions (I	piversity not inc	siuaea)	
Include	Diversity Savings		No		Baseline \$/CFM	I	Diversity %
	Design %		99.90%		\$9.05	Cooling System	100%
Baseline CF	M/Ton of Cooling		193		\$0.04	Heating System	100%
\$/Tor	: Cooling System	\$	1,750		\$0.62	Reheat System	100%
\$/Watt Cost for Hydro	nic Room Cooling	\$	1.00		\$6.00	Exhaust Fan	100%
\$/MBH	I: Heating System	\$	40		\$4.50	Supply AHU	100%
Subtract Cost of E	Dewpoint Sensors		No		\$0.15	AHU VFDs	100%
*Dewpoint Sen	sor Cost Installed	\$	1,500		\$5.00	Heat Recovery	100%
					\$0.45	Ductwork	100%
						t	
Proposed Insta	lled System Price	\$	503,100	(from ONE)	\$25.81	Total Base HVAC	
Proposed Insta Annual Costs for	lled System Price Proposed System	\$ \$	503,100 30,186	(from ONE) (from ONE)	\$25.81	Total Base HVAC	

Occupancy Schedule

Λ	<u>AIRCUITY</u>
	May 5, 2023

Customer Name	SUNY Oswego
Project Name	Shineman
City	Oswego (Using weather data from Syracuse, New York)
Submitted by	Walt King

Hour	Sun	Mon	Tue	Wed	Thu	Fri	Sat
12 to 1 AM	UnOcc						
1 to 2 AM	UnOcc						
2 to 3 AM	UnOcc						
3 to 4 AM	UnOcc						
4 to 5 AM	UnOcc						
5 to 6 AM	UnOcc						
6 to 7 AM	UnOcc						
7 to 8 AM	UnOcc	Occ	Occ	Occ	Occ	Occ	UnOcc
8 to 9 AM	UnOcc	Occ	Occ	Occ	Occ	Occ	UnOcc
9 to 10 AM	UnOcc	Occ	Occ	Occ	Occ	Occ	UnOcc
10 to 11 AM	UnOcc	Occ	Occ	Occ	Occ	Occ	UnOcc
11 to Noon	UnOcc	Occ	Occ	Occ	Occ	Occ	UnOcc
12 to 1 PM	UnOcc	Occ	Occ	Осс	Occ	Occ	UnOcc
1 to 2 PM	UnOcc	Occ	Occ	Occ	Occ	Occ	UnOcc
2 to 3 PM	UnOcc	Occ	Occ	Occ	Occ	Occ	UnOcc
3 to 4 PM	UnOcc	Occ	Occ	Occ	Occ	Occ	UnOcc
4 to 5 PM	UnOcc	Occ	Occ	Occ	Occ	Occ	UnOcc
5 to 6 PM	UnOcc	Occ	Occ	Occ	Occ	Occ	UnOcc
6 to 7 PM	UnOcc	Occ	Осс	Осс	Осс	Occ	UnOcc
7 to 8 PM	UnOcc						
8 to 9 PM	UnOcc						
9 to 10 PM	UnOcc						
10 to 11 PM	UnOcc						
11 to Midnight	UnOcc						

	Occ Hours	UnOcc Hours	Off Hours	Occ Hours Percent	UnOcc Hours Percent
0-6	0	42	0	0%	100%
7-12	25	17	0	60%	40%
13-18	30	12	0	71%	29%
19-24	5	37	0	12%	88%
Total	60	108	0	36%	64%

May 5, 2

		May 5, 2023
Customer Name	SUNY Oswego	
Project Name	Shineman	
City	Oswego (Using weather data from Syracuse, New York)	
Submitted by	Walt King	

Supply	CFM	Comparisons
--------	-----	-------------

	Dees	Dreneed		
	Base	Proposed		
	Calculated	Calculated	CFM	%
	CFM	CFM	Differences	Differences
Total Fume Hood Maximum CFM	28,000	28,000	0	0%
Total Fume Hood Minimum CFM	28,000	28,000	0	0%
Estimated Total Peak FH CFM	21,000	21,000	0	0%
Estimated Total FH Avg CFM - Day	28,000	28,000	0	0%
Estimated Total FH Avg CFM - Night	28,000	28,000	0	0%
Avg Peak Cooling CFM - Day	32,282	33,877	1,594	5%
Avg Cooling CFM - Day	24,212	24,212	0	0%
Avg Peak Cooling CFM - Night	19,052	20,188	1,136	6%
Avg Cooling CFM - Night	12,701	12,701	0	0%
Day Average ACH CFM	88,689	25,381	(63,309)	-71%
Night Average ACH CFM	88,689	24,987	(63,702)	-72%
Avg Peak CFM - Day	88,689	39,903	(48,786)	-55%
Average CFM - Day	88,689	35,575	(53,114)	-60%
Avg Peak CFM - Night	88,689	35,705	(52,984)	-60%
Average CFM - Night	88,689	33,155	(55,535)	-63%

Average and Peak Supply Flow Breakdown by Room Type

Room Type	Base Peak Occ CFM	Base Peak UnOcc CFM	Proposed Peak Occ CFM	Proposed Peak UnOcc CFM
Low Load, Non-High Hood Density	63,919	63,919	23,605	22,931
Low Load, High Hood Density	-	-	-	-
Medium Load, Non-High Hood Density	8,248	8,248	4,784	2,959
Medium Load, High Hood Density	-	-	-	-
High Load, Non-High Hood Density	8,248	8,248	7,016	5,317
High Load, High Hood Density	-	-	-	-
Other Areas (Non-Lab, CV Lab, etc.)	-	-	-	-
Lab Corridors and Associated Areas	8,275	8,275	4,498	4,498
Total Peak Supply Flows	88,689	88,689	39,903	35,705

Room Type	Base Average Occ CFM	Base Average UnOcc CFM	Proposed Average Occ CFM	Proposed Average UnOcc CFM
Low Load, Non-High Hood Density	63,919	63,919	22,256	22,256
Low Load, High Hood Density	-	-	-	-
Medium Load, Non-High Hood Density	8,248	8,248	3,528	2,872
Medium Load, High Hood Density	-	-	-	-
High Load, Non-High Hood Density	8,248	8,248	5,292	3,528
High Load, High Hood Density	-	-	-	-
Other Areas (Non-Lab, CV Lab, etc.)	-	-	-	-
Lab Corridors and Associated Areas	8,275	8,275	4,498	4,498
Total Average Supply Flows	88,689	88,689	35,575	33,155

	Color Key for Controlling or Max Flow:	Fume Hood Driven	Cooling Driven	ACH Driven
--	--	------------------	----------------	------------

Customer Name	SUNY Oswego
Project Name	Shineman
City	Oswego (Using weather data from Syracuse, New York)
Submitted by	Walt King

Proposed System 10 Year Life Cycle Cost Analysis

Customer Name	SUNY Oswego	
Project Name	Shineman	
City	Oswego (Using weather data from Syracuse, New York)	
Submitted by	Walt King	

		Proposed System	Proposed System
	Base System Design	Design	(Aircuity) Savings
	, ,		
Aircuity First Cost	\$0	\$503,100	(\$503,100)
	·		
Diversity Savings	\$0	\$0	\$0
Rebate & Incentives	\$0	\$0	\$0
Adjustments to First Cost	\$0	\$0	\$0
Net First Cost	\$0	\$503 100	(\$503.100)
	ΨŬ	4000 ,100	(\$666,166)
Year 1 Energy Cost	\$220,106	\$70,986	\$149,120
Year 2 Energy Cost	\$226,709	\$73,116	\$153,593
Year 3 Energy Cost	\$233,510	\$75,309	\$158,201
Year 4 Energy Cost	\$240,515	\$77,569	\$162,947
Year 5 Energy Cost	\$247,731	\$79,896	\$167,835
Year 6 Energy Cost	\$255,163	\$82,292	\$172,870
Year 7 Energy Cost	\$262,818	\$84,761	\$178,056
Year 8 Energy Cost	\$270,702	\$87,304	\$183,398
Year 9 Energy Cost	\$278,823	\$89,923	\$188,900
Year 10 Energy Cost	\$287,188	\$92,621	\$194,567
Total 10 Year Energy Cost	\$2,523,265	\$813,777	\$1,709,488
Year 1 Maintenance Cost		\$0	\$0
Year 2 Maintenance Cost		\$31,092	(\$31,092)
Year 3 Maintenance Cost		\$32,024	(\$32,024)
Year 4 Maintenance Cost		\$32,985	(\$32,985)
Year 5 Maintenance Cost		\$33,975	(\$33,975)
Year 6 Maintenance Cost		\$34,994	(\$34,994)
Year 7 Maintenance Cost		\$36,044	(\$36,044)
Year 8 Maintenance Cost		\$37,125	(\$37,125)
Year 9 Maintenance Cost		\$38,239	(\$38,239)
Year 10 Maintenance Cost		\$39,386	(\$39,386)
10 Year Maintenance Cost	\$0	\$315,863	(\$315,863)
Total 10 Year Operation Cost	\$2,523,265	\$1,129,640	\$1,393,625
10 Year Cost of Ownership	\$2,523,265	\$1,632,740	\$890,525
Avg. Cost of ownership per year	\$252,326	\$163,274	\$89,053

Energy Units and Energy Dollar Savings Detailed Comparison

AIRCUITY® May 5, 2023

Customer SUNY Oswego Project Shineman

roject Snineman Sity Oswego (Using weather data from Syracuse, New York)

City Oswego (L Submitted by Walt King

Base Design Proposed Design Savings **Total Annual Costs Total Annual Costs** Annual Occ Energy Units Annual Occ Energy Cost Annual Occ Energy Units Annual Occ Energy Costs Annual Occ Energy Units Annual Occ Energy Costs Occ at Occ Average Flow at Occ Average Flow Saved Savings 1.92 per CFM 333,724 2.48 per CFM 116,742 7,005 216,982 13,019 Cooling kWh Cooling \$ 20,023 Cooling kWh Cooling \$ Cooling kWh Cooling Heating Therms 19 Heating \$ leating Therms 21 leating \$ leating Therms (2) Heating \$ (1 Reheat Therms 48,867 19,547 Reheat Therms 8,612 3,445 Reheat Therms 40,255 Reheat 16,102 Reheat \$ Reheat \$ \$ leating kWh Heating kWh leating kWh -Reheat kWh Costs per CFM Reheat kWh Costs per CFM Reheat kWh . \$ 0.63 Supply Fan kWh Supply Fan Supply Fan kWh 315,060 Supply Fan \$ 18,904 Cooling cost / CFM Supply Fan kWh 64,280 Supply Fan \$ 3,857 Cooling cost / CFM \$ 0.55 250,780 \$ 15,047 Exhaust Fan kWh 335,608 20,136 Heating cost / CFM \$ 0.00 Exhaust Fan kWh 167,111 Exhaust Fan \$ 10,027 Heating cost / CFM \$ 0.00 Exhaust Fan kWh 168,497 10,110 Exhaust Fan \$ Exhaust Fan ¢ 984,392 Total kWh Total 78,618 Reheat cost / CFM extra \$ 0.85 Total kWh 348,133 24,341 Reheat cost / CFM extra \$ 0.85 Total kWh 636,260 54,277 \$ Total Total \$ Total Therms 48,886 Fan cost / CFM \$ 1.23 Total Therms 8,633 CV Exh. Fan: \$ 19,792 Fan cost / CFM \$ 1.09 otal Therms 40,253 Peak kW 791 eak kW 302 Staged Exh: \$ 10.027 Peak kW 489 VFD Exh: 4,646 \$ Annual Unocc Energy Annual Unocc Energy Cost Total Annual Costs Total Annual Costs Annual Unocc Energy Units Annual Unocc Energy Costs UnOcc Annual Unocc Energy Units Annual Unocc Energy Units at Unocc Average Flow at Unocc Average Flow Costs Saved Savings 2.10 per CFM Cooling kWh 467.015 28,021 2.45 per CFM Cooling kWh 152.585 9,155 Cooling kWh 314.430 18,866 Cooling \$ Cooling \$ Cooling \$ Heating Therms 80 leating \$ 32 leating Therms 70 Heating 28 leating Therms 10 Heating \$ Reheat Therms 103,650 \$ 41,460 Reheat Therms 27,899 11,160 Reheat Therms 75,751 Reheat 30,300 Reheat Reheat \$ \$ Heating kWh leating kWh leating kWh -Reheat kWh Costs per CFM Reheat kWh Costs per CFM Reheat kWh 460.469 27.628 Supply Fan kWh 567.041 Supply Fan \$ 34.022 Cooling cost / CFM \$ 0.49 Supply Fan kWh 106.572 Supply Fan \$ 6.394 Cooling cost / CFM \$ 0.43 Supply Fan kWh Supply Fan \$ Exhaust Fan kWh 18,022 0.00 Exhaust Fan kWh 604,022 Exhaust Fan \$ 36,241 Heating cost / CFM \$ 0.00 300,365 Exhaust Fan \$ Heating cost / CFM \$ Exhaust Fan kWh 303,658 Exhaust Fan 18,219 Total kWh Reheat cost / CFM extra \$ Total Total kWh 1,638,079 Total \$ 139,777 Reheat cost / CFM extra \$ 0.85 559,522 44,759 0.85 Total kWh 1,078,557 95,018 Total \$ \$ Fan cost / CFM Total Therms 103,731 Fan cost / CFM \$ 1.23 Total Therms 27,969 CV Exh. Fan: \$ 35,574 \$ 1.15 Total Therms 75,762 Peak kW 791 Peak kW 286 Staged Exh: \$ Peak kW 505 18.022 VFD Exh: 9,686 Annual Total HVAC **Total Annual Costs** Annual HVAC Total Energy **Total Annual Costs** Annual Total Energy Units Annual Total Energy Cost Annual Total Energy Units Annual Total Energy Costs Total at All Average Flows Units Energy Costs at All Average Flows Saved Savings Cooling kWh 800,740 Cooling 48,044 2.48 per CFM Cooling kWh 269,327 Cooling 16,160 2.09 per CFM Cooling kWh 531,412 Cooling 31,885 \$ \$ \$ Heating Therms 99 Heating \$ 40 leating Therms 91 Heating \$ 36 Heating Therms 8 Heating \$ 14.605 Reheat Therms 152.517 Reheat \$ 61.007 Reheat Therms 36.511 Reheat \$ Reheat Therms 116.006 Reheat \$ 46.402 Heating kWh Heating kWh Heating kWh ---Costs per CFM Reheat kWh Costs per CFM Reheat kWh Reheat kWh . . \$ 0.54 0.48 711,249 Supply Fan kWh Supply Fan \$ 42,675 Supply Fan kWh 882,102 Supply Fan \$ 52,926 Cooling cost / CFM Supply Fan kWh 170,852 Supply Fan \$ 10,251 Cooling cost / CFM \$ 939,630 Exhaust Fan \$ leating cost / CFM \$ 0.00 Exhaust Fan kWh 467,475 28,049 Heating cost / CFM \$ 0.00 Exhaust Fan kWh 472,155 Exhaust Fan 28,329 Exhaust Fan kWh 56,378 Exhaust Fan \$ \$ Glycol Pump kWh Glycol Pump \$ 1,711 Glycol Pump kWh Glycol Pump \$ 1,886 Glycol Pump kWh Glycol Pump \$ (175) Total kWh 2.622.472 Total \$ 220.106 Reheat cost / CFM extra \$ 0.85 Total kWh 907,655 Total 70.986 Reheat cost / CFM extra \$ 0.85 Total kWh 1.714.816 Total 149.120 \$ \$ Total Therms 152,616 Fan cost / CFM \$ 1.23 Total Therms 36,602 CV Exh. Fan: \$ 55,367 Fan cost / CFM \$ 1.13 Total Therms 116,014 68% Peak kW 791 Peak kW 302 Staged Exh: \$ 28.049 Peak kW 489 VFD Exh: \$ 14,332

Full CV Flow	Annual Ener	gy Units	Annual Energy Costs at Average Flow			Net Lab & Other Areas Electrical Loads (Plugs,	Net Lab Electrical Load Energy Costs			
	Cooling kWh	800,740	Cooling	\$	48,044	\$ 2.42 per CFM	1	Day Clg Load kWh 374,690	Day Clg Load	\$ 22,481
	Heating Therms	99	Heating	\$	40			Nite Clg Load kWh 363,670	Nite Clg Load	\$ 21,820
	Reheat Therms	137,738	Reheat	\$	55,095			Total Clg Load kWt 738,360	Total Load	\$ 44,302
	Heating kWh	-						Peak Clg Load Kw 160		
	Reheat kWh	-				Costs per CFM				
	Supply Fan kWh	882,102	Supply Fan	\$	52,926	Cooling cost / CFM \$ 0.54		NSF Lab & Other Energy	Base	Proposed
	Exhaust Fan kWh	939,630	Exhaust Fan	\$	56,378	Heating cost / CFM \$ 0.00		HVAC Energy in equiv KBTU	24,212,115	6,758,035
	Glycol Pump kWh	-	Glycol Pump	\$	1,711	Reheat cost / CFM extra \$ 0.77		Total energy in equiv. KBTU	26,732,137	9,278,058
	Total kWh	2,622,472	Total	\$	214,194	Fan cost / CFM \$ 1.23		Total energy in equiv. BTU/ft2	875,402	303,830
	Total Therms	137,837						Total energy in equiv. kWh/ft2	256.5	89.0

GSF Building El Loads (Plugs, Lig	GSF Building Electrical Load Energy Costs			
Day Clg Load kWh	430,893	Day Clg Load	\$	25,854
Nite Clg Load kWh	418,221	Nite Clg Load	\$	25,093
Total Clg Load kW	849,114	Total Load	\$	50,947
Dook Clark and Kw	404			
Feak Cig Load Kw	184			
Peak Cig Load Kw	184			
Building GSF	Energy	Base	Pr	oposed
Building GSF	Energy uiv KBTU	Base 27,843,932	Pr	oposed 7,771,741
Building GSF HVAC Energy in equi	Energy uiv KBTU iv. KBTU	Base 27,843,932 30,741,958	Pr 1	oposed 7,771,741 0,669,767
Building GSF HVAC Energy in equi Total energy in equi	Energy uiv KBTU iv. KBTU iv. BTU/ft2	Base 27,843,932 30,741,958 654,363	Pr	oposed 7,771,741 0,669,767 227,113

SUNY OSWEGO | EEM-11 INSTALL VFD ON PUMP MOTORS

Energy Opportunity Area: HVAC, Building Automation System (BAS)

Buildings Affected: Lanigan Hall, Mahar Hall, Penfield Library, Culkin Hall, Pathfinder Dining Hall, Seneca Hall, Cayuga Hall, Onondaga Hall, Oneida Hall, Cooper Dining Hall

Overview

Energy efficiency measure EEM-11 analyzes the potential energy savings for installing variable frequency drives (VFD) on eligible campus hot water (HW), chilled water (CHW), and dual temperature pumps. The projected energy savings, energy cost savings, and estimated project cost are summarized below.

Table 1. EEM-11 Summary Data

Description	Values	Units
Annual Electrical Energy Savings	294,149	kWh/year
Electrical Peak Demand Savings	30.7	kW
Annual Electrical Energy Cost Savings	\$17,355	\$/year
Annual Natural Gas Savings	0	Therms/year
Annual Natural Gas Cost Savings	\$0	\$/year
Total Annual Energy Cost Savings	\$17,355	\$/year
Estimated Implementation Cost	\$402,611	\$
Simple Payback Period	23.2	years
Savings to Investment Ratio	0.74	

Existing Conditions/Baseline

Pumps considered for this EEM are summarized in Table 2. Hot water (HW) pumps have constant speed motors in a primary flow arrangement serving building terminal heating units, heating coils, or radiation loops. Hot water coils in Mahar and Culkin have two-way control valves. Hot water coils in other buildings generally have three-way control valves. Dual temperature pumps in Culkin serve air handling unit coils.

The chilled water (CHW) pumps listed in Table 2 have constant speed motors in a primary-only loop configuration serving building cooling coils. Flow through air handling unit CHW coils is generally controlled by three-way control valves. CHW coils in Penfield Library have two-way control valves.

Building	Pump Tag	Service	Qty	НР	Fluid
0006 - J LANIGAN HALL	P-5	HW	1	15	Water
0006 - J LANIGAN HALL	P-6	HW	1	10	Water
0006 - J LANIGAN HALL	P-7/P-8	HW	2.0	7.5	Water
0013 - M E MAHAR HALL	P-5/P-6	HW	2	15	Water

Table 2. EEM-11 Pump Summary

Building	Pump Tag	Service	Qty	HP	Fluid
0017 - J PENFIELD LIB	P-5	HW	1.0	7.5	Water
0017 - J PENFIELD LIB	P-6	HW	1.0	7.5	Water
0026 - CULKIN HALL	P-4/P-5	Dual Temp	2.0	7.5	Water
0026 - CULKIN HALL	P-6/P-7	HW	2.0	7.5	Water
0031 - PATHFINDER DH	P-5/P-6	HW	2	10	Water
0032 - SENECA HALL	P-1/P-2	HW	2.0	7.5	Water
0033 - CAYUGA HALL	CIR-P1/CIR-P2	HW	2	10	Water
0034 - ONONDAGA HALL	P-1/P-2	HW	2.0	7.5	Water
0036 - ONEIDA HALL	P-1/P-2	HW	2	10	Water
0006 - J LANIGAN HALL	P-1/P-2	CHW	2	40	Water
0017 - J PENFIELD LIB	P-1/P-2	CHW	2	40	Water
0031 - PATHFINDER DH	P-3/P-4	CHW	2	15	Water
0047 - COOPER DH	P-3	CHW	1.0	7.5	Water

Recommended Action

This measure analyzes the conversion of primary constant speed/constant flow pumping systems to variable flow systems by installing VFDs on eligible pumps, replacing three-way control valves with twoway valves, and installing a differential pressure sensor across HW or CHW loops on each pumping system. The building automation system (BAS) will vary the VFD speed to maintain differential pressure at a determined setpoint. For CHW loops, the measure considers providing controls to prevent CHW flow through the chillers from dropping below the minimum recommended by the manufacturer.

The measure also considers implementing a differential pressure reset control scheme. Differential pressure reset control will poll the position of each valve on the system and dynamically reset the differential pressure setpoint lower until the worst-case valve is near fully open. In this way, the control scheme finds the minimum pressure that will satisfy all zones to minimize pumping energy and maximize energy savings.

Primary CHW pumps in constant speed primary/variable speed secondary pumping arrangements were not analyzed in this measure; Variable primary/variable secondary flow would present issues in meeting CHW loop minimum flow requirements. HW pumps serving the Sheldon Hall heat pump loop were not analyzed in this measure; installation of isolation valves at each heat pump is required to convert the loop to variable flow, increasing the implementation cost.

Estimated Energy Savings

An hourly analysis was performed using Syracuse- Hancock International Airport TMY3 (Typical Meteorological Year) hourly weather data. Hot water flow was estimated based on assumed load profiles. Performance curves were applied to adjust pump input power for VFD applications.

Lead/standby pumping arrangements were accounted for in the energy savings calculations.

Supporting documents include an example of the assumptions and monthly baseline and post-retrofit conditions used for each pump type; HW, CHW, and Dual Temperature. Table 3 and Table 4 summarize estimated energy savings, implementation cost, and simple payback period for HW and CHW pumps, respectively.

Building	Annual Electric Energy Savings (kWh/year)	Electrical Peak Demand Savings (kW)	Total Annual Energy Cost Savings (\$/year)	Estimated Implementation Cost	Simple Payback Period (years)
0006 - J LANIGAN HALL	32,593	2.2	\$1,923	\$66,206	34.4
0013 - M E MAHAR HALL	16,659	1.8	\$983	\$17,050	17.3
0017 - J PENFIELD LIB	14,410	1.0	\$850	\$21,918	25.8
0026 - CULKIN HALL	46,210	2.7	\$2,726	\$43,589	16.0
0031 - PATHFINDER DH	21,876	1.2	\$1,291	\$19,873	15.4
0032 - SENECA HALL	16,390	0.9	\$967	\$22,214	23.0
0033 - CAYUGA HALL	20,292	1.2	\$1,197	\$25,985	21.7
0034 - ONONDAGA HALL	14,184	0.8	\$837	\$19,158	22.9
0036 - ONEIDA HALL	22,717	1.3	\$1,340	\$16,817	12.5
Total	205,332	13.1	\$12,115	\$252,808	20.9

Table 3. EEM-11 VFD Installation on HW Pumps – Total Savings

1. Culkin Hall savings include savings for VFD implementation on the dual temperature pumps

2. Cayuga is currently being used as an isolation dorm. Analysis was done under assumption Cayuga is operating as a residence hall at normal capacity.

Table 4. EEM-11 VFD Installation on CHW Pumps - Total Savings

Building	Annual Electric Energy Savings (kWh/year)	Electrical Peak Demand Savings (kW)	Total Annual Energy Cost Savings (\$/year)	Estimated Implementation Cost	Simple Payback Period (years)
0006 - J LANIGAN HALL	37,226	6.1	\$2,196	\$50,310	22.9
0017 - J PENFIELD LIB	42,659	7.0	\$2,517	\$50,310	20.0
0031 - PATHFINDER DH	4,783	3.1	\$282	\$23,162	82.1
0047 - COOPER DH	4,149	1.3	\$245	\$26,020	106.3
Total	88,817	17.6	\$5,240	\$149,803	28.6

Pathfinder and Cooper Dining Halls are closed during the summer. The limited operating hours result in higher simple payback periods for the CHW pumps in these buildings.

Estimated Project Cost

Costs presented in Table 5 cover the scope of work previously described and are based on costs published in RS Means 2023.

For cost estimation, it was generally assumed that terminal and perimeter radiation heating equipment have $\frac{34}{7}$ piping and air-handling unit coils have $\frac{37}{7}$ piping for the two-way valve installation.

Table	5. E	EM-1	1	Estimated	Pro	iect	Costs
						,	

Item Description	Qty	Unit	Unit Cost	Subtotal
Variable Frequency Drive, 7.5 hp	13	Ea.	\$3,225	\$41,925
Variable Frequency Drive, 10 hp	7	Ea.	\$3,475	\$24,325
Variable Frequency Drive, 15 hp	5	Ea.	\$4,625	\$23,125
Variable Frequency Drive, 40 hp	4	Ea.	\$8,775	\$35,100
Two-way Valve Replacement on Terminal Equip./Radiation Equip.	18	Ea.	\$1,225	\$22,050
Two-way Valve Replacement on AHU Coils	42	Ea.	\$1,811	\$76,062
Differential Pressure Sensor	15.0	Ea.	\$955	\$14,325
BAS I/O Points, Engineering, Calibration, Start-up/Checkout Labor	1	Lump Sum	\$44,634	\$44,634
Labor and Materials Subtotal				\$281,546
General Conditions	10%			\$28,155
Labor and Materials Cost Total				\$309,701
Architectural & Engineering Fees	10%			\$30,970
Construction Management Fees	10%			\$30,970
Contingency	10%			\$30,970
Project Cost Subtotal				\$402,611
Agency Administrative Fee	0%			\$0
Total Project Cost				\$402,611

Confidential

Ramboll - SUNY Oswego | EEM-11 Install VFD on Pump Motors

EEM-11 – INSTALL VFD ON PUMP MOTORS

SUPPORTING DOCUMENTS

Confidential

SUMMARY INPUTS: ECM-11 INSTALL VFD ON HW PUMP MOTOR - PATHFINDER DINING

Existing Conditions

Tag	P-5/P-6-HW
Service	HW
Flow Control	Constant/Bypass
GPM	300
Head (ft)	85
Motor HP	10
BHP	8.6
Motor kW	7.0

EXISTING FLOW VS OUTDOOR AIR

OUTDOOR AIR TEMPERATURE (°F)

100%

EXISTING MOTOR POWER VS FLOW

OUTDOOR AIR TEMPERATURE (°F)

Post-Retrofit Conditions

Tag	P-5/P-6-HW
Service	HW
Flow Control	VFD with Differential Pressure Reset
GPM	300
Head (ft)	85
Motor HP	10
BHP	8.6
Motor kW	7.0

POST-RETROFIT FLOW VS OUTDOOR AIR 100%

POST-RETROFIT MOTOR POWER VS FLOW

-· _-

OUTDOOR AIR TEMPERATURE (°F)

RESULTS: ECM-11 INSTALL VFD ON HW PUMP MOTOR - PATHFINDER DINING HALL

Month	Average OAT _{DB} (F)	Operating Hours	Electric Consumption (kWh)	Electric Peak Demand (kW)
Jan	26.0	744	5,197	7.0
Feb	25.4	672	4,694	7.0
Mar	37.4	672	4,694	7.0
Apr	47.9	591	4,128	7.0
Мау	59.9	181	1,264	7.0
Jun	66.4	0	0	0.0
Jul	71.8	0	0	0.0
Aug	68.0	0	0	0.0
Sep	60.7	0	0	0.0
Oct	49.5	631	4,407	7.0
Nov	40.9	678	4,736	7.0
Dec	27.7	744	5,197	7.0
Annual	48.6	4,913	34,316	7.0

Baseline Monthly Operational Data

Proposed Monthly Operational Data

Month	Average OAT _{DB} (F)	Operating Hours	Electric Consumption (kWh)	Electric Peak Demand (kW)
Jan	26.0	744	2,454	5.4
Feb	25.4	672	2,258	4.9
Mar	37.4	672	1,737	4.7
Apr	47.9	591	1,049	3.1
Мау	59.9	181	235	2.2
Jun	66.4	0	0	0.0
Jul	71.8	0	0	0.0
Aug	68.0	0	0	0.0
Sep	60.7	0	0	0.0
Oct	49.5	631	951	2.9
Nov	40.9	678	1,437	4.7
Dec	27.7	744	2,319	5.7
Annual	48.6	4,913	12,440	5.7

Monthly Operational Savings

Month	Average OAT _{DB} (F)	Operating Hours	Electric Consumption (kWh)	Electric Peak Demand (kW)
Jan	-	0	2,742	1.6
Feb	-	0	2,435	2.1
Mar	-	0	2,957	2.3
Apr	-	0	3,079	3.9
Мау	-	0	1,030	4.8
Jun	-	0	0	0.0
Jul	-	0	0	0.0
Aug	-	0	0	0.0
Sep	-	0	0	0.0
Oct	-	0	3,456	4.1
Nov	-	0	3,298	2.3
Dec	-	0	2,877	1.2
Annual	-	0	21,876	4.8

SUMMARY INPUTS: ECM-11 INSTALL VFD ON CHW PUMP MOTOR - PENFIELD LIBRARY

Existing Conditions

Tag	P-1/P-2
Service	Primary CHW
Flow Control	Constant/Bypass
GPM	1510
Head (ft)	80
Motor HP	40
BHP	35.5
Motor kW	28.1

EXISTING FLOW VS OUTDOOR AIR

OUTDOOR AIR TEMPERATURE (°F)

OUTDOOR AIR TEMPERATURE (°F)

Post-Retrofit Conditions

Tag	P-1/P-2
Service	Primary CHW
Flow Control	VFD with Differential Pressure Reset
GPM	1510
Head (ft)	80
Motor HP	40
BHP	35.5
Motor kW	28.1

POST-RETROFIT FLOW VS OUTDOOR AIR

POST-RETROFIT MOTOR POWER VS FLOW

- - -

-· _·

OUTDOOR AIR TEMPERATURE (°F)

RESULTS: ECM-11 INSTALL VFD ON HW PUMP MOTOR - PENFIELD LIBRARY

Month	Average OAT _{DB} (F)	Operating Hours	Electric Consumption (kWh)	Electric Peak Demand (kW)
Jan	26.0	0	0	0.0
Feb	25.4	0	0	0.0
Mar	37.4	0	0	0.0
Apr	47.9	0	0	0.0
Мау	59.9	143	4,021	28.1
Jun	66.4	527	14,819	28.1
Jul	71.8	670	18,841	28.1
Aug	68.0	521	14,651	28.1
Sep	60.7	368	10,341	28.1
Oct	49.5	0	0	0.0
Νον	40.9	0	0	0.0
Dec	27.7	0	0	0.0
Annual	48.6	2,229	62,673	28.1

Baseline Monthly Operational Data

Proposed Monthly Operational Data

Month	Average OAT _{DB} (F)	Operating Hours	Electric Consumption (kWh)	Electric Peak Demand (kW)
Jan	26.0	0	0	0.0
Feb	25.4	0	0	0.0
Mar	37.4	0	0	0.0
Apr	47.9	0	0	0.0
Мау	59.9	143	1,154	8.0
Jun	66.4	527	4,738	21.1
Jul	71.8	670	6,430	21.1
Aug	68.0	521	4,555	19.3
Sep	60.7	368	3,136	19.3
Oct	49.5	0	0	0.0
Nov	40.9	0	0	0.0
Dec	27.7	0	0	0.0
Annual	48.6	2,229	20,014	21.1

Monthly Operational Savings

Month	Average OAT _{DB} (F)	Operating Hours	Electric Consumption (kWh)	Electric Peak Demand (kW)
Jan	-	0	0	0.0
Feb	-	0	0	0.0
Mar	-	0	0	0.0
Apr	-	0	0	0.0
Мау	-	0	2,867	20.1
Jun	-	0	10,081	7.0
Jul	-	0	12,410	7.0
Aug	-	0	10,095	8.8
Sep	-	0	7,205	8.8
Oct	-	0	0	0.0
Νον	-	0	0	0.0
Dec	-	0	0	0.0
Annual	-	0	42,659	20.1

SUMMARY INPUTS: ECM-11 INSTALL VFD ON DUAL TEMPERATURE PUMP MOTOR - CULKI

Existing Conditions

Tag	P-4/P-5
Service	Dual Temperature
Flow Control	Constant/Bypass
GPM	316
Head (ft)	60
Motor HP	7.5
BHP	6.4
Motor kW	5.4

EXISTING FLOW VS OUTDOOR AIR

OUTDOOR AIR TEMPERATURE (°F)

OUTDOOR AIR TEMPERATURE (°F)

Post-Retrofit Conditions

Tag	P-4/P-5
Service	Dual Temperature
Flow Control	VFD with Differential Pressure Reset
GPM	316
Head (ft)	60
Motor HP	7.5
BHP	6.4
Motor kW	5.4

POST-RETROFIT FLOW VS

OUTDOOR AIR TEMPERATURE (°F)

POST-RETROFIT MOTOR POWER VS FLOW

-· _-

OUTDOOR AIR TEMPERATURE (°F)

RESULTS: ECM-11 INSTALL VFD ON DUAL TEMPERATURE PUMP MOTOR - CULKIN HALL

Month	Average OAT _{DB} (F)	Operating Hours	Electric Consumption (kWh)	Electric Peak Demand (kW)	
Jan	26.0	618	3,326	5.4	
Feb	25.4	672	3,616	5.4	
Mar	37.4	600	3,229	5.4	
Apr	47.9	648	3,487	5.4	
Мау	59.9	582	3,132	5.4	
Jun	66.4	720	3,874	5.4	
Jul	71.8	726	3,907	5.4	
Aug	68.0	582	3,132	5.4	
Sep	60.7	684	3,681	5.4	
Oct	49.5	708	3,810	5.4	
Nov	40.9	648	3,487	5.4	
Dec	27.7	420	2,260	5.4	
Annual	48.6	7,608	40,940	5.4	

Baseline Monthly Operational Data

Proposed Monthly Operational Data

Month	Average OAT _{DB} (F)	Operating Hours	Electric Consumption (kWh)	Electric Peak Demand (kW)
Jan	26.0	618	769	3.1
Feb	25.4	672	861	2.5
Mar	37.4	600	636	2.7
Apr	47.9	648	538	3.0
Мау	59.9	582	604	2.6
Jun	66.4	720	1,024	3.2
Jul	71.8	726	1,269	3.6
Aug	68.0	582	914	3.1
Sep	60.7	684	754	3.2
Oct	49.5	708	500	1.5
Nov	40.9	648	544	2.3
Dec	27.7	420	540	3.6
Annual	48.6	7,608	8,953	3.6

Monthly Operational Savings

Month	Average OAT _{as} (F)	Operating Hours	Electric Consumption	Electric Peak
Fionen	Aterage CATEB (1)	operating nours	(kWh)	Demand (kW)
Jan	-	0	2,556	2.3
Feb	-	0	2,756	2.9
Mar	-	0	2,592	2.7
Apr	-	0	2,949	2.4
Мау	-	0	2,528	2.8
Jun	-	0	2,850	2.2
Jul	-	0	2,638	1.7
Aug	-	0	2,217	2.3
Sep	-	0	2,926	2.2
Oct	-	0	3,310	3.9
Nov	-	0	2,943	3.1
Dec	-	0	1,721	1.8
Annual	-	0	31,987	3.9

LIFE CYCLE COST ANALYSIS

ECM No.:	EEM-11		
ECM Title:	Install VFD on Pump Motors		
General Parameters			
Base Date:	1/1/2023		
Service Date:	1/1/2023		
Study Period (Years):	15		
Discount Rate:	3%		
Cost Escalation:	0%		
FEMP UPV Discount Factor (Elect.):	14.96		
FEMP UPV Discount Factor (NG):	13.70		

Cost Data	Baseline	Proposed	Savings
Initial Capital Cost:		\$402,611	(\$402,611)
Annual Electricity Costs:	\$29,788	\$10,003	\$19,785
Annual Natural Gas Costs:	\$0	\$0	\$0
Annual Water Costs:	\$0	\$0	\$0
Annual OM&R Costs:	\$8,446	\$8,446	\$0
Other Recurring Annual Costs:	\$0	\$0	\$0

Life Cycle Cost Calculations	Baseline	Proposed	<u>Savings</u>
Present Value Investment Costs, I:	\$0	\$402,611	(\$402,611)
Present-Value Capital Replacement Cost, Repl:	\$0	\$0	\$0
Present Value Residual Cost, Res:	\$0	\$0	\$0
Present Value Energy Costs, E:	\$445,595	\$149,635	\$295,960
Present Value Water Cost, W:	\$0	\$0	\$0
Present Value O&M and Other Recurring Costs, OM&R:	\$100,832	\$100,832	\$0
LCC:	\$546,427	\$653,078	(\$106,650)
Savings to Investment Ratio Calculations			
Present Value Energy Cost Savings, DE:	\$295,960		

\$0

\$0

0.74

Present Value Energy Cost Savings, DE: Present Value Water Cost Savings, DW: Present Value OM&R Cost Savings, DOM&R:

Note: Calculations are in accordance with the National Institute of Standards and Technology, NIST Handbook 135, Life-Cycle Costing Manual for the Federal Energy Management Program, 1995.

SIR:

SUNY OSWEGO | EEM-12 CONVERT CONSTANT VOLUME SINGLE ZONE SYSTEM TO SINGLE ZONE VAV SYSTEM

Energy Opportunity Area: HVAC, Building Automation System (BAS)

Buildings Affected: Marano Campus Center, Cooper Dining Hall, Laker Hall, Lakeside Dining Hall, Lanigan Hall, Lee Hall, Pathfinder Dining Hall, Romney Field House

Table 1. EEM-12 Summary Data

Description	Values	Units
Annual Electrical Energy Savings	376,296	kWh/year
Electrical Peak Demand Savings	96.7	kW
Annual Electrical Energy Cost Savings	\$22,201	\$/year
Annual Natural Gas Savings	0	Therms/year
Annual Natural Gas Cost Savings	\$0	\$/year
Total Annual Energy Cost Savings	\$22,201	\$/year
Total Project Cost	\$142,040	\$
Simple Payback Period	6.4	Years
Savings to Investment Ratio	2.3	-

Existing Conditions/Baseline

Table 2 lists constant volume single zone (CVSZ) units that are potential candidates for conversion to single zone variable air volume (SZVAV) units. All units provide heating and ventilation. Four of the units listed (in Cooper, Lakeside, Lanigan, and Pathfinder) also provide cooling. Air handling unit (AHU) heating and cooling coils are controlled through the building automation system (BAS) to maintain space temperature at setpoint, while the supply and return fans deliver a constant quantity of air when the system is operating. The BAS enables the Romney Field House packaged outdoor AHU, but the furnace is controlled through internal AHU controls.

Table 2.	Constant	Volume	Single	Zone	Units
----------	----------	--------	--------	------	-------

Building	Unit	Serves	Supply Fan HP	Return Fan HP
0003 – CAMPUS CENTER	S-3	Swetman Gym (North)	3	1
0003 – CAMPUS CENTER	S-4	Swetman Gym (South)	3	1
0047 – COOPER DINING HALL	AC-2	Dining Area	10	-
0019 – LAKER HALL	AHU-1	Weight Room	5	-
0019 – LAKER HALL	HV-4	Main Gym (East)	15	-
0019 – LAKER HALL	HV-5	Main Gym (Center)	15	-

Building	Unit	Serves	Supply Fan HP	Return Fan HP
0019 – LAKER HALL	HV-6	Main Gym (West)	15	-
0019 – LAKER HALL	HV-7	Auxiliary Gym	15	-
0042 – LAKESIDE DINING HALL	AHU-1	Dining Area	10	-
0006 – J LANIGAN HALL	AC-3	Lecture Hall 101	10	3
0004 – M V LEE HALL	HV-2	Main Gym	7.5	3
0031 – PATHFINDER DINING HALL	SF-1	Dining Area	20	-
0021 - ROMNEY FIELD HOUSE	AHU-1	Field House	50 (est.)	-

Recommended Action

Constant volume single zone systems can be converted to single zone VAV by installing variable frequency drives (VFDs) on the air handling unit fans and applying a temperature-based control scheme to modulate airflow as heating and cooling loads change. A typical SZVAV control scheme is shown in Figure 1. Ultimately, fan speed and heating and cooling coil valves are controlled to maintain space temperature at setpoint. Additionally, retrofit kits can be installed to convert constant volume single zone packaged units to SZVAV packaged units. Variable frequency drives, sensors, hardware, and internal control logic control fan speed and discharge temperature, while maintaining a minimum flow through the unit's furnace and across the evaporator coil.

Figure 1. Single Zone VAV Control Scheme¹

¹ Trane Engineers Newsletter volume 42-2, 2013

Estimated Energy Savings

An hourly analysis was performed using Syracuse Hancock International Airport TMY3 (Typical Meteorological Year) hourly weather data. Airflows were estimated based on assumed load profiles. Performance curves obtained from the Pacific Northwest National Laboratory PNNL-26917 reference manual document ("Single Zone VAV Fan") were applied to adjust fan input power for off-design conditions. Single zone VAV systems provide the following benefits:

- Reduced energy consumption at part load conditions
- Better dehumidification at part load conditions
- Reduced noise due to slower fan speeds and lower airflow in the ductwork

Supporting documents include a summary of the assumptions and monthly baseline and post-retrofit conditions for one of each representative space type analyzed – lecture hall (Lanigan), gymnasium (Lee), and dining hall (Pathfinder).

Table 3 summarizes estimated energy savings, implementation cost, and simple payback period.

Table 3. EEM-12 Savings

Building	Annual Electric Energy Savings (kWh/year)	Electrical Peak Demand Savings (kW)	Total Annual Energy Cost Savings (\$/year)	Estimated Implementation Cost	Simple Payback Period (years)
0003 - CAMPUS CENTER	16,356	4.2	\$965	\$21,485	22.3
0047 – COOPER DINING HALL	23,557	5.5	\$1,390	\$7,889	5.7
0019 – LAKER HALL	109,364	28.2	\$6,452	\$46,418	7.2
0042 – LAKESIDE DINING HALL	21,581	5.0	\$1,273	\$7,889	6.2
0006 – J LANIGAN HALL	19,993	7.3	\$1,180	\$13,103	11.1
0004 - M V LEE HALL	25,263	6.5	\$1,491	\$12,746	8.6
0031 – PATHFINDER DINING HALL	51,144	11.9	\$3,018	\$11,357	3.8
0021 – ROMNEY FIELD HOUSE	109,038	28.1	\$6,433	\$21,153	3.3
Total	376,296	96.7	\$22,201	\$142,040	6.4

Estimated Project Cost

Costs presented in Table 4 represent the scope of work described previously and are based on costs published in RS Means 2023.

Table 4. EEM-12 Estimated Project Costs

Item Description	Qty	Unit	Unit Cost	Subtotal
Variable Frequency Drive, 1 HP	2	Ea.	\$2,474	\$4,948
Variable Frequency Drive, 3 HP	4	Ea.	\$2,950	\$11,800
Variable Frequency Drive, 5 HP	1	Ea.	\$3,200	\$3,200

Item Description	Qty	Unit	Unit Cost	Subtotal
Variable Frequency Drive, 7.5 HP	1	Ea.	\$3,875	\$3,875
Variable Frequency Drive, 10 HP	3	Ea.	\$4,125	\$12,375
Variable Frequency Drive, 15 HP	4	Ea.	\$5,575	\$22,300
Variable Frequency Drive, 20 HP	1	Ea.	\$6,550	\$6,550
Variable Frequency Drive, 50 HP	1	Ea.	\$13,400	\$13,400
BAS I/O Points, Engineering, Calibration, Start-up/Checkout Labor	1	Lump Sum	\$20,880	\$20,880
Labor and Materials Subtotal				\$99,328
General Conditions	10%			\$9,933
Labor and Materials Cost Total				\$109,261
Architectural & Engineering Fees	10%			\$10,926
Construction Management Fees	10%			\$10,926
Contingency	10%			\$10,926
Project Cost Subtotal				\$142,040
Agency Administrative Fee	0%			\$0
Total Project Cost				\$142,040

Ramboll - SUNY OSWEGO | EEM-12 Convert Constant Volume Single Zone System to Single Zone VAV System

EEM-12 – CONVERT CONSTANT VOLUME SINGLE ZONE SYSTEM TO SINGLE ZONE VAV SYSTEM

SUPPORTING DOCUMENTS

SUMMARY INPUTS: EEM-12 CONVERT CVSZ TO SZVAV - LANIGAN HALL

Existing Conditions

Tag	Fan
Service	Lecture Hall 101 SF
Flow Control	Constant
CFM	12,350
Total SP (in w	3
Motor HP	10
BHP	7.5
Motor kW	6.1

EXISTING FLOW VS OUTDOOR AIR 100% 100% 100%

Post-Retrofit Conditions

Tag	Fan
Service	Lecture Hall 101 SF
Flow Control	Single Zone VAV Fan
CFM	12,350
Total SP (in v	3
Motor HP	10
BHP	7.5
Motor kW	6.1

AIR 100% % FLOW

POST-RETROFIT FLOW VS OUTDOOR

OUTDOOR AIR TEMPERATURE (°F)

100%

EXISTING MOTOR POWER VS FLOW

OUTDOOR AIR TEMPERATURE (°F)

POST-RETROFIT MOTOR POWER VS FLOW

OUTDOOR AIR TEMPERATURE (°F)

RESULTS: EEM-12 CONVERT CVSZ TO SZVAV - LANIGAN HALL

Month	Average OAT _{DB} (F)	Operating Hours	Electric Consumption (kWh)	Electric Peak Demand (kW)
Jan	26.0	270	2,319	8.6
Feb	25.4	300	2,577	8.6
Mar	37.4	240	2,061	8.6
Apr	47.9	300	2,577	8.6
Мау	59.9	243	2,087	8.6
Jun	66.4	240	2,061	8.6
Jul	71.8	264	2,267	8.6
Aug	68.0	219	1,881	8.6
Sep	60.7	285	2,448	8.6
Oct	49.5	315	2,705	8.6
Nov	40.9	270	2,319	8.6
Dec	27.7	150	1,288	8.6
Annual	48.6	3,096	26,590	8.6

Baseline Montly Operational Data

Proposed Montly Operational Data

Month	Average OAT _{DB} (F)	Operating Hours	Electric Consumption (kWh)	Electric Peak Demand (kW)
Jan	26.0	270	344	1.3
Feb	25.4	300	382	1.3
Mar	37.4	240	373	5.1
Apr	47.9	300	544	5.6
Мау	59.9	243	557	4.9
Jun	66.4	240	764	6.0
Jul	71.8	264	1,094	6.8
Aug	68.0	219	831	5.8
Sep	60.7	285	689	6.0
Oct	49.5	315	459	2.8
Nov	40.9	270	368	3.4
Dec	27.7	150	192	2.2
Annual	48.6	3,096	6,597	6.8

Montly Operational Savings

Month	Average OAT _{DB} (F)	Operating Hours	Electric Consumption (kWh)	Electric Peak Demand (kW)
Jan	-	0	1,975	7.2
Feb	-	0	2,195	7.3
Mar	-	0	1,688	3.5
Apr	-	0	2,033	3.0
Мау	-	0	1,530	3.7
Jun	-	0	1,297	2.5
Jul	-	0	1,174	1.8
Aug	-	0	1,050	2.8
Sep	-	0	1,759	2.5
Oct	-	0	2,246	5.8
Nov	-	0	1,951	5.2
Dec	-	0	1,096	6.4
Annual	-	0	19,993	7.3

SUMMARY INPUTS: EEM-12 CONVERT CVSZ TO SZVAV - LEE HALL

Existing Conditions

Tag	Fan
Service	Main Gym SF
Flow Control	Constant
CFM	18000
Total SP (in w	0
Motor HP	7.5
BHP	6.0
Motor kW	4.9

EXISTING FLOW VS OUTDOOR AIR 100% 100% 100%

Post-Retrofit Conditions

Tag	Fan
Service	Main Gym SF
Flow Control	Single Zone VAV Fan
CFM	18000
Total SP (in v	0
Motor HP	7.5
BHP	6.0
Motor kW	4.9

POST-RETROFIT FLOW VS OUTDOOR AIR

OUTDOOR AIR TEMPERATURE (°F)

EXISTING MOTOR POWER VS FLOW

OUTDOOR AIR TEMPERATURE (°F)

POST-RETROFIT MOTOR POWER VS FLOW

OUTDOOR AIR TEMPERATURE (°F)

RESULTS: EEM-12 CONVERT CVSZ TO SZVAV - LEE HALL

Month	Average OAT _{DB} (F)	Operating Hours	Electric Consumption (kWh)	Electric Peak Demand (kW)
Jan	26.0	457	3,493	7.6
Feb	25.4	424	3,240	7.6
Mar	37.4	451	3,447	7.6
Apr	47.9	450	3,439	7.6
Мау	59.9	158	1,207	3.8
Jun	66.4	160	1,223	3.8
Jul	71.8	168	1,284	3.8
Aug	68.0	158	1,207	3.8
Sep	60.7	429	3,279	7.6
Oct	49.5	466	3,561	7.6
Nov	40.9	444	3,393	7.6
Dec	27.7	433	3,309	7.6
Annual	48.6	4,198	32,083	7.6

Baseline Montly Operational Data

Proposed Montly Operational Data

Month	Average OAT _{DB} (F)	Operating Hours	Electric Consumption (kWh)	Electric Peak Demand (kW)
Jan	26.0	457	518	1.2
Feb	25.4	424	480	1.1
Mar	37.4	451	603	4.6
Apr	47.9	450	685	5.0
Мау	59.9	158	364	2.2
Jun	66.4	160	482	2.7
Jul	71.8	168	635	3.0
Aug	68.0	158	514	2.6
Sep	60.7	429	899	5.4
Oct	49.5	466	604	2.5
Nov	40.9	444	542	3.0
Dec	27.7	433	492	1.9
Annual	48.6	4,198	6,819	5.4

Montly Operational Savings

Month	Average OAT _{DB} (F)	Operating Hours	Electric Consumption (kWh)	Electric Peak Demand (kW)
Jan	-	0	2,975	6.4
Feb	-	0	2,760	6.5
Mar	-	0	2,843	3.1
Apr	-	0	2,754	2.7
Мау	-	0	843	1.6
Jun	-	0	741	1.1
Jul	-	0	649	0.8
Aug	-	0	694	1.3
Sep	-	0	2,379	2.3
Oct	-	0	2,957	5.2
Nov	-	0	2,851	4.6
Dec	-	0	2,817	5.7
Annual	-	0	25,263	6.5

SUMMARY INPUTS: EEM-12 CONVERT CVSZ TO SZVAV - PATHFINDER DINING HALL

Existing Conditions

Tag	Fan
Service	Dining Area
Flow Control	Constant
CFM	31892
Total SP (in w	2
Motor HP	20
BHP	17.4
Motor kW	13.9

EXISTING FLOW VS OUTDOOR AIR 100% 100% 100%

Post-Retrofit Conditions

Tag	Fan
Service	Dining Area
Flow Control	Single Zone VAV Fan
CFM	31892
Total SP (in v	2
Motor HP	20
BHP	17.4
Motor kW	13.9

POST-RETROFIT FLOW VS OUTDOOR AIR 100%

OUTDOOR AIR TEMPERATURE (°F)

EXISTING MOTOR POWER VS FLOW

OUTDOOR AIR TEMPERATURE (°F)

POST-RETROFIT MOTOR POWER VS FLOW

OUTDOOR AIR TEMPERATURE (°F)

RESULTS: EEM-12 CONVERT CVSZ TO SZVAV - PATHFINDER DINING HALL

Month	Average OAT _{DB} (F)	Operating Hours	Electric Consumption (kWh)	Electric Peak Demand (kW)
Jan	26.0	483	6,729	13.9
Feb	25.4	492	6,855	13.9
Mar	37.4	497	6,924	13.9
Apr	47.9	522	7,273	13.9
Мау	59.9	294	4,096	13.9
Jun	66.4	0	0	0.0
Jul	71.8	0	0	0.0
Aug	68.0	104	1,449	13.9
Sep	60.7	528	7,356	13.9
Oct	49.5	543	7,565	13.9
Nov	40.9	526	7,328	13.9
Dec	27.7	533	7,426	13.9
Annual	48.6	4,522	63,002	13.9

Baseline Montly Operational Data

Proposed Montly Operational Data

Month	Average OAT _{DB} (F)	Operating Hours	Electric Consumption (kWh)	Electric Peak Demand (kW)
Jan	26.0	483	998	2.2
Feb	25.4	492	1,016	2.1
Mar	37.4	497	1,206	8.3
Apr	47.9	522	1,405	9.0
Мау	59.9	294	1,065	7.9
Jun	66.4	0	0	0.0
Jul	71.8	0	0	0.0
Aug	68.0	104	627	8.3
Sep	60.7	528	2,007	9.8
Oct	49.5	543	1,266	4.5
Nov	40.9	526	1,164	5.5
Dec	27.7	533	1,103	3.5
Annual	48.6	4,522	11,858	9.8

Montly Operational Savings

Month	Average OAT _{DB} (F)	Operating Hours	Electric Consumption (kWh)	Electric Peak Demand (kW)
Jan	-	0	5,732	11.7
Feb	-	0	5,839	11.9
Mar	-	0	5,718	5.6
Apr	-	0	5,868	4.9
Мау	-	0	3,031	6.0
Jun	-	0	0	0.0
Jul	-	0	0	0.0
Aug	-	0	822	5.6
Sep	-	0	5,350	4.1
Oct	-	0	6,299	9.4
Nov	-	0	6,164	8.4
Dec	-	0	6,323	10.4
Annual	-	0	51,144	11.9

LIFE CYCLE COST ANALYSIS

ECM No.:	EEM-12		
ECM Title:	Convert CVSZ to SZVAV		
General Parameters			
Base Date:	1/1/2023		
Service Date:	1/1/2023		
Study Period (Years):	15		
Discount Rate:	3%		
Cost Escalation:	0%		
FEMD UDV Discount Factor (Flact)	14.00		
FEMP UPV Discount Factor (Ciecc.):	14.90		
FEMP OPV DISCOUNT FACTOR (NG).	15.70		
Cost Data	Baseline	Proposed	Savings
Initial Capital Cost:		\$142,040	(\$142,040)
		<i>41</i> 12/010	(42.2)0.0)
Annual Electricity Costs:	\$516,317	\$494,116	\$22,201
Annual Natural Gas Costs:	\$303,569	\$303,569	\$0
Annual Water Costs:	\$0	\$0	\$0
Annual OM&R Costs:	\$2,980	\$2,980	\$0
Other Recurring Annual Costs:	\$0	\$0	\$0
Life Cycle Cost Calculations	Baseline	Proposed	<u>Savings</u>
Present Value Investment Costs, I:	\$0	\$142,040	(\$142,040)
Present-Value Capital Replacement Cost, Repl:	\$0	\$0	\$0
Present Value Residual Cost, Res:	\$0	\$0	\$0
Present Value Energy Costs, E:	\$11,882,795	\$11,550,691	\$332,104
Present Value Water Cost, W:	\$0	\$0	\$0
Present Value O&M and Other Recurring Costs, OM&R:	\$35,573	\$35,573	\$0
100:	\$11,918,368	\$11,728,304	\$190,064
2001	<i><i><i>q11,y10,y00</i></i></i>	411// 20/001	<i><i><i>q</i>250/001</i></i>
Savings to Investment Ratio Calculations			
Present Value Energy Cost Savings, DE:	\$332,104		
Present Value Water Cost Savings, DW:	\$0		
Present Value OM&R Cost Savings, DOM&R:	\$0		
CTP.	2.24		
SIR:	2.34		

Note:

Calculations are in accordance with the National Institute of Standards and Technology, NIST Handbook 135, Life-Cycle Costing Manual for the Federal Energy Management Program, 1995.

SUNY OSWEGO | EEM-13 INSTALL POOL DEHUMIDIFICATION SYSTEM

Energy Opportunity Area: HVAC, Building Automation System (BAS)

Buildings Affected: Laker Hall, Lee Hall

Table 1. EEM-13 Summary Data

Description	Values	Units
Annual Electrical Energy Savings	4,830	kWh/year
Electrical Peak Demand Savings	-48.3	kW
Annual Electrical Energy Cost Savings	\$285	\$/year
Annual Natural Gas Savings	38,215	Therms/year
Annual Natural Gas Cost Savings	\$15,439	\$/year
Total Annual Energy Cost Savings	\$15,724	\$/year
Estimated Implementation Cost	\$1,099,423	\$
Simple Payback Period	69.9	years
Savings to Investment Ratio	0.2	

Existing Conditions/Baseline

Laker Hall and Lee Hall are campus athletic buildings which house natatoriums. Laker Hall natatorium includes a six-lane pool and a diving well which are primarily used for the University's swim team practice and swim meets. Lee Hall houses a single pool which is used for practice, intramural sports, and open swim. Table 2 summarizes existing systems serving the natatoriums. Existing units have steam heating coils and no capability for mechanical cooling and dehumidification. Laker heating & ventilating (HV) unit has a glycol runaround loop for heat recovery.

Table 2. Existing Conditions Summary

Building	Unit	Unit Type	Supply Fan HP	Return Fan HP	Energy Recovery
0019 – LAKER HALL	HV-8	Single Zone Variable Air Volume	7.5	3	Yes
0004 – M V LEE HALL	HV-1	Single Zone Constant Volume	5	2	No

Recommended Action

This measure assesses the impact of replacing existing pool heating & ventilating (HV) units with units that can provide dehumidification via mechanical cooling. The proposed system includes hot water heating coils and a direct expansion (DX) cooling unit for dehumidification and space cooling. A single zone variable air volume system should be considered with a temperature-based control scheme to modulate air flow. Fan speed and heating and cooling equipment are controlled to maintain space temperature

setpoints. The system would also include a sensible-only device to recovery heat from the exhaust air stream to precondition outdoor air.

This measure also considers utilizing heat recovery on the DX unit by capturing heat from the compressor hot gas waste heat to provide dehumidification reheat and pool water heating.

The estimated dehumidification unit sizes are presented in Table 3. Ventilation rates were sized according to ASHRAE 62.1 ventilation requirements for natatoriums.

Building	Estimated Pool Evaporation (lb/hr)	Estimated Natatorium Outdoor Air Requirement (cfm)	Estimated Dehumidification Unit Total Supply Air Flow (cfm)	Estimated Supply/Return Fan HP
0019 – LAKER HALL	175	6,868	14,400	15 / 7.5
0004 – M V LEE HALL	93	1,748	7,000	7.5 / 5

Table 3. Proposed Dehumidification Unit Size

Estimated Energy Savings

An hourly analysis was performed using Syracuse-Hancock International Airport TMY3 (Typical Meteorological Year) hourly weather data to assess energy use of baseline and proposed systems. Heating and cooling loads were estimated based on outdoor air conditions, space temperature and relative humidity setpoints, and pool sensible and latent loads (which are influenced by pool and natatorium characteristics and activity level).

The addition of cooling in the proposed system results in increased fan and cooling energy use. Incorporation of energy recovery through an enthalpy wheel and hot gas reheat can decrease energy use for space heating and pool heating. Pool water evaporation can be reduced by utilizing pool covers when the space is not in use. This would reduce pool water heating and space dehumidification loads. However, the analysis does not consider this since it is not the current practice. Table 4 summarizes energy use and costs associated with this measure.

Table 4. EEM-13 Savings

Building	Annual Electrical Energy Savings (kWh/year)	Annual Natural Gas Savings (Therms/year)	Total Annual Energy Cost Savings (\$/year)	Estimated Implementation Cost	Simple Payback Period
0019 – LAKER HALL	17,409	12,810	\$6,202	\$647,023	104.3
0004 – M V LEE HALL	-12,579	25,405	\$9,521	\$452,399	47.5
Total	4,830	38,215	\$15,724	\$1,099,423	69.9

Estimated Project Cost

Costs presented in Table 5 represent the scope of work described previously and were developed based on RS Means 2023 values and estimates from similar projects. Although the simple payback and SIR

economics do not indicate cost-effectiveness, the project could be justified from an infrastructure renewal perspective since the existing units do not provide dehumidification.

Table 5. EEM-13 Estimated Project Costs

Item Description	Qty	Unit	Unit Cost	Subtotal
Demolition and removal of existing equipment	1	Lump Sum	\$24,037	\$24,037
Dehumidification Unit, 14,000 nominal cfm, 188 lbs/hr of moisture removal (includes sensible energy recovery and VFDs)	1	Lump Sum	\$362,325	\$362,325
Piping/Insulation	1	Lump Sum	\$68,502	\$68,502
Ductwork	1	Lump Sum	\$127,377	\$127,377
Testing, Adjusting, and Balancing	1	Lump Sum	\$4,442	\$4,442
BAS I/O Points, Engineering, Calibration, Start-up/Checkout Labor	1	Lump Sum	\$53,374	\$53,374
Electrical	1	Lump Sum	\$82,721	\$82,721
Misc. (including cleaning, rigging, patchwork, etc.)	1	Lump Sum	\$46,049	\$46,049
Labor and Materials Subtotal				\$768,827
General Conditions	10%			\$76,883
Labor and Materials Cost Total				\$845,710
Architectural & Engineering Fees	10%			\$84,571
Construction Management Fees	10%			\$84,571
Contingency	10%			\$84,571
Project Cost Subtotal				\$1,099,423
Agency Administrative Fee	0%			\$0
Total Project Cost				\$1,099,423

Ramboll - SUNY Oswego | EEM-13 Install Pool Dehumidification System

EEM-13 – INSTALL POOL DEHUMIDIFICATION SYSTEM

SUPPORTING DOCUMENTS
SUMMARY INPUTS: EEM-13 INSTALL POOL DEHUMIDIFICAITON SYSTEM

Existing System

Building	Unit	Supply CFM	Outdoor Air CFM	Supply Fan HP	Return Fan HP	Motor Control
0019 - LAKER HALL	HV-8	10,000	10,000	7.5	3	VFD
0004 - M V LEE HALL	HV-1	10,000	10,000	5	2	None

Existing Natatorium Conditions

Building	Natatorium Area (GSF)	Pool Surface Area (GSF)	Natatorium Air Temp (F)	Natatorium Air RH	Pool Water Temp (F)	Pool Water Evaporation Rate (lb/h)			
0019 - LAKER HALL	10,861	4,995	81	60%	79	175			
0004 - M V LEE HALL	3,642	2,100	88	60%	86	93			

Proposed System

Building	Unit	Supply CFM	Outdoor Air CFM	Supply Fan HP	Return Fan HP	Motor Control
0019 - LAKER HALL	DH-1	14,400	6,868	15	7.5	VFD
0004 - M V LEE HALL	DH-1	7,000	1,748	7.5	5	VFD

Existing Natatorium Conditions

Building	Natatorium Area (GSF)	Pool Surface Area (GSF)	Natatorium Air Temp (F)	Natatorium Air RH	Pool Water Temp (F)	Pool Water Evaporation Rate (lb/h)		
0019 - LAKER HALL	10,861	4,995	81	1	L 79	175		
0004 - M V LEE HALL	3,642	2,100	88	1	L 86	93		

RESULTS: EEM-13 INSTALL POOL DEHUMIDIFICAITON SYSTEM

Baseline Montly	Operational Data				
Month	Operational Data Average OAT _{DB} (F) 26.0 25.4 37.4 47.9 59.9 66.4 71.8 68.0 60.7 49.5 40.9 27.7	Operating Hours	Electric Consumption (kWh)	Electric Peak Demand (kW)	Natural Gas Consumption
Jan	26.0	744	4,433	6.0	4,497
Feb	25.4	672	4,004	6.0	4,263
Mar	37.4	744	4,433	6.0	3,760
Apr	47.9	720	4,290	6.0	2,887
May	59.9	744	4,433	6.0	2,125
Jun	66.4	720	4,290	6.0	1,772
Jul	71.8	744	4,433	6.0	1,634
Aug	68.0	744	4,433	6.0	1,879
Sep	60.7	720	4,290	6.0	2,066
Oct	49.5	744	4,433	6.0	2,816
Nov	40.9	720	4,290	6.0	3,367
Dec	27.7	744	4,433	6.0	4,336
Annual	48.6	8,760	52,197	6.0	35,401

Proposed Montly Operational Data

Month		Operating Hours	Electric Consumption	Electric Peak	Natural Gas
Month	Average OATDB (1)	Operating Hours	(kWh)	Demand (kW)	Consumption
Jan	26.0	744	1,474	2.8	2,945
Feb	25.4	672	1,335	2.8	2,847
Mar	37.4	744	1,776	19.0	2,478
Apr	47.9	720	2,081	26.6	1,893
Мау	59.9	744	3,175	29.0	1,365
Jun	66.4	720	4,461	37.2	1,044
Jul	71.8	744	6,778	36.0	767
Aug	68.0	744	5,528	38.4	1,033
Sep	60.7	720	3,412	39.3	1,307
Oct	49.5	744	1,768	14.3	1,873
Nov	40.9	720	1,528	9.4	2,220
Dec	27.7	744	1,471	2.6	2,820
Annual	48.6	8,760	34,788	39.3	22,591

Montly Operational Savings

Month		Operating Hours	Electric Consumption	Electric Peak	Natural Gas
Month	Average OATDB (1)	operating nours	(kWh)	Demand (kW)	Consumption
Jan	-	0	2,959	3.2	1,552
Feb	-	0	2,669	3.1	1,415
Mar	-	0	2,657	-13.1	1,282
Apr	-	0	2,209	-20.7	994
Мау	-	0	1,258	-23.1	760
Jun	-	0	-171	-31.3	729
Jul	-	0	-2,345	-30.1	867
Aug	-	0	-1,095	-32.5	847
Sep	-	0	878	-33.3	759
Oct	-	0	2,665	-8.4	943
Nov	-	0	2,762	-3.5	1,147
Dec	-	0	2,962	3.3	1,515
Annual	-	0	17,409	3.3	12,810

LIFE CYCLE COST ANALYSIS

ECM No.:	EEM-13		
ECM Title:	Install Pool Dehumidificaiton System		
General Parameters			
Base Date:	1/1/2023		
Service Date:	1/1/2023		
Study Period (Years):	15		
Discount Rate:	3%		
Cost Escalation:	0%		
FEMP UPV Discount Factor (Elect.):	14.96		
FEMP UPV Discount Factor (NG):	13.70		
Cost Data	Baseline	Proposed	<u>Savings</u>
Initial Capital Cost:		\$1,099,423	(\$1,099,423)

(\$1,099,423)	\$1,099,423		Initial Capital Cost:
\$285	\$5,593	\$5,878	Annual Electricity Costs:
\$15,439	\$13,070	\$28,508	Annual Natural Gas Costs:
\$0	\$0	\$0	Annual CHP Natural Gas Costs:
\$0	\$0	\$0	Annual CHW Costs:
\$0	\$0	\$0	Annual HTHW Costs:
\$0	\$0	\$0	Annual Water Costs:
\$0	\$23,065	\$23,065	Annual OM&R Costs:
\$0	\$0	\$0	Other Recurring Annual Costs:
Savings	Proposed	Baseline	Life Cycle Cost Calculations
(\$1,099,423)	\$1,099,423	\$0	Present Value Investment Costs, I:
\$0	\$0	\$0	Present-Value Capital Replacement Cost, Repl:
\$0	\$0	\$0	Present Value Residual Cost, Res:
\$215,798	\$262,742	\$478,539	Present Value Energy Costs, E:
\$0	\$0	\$0	Present Value Water Cost, W:
\$0	\$275,346	\$275,346	Present Value O&M and Other Recurring Costs, OM&R:
(\$883,625)	\$1,637,511	\$753,886	LCC:
			Savings to Investment Ratio Calculations
		\$215,798	Present Value Energy Cost Savings, DE:
		\$0	Present Value Water Cost Savings, DW:
		\$0	Present Value OM&R Cost Savings, DOM&R:
		0.20	SIR:

Note: Calculations are in accordance with the National Institute of Standards and Technology, NIST Handbook 135, Life-Cycle Costing Manual for the Federal Energy Management Program, 1995.

SUNY Oswego – Clean Energy Master Plan

Appendix D Building Upgrades Budgetary Cost Estimate RAMBOLL

ENERGY

							/		/	
							intic		ent	and
							220.		Sec.	Nal.
							e` /.	ECHIN	1	° /
						110	_ oils	and a second	1000	_01°
						There	10	Inthe Is	NA	28.
							pr /	10		ne
					1.2	se se	° / 20	e ster	550	1 2
					2eR	202	all	contr	AIME	Note
								/ /	<u>`</u>	
				Building						
uilding	Building Type	GSF	Location	Vintage		Building	Upgrades	s for LTHW		
001 - SHELDON HALL	ACADEMIC	119,211	MAIN	1912					2038	
002 - J C PARK HALL	ACADEMIC	66,979	MAIN	1933					2030	
003 - CAMPUS CENTER	ACADEMIC	185,524	MAIN	1963					2030	
)3A - I POUCHER HALL	ACADEMIC	40,080	MAIN	1963					2030	
3B - REC & CONVOCATION CTR	ACADEMIC	115,421	MAIN	2006					2030	
004 - M V LEE HALL	ACADEMIC	65,000	MAIN	1958					2030	
04A - CENTRAL HEATING PLANT	MAINTENANCE	21,980	MAIN	1958					2030	
005 - SHADY SHORE	ADMINISTRATION	8,754	MAIN	1909		-			2040	L
106 - J LANIGAN HALL	ACADEMIC	88,200	MAIN	1967					2034	
007 - J TYLER HALL	ACADEMIC	115,430	MAIN	1968					2034	L
JUS - RICHARD S SHINEMAN CENTER	ACADEMIC	235,860	MAIN	2013					2034	
		108,933	MAIN	1964	9				2034	-
DIU - MAKT WALKER HEALTH CENTER		33,260	MAIN	1965					2040	
		91,530	MAIN	1966					2032	
	RESIDENTIAL	41 08/	ΜΔΙΝ	1901					2030	
	RESIDENTIAL	29 400	MAIN	1951					2038	-
L5B - LONIS HALL	RESIDENTIAL	32,285	MAIN	1951					2038	
17 - J PENFIELD LIB	ACADEMIC	192.298	MAIN	1968					2028	
20 - GAR-20	MAINTENANCE	14,850	MAIN	1971					2038	
022 - KING HALL	ADMINISTRATION	7,200	MAIN	1935	ŏ					
D26 - CULKIN HALL	ADMINISTRATION	63,591	MAIN	1967	Ŏ		0		2034	
029 - HEWITT HALL	ACADEMIC	135,010	MAIN	1967					2024	
031 - PATHFINDER DH	RESIDENTIAL	33,827	MAIN	1967					2042	
32 - SENECA HALL	RESIDENTIAL	152,548	MAIN	1967					2030	
033 - CAYUGA HALL	RESIDENTIAL	105,072	MAIN	1967					2032	
034 - ONONDAGA HALL	RESIDENTIAL	152,548	MAIN	1968					2034	
035 - LITTLEPAGE DH	RESIDENTIAL	33,827	MAIN						2025	
036 - ONEIDA HALL	RESIDENTIAL	105,000	MAIN	1970					2036	
J3/A - TOWNHOUSE A	RESIDENTIAL	10,260	MAIN	2010		_			2042	
J37B - TOWNHOUSE B	RESIDENTIAL	8,082	MAIN	2010					2042	
	RESIDENTIAL	12,599	MAIN	2010		-			2042	-
		12,599	MAIN	2010					2042	
		19,000	MAIN	2010					2042	
137G - TOWNHOUSE G	RESIDENTIAL	8 082	ΜΔΙΝ	2010		9			2042	
137H - TOWNHOUSE H	RESIDENTIAL	10 260	MAIN	2010					2042	
37I - TOWNHOUSE I	RESIDENTIAL	12,599	MAIN	2010				1 1	2042	
37J - TOWNHOUSE J	RESIDENTIAL	12,599	MAIN	2010					2042	
37K - TOWNHOUSE K	RESIDENTIAL	16,729	MAIN	2010					2042	
37L - TOWNHOUSE L	RESIDENTIAL	12,567	MAIN	2010			Ĭ		2042	
041 - JOHNSON HALL	RESIDENTIAL	79,097	MAIN	1958					2040	
042 - LAKESIDE DH	RESIDENTIAL	27,870	MAIN	1959					2040	
043 - RIGGS HALL	RESIDENTIAL	58,201	MAIN	1960					2040	
)44 - WATERBURY HALL	RESIDENTIAL	57,464	MAIN	1960					2040	
)45 - SCALES HALL	RESIDENTIAL	57,464	MAIN	1961		0			2040	
046 - HART HALL	RESIDENTIAL	114,365	MAIN	1963					2036	
J47 - COOPER DH	RESIDENTIAL	33,546	MAIN	1967	•		0		2036	

					Period	timed tube	Paulation Hautonia	Termination	innent services	ore and per	por in the second secon
Building	Building Type	GSF	Location	Building Vintage		Building L	Jpgrades	for LTHV	v		
0048 - FUNNELLE HALL	RESIDENTIAL	114,365	MAIN	1965					2036		
0011 - COMMISSARY BLDG	ADMINISTRATION	30,836	MAIN-SOUTH	1966					2035		
0012 - MAINTENANCE BLDG	MAINTENANCE	20,664	MAIN-SOUTH	1965					2035		
0019 - LAKER HALL	ACADEMIC	196,608	MAIN-SOUTH	1968					2035		
0021 - ROMNEY FIELD HOUSE	ACADEMIC	55,000	MAIN-SOUTH	1962					2035		
CAMPUS GROUNDS		0	MAIN								
	Total	3,445,375	-	-	23	24	21	11	-		

SUNY Oswego

					LET CONTRACTOR	a lot all	commis	cched	un aney Br	Oiffere	mevi	No ment	oe nent	tion pentit	on vro	an a cur	1 . 8001	e de	ine. At	N	STATE H	ar co	5°
					Interio	Partins Patro	, 	VACS	Occups	Pump	MULTICO	Implen	Implemente	Implemila	Install	convert	Install	Replace	Replace	Replace	comple	Building	Notes
Building	Building Type	GSF	Location	Building Vintage						Energy	Efficiency M	easures						Bui	ldina Upara	ades for LT	нw		
0001 - SHELDON HALL	ACADEMIC	119,211	MAIN	1912	\$19.5 k				\$242.8 k	\$1.6 k	\$6.4 k	1							\$0.2 M	\$4.5 M		\$5.0 M	F
0002 - J C PARK HALL	ACADEMIC	66,979	MAIN	1933	\$1.5 k				\$13.6 k	\$1.6 k	\$1.6 k							\$0.6 M	\$0.1 M	\$2.5 M		\$3.2 M	C C
0003 - CAMPUS CENTER	ACADEMIC	185,524	MAIN	1963	\$100.7 k	\$93.	2 k 🔄	50.5 k	\$1.389.4 k	\$4.8 k	\$11.3 k	\$7.0 k				\$31.4 k		\$2.5 M	\$0.3 M	\$5.2 M		\$9.7 M	C
003A - I POUCHER HALL	ACADEMIC	40,080	MAIN	1963	4	\$17.) k		+=/====	\$3.2 k	\$1.1 k	T				402.00		\$0.7 M	\$0.1 M	\$0.7 M		\$1.5 M	C
003B - REC & CONVOCATION CTR	ACADEMIC	115,421	MAIN	2006	\$43.3 k	\$48.	€k			\$6.4 k	\$1.6 k		\$81.8 k					\$1.2 M	\$0.3 M	\$1.2 M		\$2.8 M	C
0004 - M V LEE HALL	ACADEMIC	65,000	MAIN	1958			\$	\$0.5 k	\$89.4 k			\$3.5 k				\$18.6 k	\$661.0 k	\$1.1 M	\$0.1 M			\$2.0 M	С
004A - CENTRAL HEATING PLANT	MAINTENANCE	21,980	MAIN	1958															\$0.0 M			\$0.0 M	С
0005 - SHADY SHORE	ADMINISTRATION	8,754	MAIN	1909														\$0.1 M				\$0.1 M	N
0006 - J LANIGAN HALL	ACADEMIC	88,200	MAIN	1967	\$440.1 k				\$359.3 k			\$3.5 k			\$170.2 k	\$19.1 k		\$1.5 M	\$0.2 M			\$2.7 M	С
0007 - J TYLER HALL	ACADEMIC	115,430	MAIN	1968		\$48.)k		\$470.3 k	\$1.6 k	\$4.8 k							\$1.9 M	\$0.2 M	\$4.3 M		\$7.0 M	С
0008 - RICHARD S SHINEMAN CENTER	ACADEMIC	235,860	MAIN	2013					\$960.9 k	\$8.1 k								\$1.6 M				\$2.6 M	С
0009 - WILBER HALL	ACADEMIC	108,933	MAIN	1964					\$146.5 k	\$6.4 k	\$1.6 k							\$0.2 M	\$0.2 M			\$0.6 M	С
0010 - MARY WALKER HEALTH CENTER	ADMINISTRATION	33,260	MAIN	1965					\$115.2 k	\$1.6 k									\$0.1 M			\$0.2 M	N
0013 - M E MAHAR HALL	ACADEMIC	91,530	MAIN	1966					\$335.6 k	\$1.6 k	\$1.1 k				\$24.9 k						\$11.8 M	\$12.2 M	С
0014 - RICH HALL	ACADEMIC	53,742	MAIN	1961		\$22.	3k \$	\$0.5 k	\$197.1 k		\$3.2 k								\$0.1 M			\$0.3 M	E
0015 - MACKIN HALL	RESIDENTIAL	41,984	MAIN	1951			4	\$0.5 k													\$4.1 M	\$4.1 M	E
015A - MORELAND HALL	RESIDENTIAL	29,400	MAIN	1951																	\$2.8 M	\$2.8 M	E
015B - LONIS HALL	RESIDENTIAL	32,285	MAIN	1951																	\$3.1 M	\$3.1 M	E
0017 - J PENFIELD LIB	ACADEMIC	192,298	MAIN	1968					\$665.9 k						\$105.5 k						\$24.8 M	\$25.6 M	С
0020 - GAR-20	MAINTENANCE	14,850	MAIN	1971														\$0.2 M				\$0.2 M	E
0022 - KING HALL	ADMINISTRATION	7,200	MAIN	1935																		\$0.0 M	
0026 - CULKIN HALL	ADMINISTRATION	63,591	MAIN	1967			\$	\$0.5 k	\$246.1 k						\$63.7 k			\$0.9 M	\$0.1 M	\$0.5 M		\$1.8 M	С
0029 - HEWITT HALL	ACADEMIC	135,010	MAIN	1967																	\$17.4 M	\$17.4 M	С
0031 - PATHFINDER DH	RESIDENTIAL	33,827	MAIN	1967			\$	\$0.5 k				\$3.5 k	\$53.1 k		\$62.9 k	\$16.6 k		\$0.5 M	\$0.1 M			\$0.7 M	W
0032 - SENECA HALL	RESIDENTIAL	152,548	MAIN	1967											\$32.5 k						\$16.2 M	\$16.3 M	W
0033 - CAYUGA HALL	RESIDENTIAL	105,072	MAIN	1967								\$13.9 k			\$38.0 k						\$10.1 M	\$10.2 M	W
0034 - ONONDAGA HALL	RESIDENTIAL	152,548	MAIN	1968											\$28.0 k						\$16.2 M	\$16.3 M	W
0035 - LITTLEPAGE DH	RESIDENTIAL	33,827	MAIN	0																	\$4.3 M	\$4.3 M	W
0036 - ONEIDA HALL	RESIDENTIAL	105,000	MAIN	1970											\$24.6 k						\$10.1 M	\$10.2 M	W
0037A - TOWNHOUSE A	RESIDENTIAL	10,260	MAIN	2010		\$4.0	k			\$0.5 k										\$0.1 M		\$0.1 M	W
0037B - TOWNHOUSE B	RESIDENTIAL	8,082	MAIN	2010		\$4.0	k			\$0.5 k										\$0.1 M		\$0.1 M	W
0037C - TOWNHOUSE C	RESIDENTIAL	12,599	MAIN	2010		\$4.0	k			\$0.5 k										\$0.2 M		\$0.2 M	W
	RESIDENTIAL	12,599	MAIN	2010		\$4.0	k			\$0.5 k										\$0.2 M		\$0.2 M	W
	RESIDENTIAL	15,880	MAIN	2010		\$4.0	k			\$0.5 k									±0.0 M	\$0.2 M		\$0.2 M	W
	RESIDENTIAL	18,295	MAIN	2010		\$4.0	К			\$0.5 K									\$0.0 M	\$0.2 M		\$0.2 M	V
	RESIDENTIAL	8,082	MAIN	2010		\$4.0	K			\$0.5 K										\$0.1 M		\$0.1 M	VV W
	RESIDENTIAL	10,200	MAIN	2010		\$4.0	ĸ			\$0.5 K										\$0.1 M		\$0.1 M	VV
	RESIDENTIAL	12,599	MAIN	2010		\$4.0	K			\$0.5 K										\$0.2 M		\$0.2 M	W
	RESIDENTIAL	16,729	MAIN	2010		\$4.0	K			\$0.5 K									1	\$0.2 M		\$0.2 M	VV W/
	RESIDENTIAL	10,729	MAIN	2010		\$4.0	K			\$0.5 K										\$0.2 M		\$0.2 M	VV
	RESIDENTIAL	70.007	MAIN	2010		\$4.0	K			\$0.5 K								¢0.1.M	¢0.1.M	\$0.2 M		\$0.2 M	VV
	RESIDENTIAL	75,057	MAIN	1950		\$23.	+ K d	10 5 k		\$1.0 K	¢111	¢12.0 k	¢00.2 k			¢1151/		\$0.1 M	\$0.1 M	\$0.9 M		\$1.2 M	IN N
	RESIDENTIAL	58 201	ΜΔΙΝ	1959		¢10	7 2	JU.J K		¢3.2 k	\$1.1 K	-φ13.0 K	\$50.2 K			φ11.J K		¢0.1.M	\$0.0 M			\$0.2 M	N
0044 - WATERBURY HALL	RESIDENTIAL	57.464	ΜΔΙΝ	1960		\$10. #19					φ1.0 K							\$0.1 M	\$0.1 M			\$0.2 M	N
0045 - SCALES HALL	RESIDENTIAL	57 464	MAIN	1961		\$10.	5 k			\$1.6 k								\$0.8 M	\$0.0 M			\$0.8 M	N
0046 - HART HALL	RESIDENTIAL	114,365	MAIN	1963		\$10.	- ···			41.0 K								\$1.5 M	40.0 m			\$1.5 M	C
0047 - COOPER DH	RESIDENTIAL	33,546	MAIN	1967			4	50.5 k					\$56.7 k		\$38.0 k	\$11.5 k		\$0.1 M	\$0.1 M	\$0.3 M		\$0.6 M	C
0048 - FUNNELLE HALL	RESIDENTIAL	114,365	MAIN	1965						\$4.3 k			1		++++++	722.00 K		\$1.5 M	,	,		\$1.5 M	C

					Instal IS	Lighting particular	and too be a comp	Bergen Barger	una occurrent	Pure Direct	AND PROSPECTIVE	Seconda Property Secondary	reset controls	Verlagen of the second	orrowed	A CONVICT OF COLOR	1.051/MV	Sometice for	n Sheen med tope top	atter between the	Convert	WACTERPORT	No best for the second	
Building	Building Type	GSF	Location	Building Vintage						Energy	Efficiency M	easures						Bui	lding Upgr	ades for LT	тнw			
0011 - COMMISSARY BLDG	ADMINISTRATION	30,836	6 MAIN-SOUTH	1966														1	\$0.1 M			\$0.1 M	S	
0012 - MAINTENANCE BLDG	MAINTENANCE	20,664	4 MAIN-SOUTH	1965														\$0.3 M				\$0.3 M	S	
0019 - LAKER HALL	ACADEMIC	196,608	MAIN-SOUTH	1968				\$0.5 k	\$5.7 k			\$13.9 k				\$67.8 k	\$945.3 k	\$2.0 M	\$0.5 M			\$3.6 M	S	
0021 - ROMNEY FIELD HOUSE	ACADEMIC	55,000	MAIN-SOUTH	1962				\$0.5 k	\$212.9 k			\$1.1 k				\$30.9 k			\$0.1 M			\$0.4 M	S	
CAMPUS GROUNDS		0 (MAIN	0		\$2,919.9 k																\$2.9 M		
TOTAL	Total	3 445 37	5 -	-	¢605.1 k	¢2 010 0 k	¢360.3 k	45 5 L	45 450 9 k	¢E4.2 k	¢2E 4 k	¢E0.4.k	#201 0 L	#0.0.L	#F00.2.1	#207 E I.	#1 COC 2 L	420.0 M	42.4 M	422.0 M	¢121.0 M	#170 C M		

Notes: C. Cluster C N. Cluster N E. Cluster E W. Cluster W S. Cluster S

Energy Efficiency Measure Cost Subtotal: \$12.2 M HVAC Renovations Subtotal: \$121.0 M HVAC Coil Replacements for 130°F Supply Subtotal: \$45.4 M Total Building Upgrade Costs: \$178.6 M

SUNY Oswego – Clean Energy Master Plan

Appendix E Hydraulic Modeling

SUNY Oswego Distribution System

Bright ideas. Sustainable change.

Scenarios

- 1. **Centralized scenario:** Sizing the network for the centralized scenario (all buildings are connected except for cluster S and the 2 individual buildings in the grey area north of the road 104). The heating plant can be assume to be located in building 0004A
- **2. Clustered scenario:** in this scenario the buildings are divided into independent clusters (N, C, E, W, S; blue boxes image below). Each cluster has its own distribution network. For the location of the energy centers in each cluster, please assume the following:

Cluster C – energy center in building 004A Central Heating Plant (close to the WWTP, and easy peaking/backup from the existing steam plant)

Cluster E – energy center in building 0015 Mackin (building likely to be repurposed, so provides a good opportunity for carving out mechanical space)

Cluster N – energy center in building 0043 Riggs (centrally located in the cluster) and adjacent to potential geo field locations

Cluster W – energy center in building 0032 Seneca (next building to be rehabbed, and their plan was to start a geo plant for this building)

Cluster S – energy center in building 0019 Laker (plans of enclose a courtyard to create more mechanical/building space)

Scenarios

Additional info:

- use insulated pipes
- Design DT for the heating is 20 K.
- Design DT for the cooling is 5-6 K.
- The same network will be used to supply heating in winter and cooling in summer, so each pipe should have the larger diameter from the two sizings (for heating and cooling)

Demand, Peak

BLDG NUMBER AND NAME BUILDING NAME BLDG NUMBER Immbtu/h) cooling, [mmbtu/h] 0001 - SHELDON HALL SHELDON HALL 0001 3.840 1.932 0002 - J C PARK HALL J C PARK HALL 0002 1.921 1.739 0003 - SCAMPUS CENTER CAMPUS CENTER 0003 5.619 4.758 003A - I POUCHER HALL I POUCHER HALL 0003 1.269 1.016 003B - REC & CONVOCATION CTR 0038 3.904 1.694 003C - CC STORAGE BLDG CC STORAGE BLDG 003C - 004A - CENTRAL HEATING PLANT CONDACATION CTR 0038 - 005G - SHADY SHORE O005 0.113 - 0060 - SHADY SHORE CONDACATION CTR 0.034 - 0060 - SHADY SHORE O005 0.113 - 0060 - SHADY SHORE 0005 0.016 - 0060 - SHADY SHORE 0005 3.074 1.668 0007 - J TYLER HALL J LANIGAN HALL 0006 3.074 1.668 0008 - RICHARD S SHINEMAN CENTER RICHARD S SHIN				Peak demand	Peak demand
Immbu/h] [mmbtu/h] 0001 - SHELON HALL SHELON HALL 0001 3.840 1.982 0002 - J C PARK HALL J C PARK HALL 0002 1.739 0003 - CAMPUS CENTER CAMPUS CENTER 0003 5.619 4.758 003A - I POUCHER HALL I POUCHER HALL 003A 1.269 1.016 003B - REC & CONVOCATION CTR REC & CONVOCATION CTR 003C - - 003C - CC STORAGE BLOG 003C - - - 0044 - VLEE HALL M V LEE HALL 0004 1.303 - 0045 - SHADY SHORE SHADY SHORE 0005 0.161 0.113 0005 - SHADY SHORE SHADY SHORE 0005 0.161 0.113 0006 - J LANIGAN HALL J LANIGAN HALL 0006 3.074 1.668 0007 - J TYLER HALL MONGAN HALL 0007 3.084 2.563 0008 - RICHARD S SHINEMAN CENTER NO10 0.461 0.770 0010 - MARY WALKER HEALTH CENTER 0010 0.461 0.770 0011 - COMMISS	BLDG NUMBER AND NAME	BUILDING NAME	BLDG NUMBER	heat,	cooling,
0001 - SHELDON HALL SHELDON HALL 0001 3.840 1.982 0002 - J C PARK HALL J C PARK HALL 0002 1.921 1.739 0003 - CAMPUS CENTER 0003 5.619 4.758 0033 - A I POUCHER HALL 003A 1.269 1.016 0038 - REC & CONVOCATION CTR REC & CONVOCATION CTR 003B 3.904 1.694 0034 - I POUCHER HALL 0004 003B 3.904 1.694 0035 - CC STORAGE BLDG CC STORAGE BLDG 0002 - - 0004 - M V LEE HALL 0004 1.303 - - 0004 - CCNTRAL HEATING PLANT CURTRAL HEATING PLANT 004A 0.284 - 0005 - SHADY SHORE 0005 0.161 0.113 0006 - J LANIGAN HALL J LANIGAN HALL 0006 3.074 1.668 0007 - JTYLER HALL 0007 3.084 2.563 0005 0006 - J LANIGAN HALL 0007 3.084 2.563 0011 0.743 - 0006 - J LANIGAN HALL WILBER HALL <				[mmbtu/h]	[mmbtu/h]
0002 - J C PARK HALL J C PARK HALL 0002 1.921 1.739 0003 - CAMPUS CENTER 0003 5.619 4.758 0033 - IPOUCHER HALL 003A 1.269 1.016 0033 - REC & CONVOCATION CTR REC & CONVOCATION CTR 003B 3.904 1.694 0032 - REC & CONVOCATION CTR REC & CONVOCATION CTR 003B 3.904 1.694 0032 - CC STORAGE BLDG CC STORAGE BLDG 003C - - 0004 - M V LEE HALL M V LEE HALL 0004 1.303 - 0004 - CENTRAL HEATING PLANT CENTRAL HEATING PLANT 004A 0.284 - 0005 - SHADY SHORE SHADY SHORE 0005A - - 0006 - J LANIGAN HALL J LANIGAN HALL 0006 3.074 1.668 0007 - J TYLER HALL 0006 3.074 1.668 0007 3.084 2.563 0008 - WILBER HALL WILBER HALL 0007 3.084 2.563 0010 - - 0010 - MARY WALKER HEALTH CENTER MARY WALKER HEALTH CENTER 001	0001 - SHELDON HALL	SHELDON HALL	0001	3.840	1.982
0003 - CAMPUS CENTER CAMPUS CENTER 0003 5.619 4.758 003A - I POUCHER HALL I POUCHER HALL 003A 1.269 1.016 003B - REC & CONVOCATION CTR REC & CONVOCATION CTR 003B 3.904 1.694 003C - CC STORAGE BLDG CC STORAGE BLDG 003C - - 004A - CENTRAL HEATING PLANT CENTRAL HEATING PLANT 004A 0.284 - 005C - SHADY SHORE SHADY SHORE 0005 0.161 0.113 0005 - SHADY SHORE SHADY SHORE 0005 0.161 0.113 0006 - J LANIGAN HALL 0006 3.074 1.668 0007 - J TYLER HALL J TYLER HALL 0007 3.084 2.563 0008 - RICHARD S SHINEMAN CENTER RICHARD S SHINEMAN CENTER 0008 17.659 5.385 0009 - WILBER HALL WILBER HALL 0009 2.531 2.805 0011 - COMMISSARY BLDG COMMISSARY BLDG 0011 0.743 - 0012 - MAINTENANCE BLDG MAINTENANCE BLDG 0012 0.161 - <tr< td=""><td>0002 - J C PARK HALL</td><td>J C PARK HALL</td><td>0002</td><td>1.921</td><td>1.739</td></tr<>	0002 - J C PARK HALL	J C PARK HALL	0002	1.921	1.739
003A - I POUCHER HALL I POUCHER HALL 003A 1.269 1.016 003B - REC & CONVOCATION CTR RC & CONVOCATION CTR 003B 3.904 1.694 003C - CC STORAGE BLDG 003C - - - 004 - M V LEE HALL M V LEE HALL 00044 0.034 0.284 - 004 - CENTRAL HEATING PLANT CENTRAL HEATING PLANT 0044 0.284 - 0005 - SHADY SHORE SHADY SHORE 0005 0.161 0.113 0005 - SHADY SHORE SHADY SHORE 0005 3.064 2.563 0007 - J TVLER HALL J LANIGAN HALL 0007 3.084 2.563 0008 - RICHARD S SHINEMAN CENTER RICHARD S SHINEMAN CENTER 0008 17.659 5.385 0009 - WILBER HALL 0009 2.531 2.805 2.805 0010 - MARY WALKER HEALTH CENTER MARY WALKER HEALTH CENTER 0010 0.461 0.770 0011 - COMMISSARY BLDG COMMISSARY BLDG 0011 0.743 - 0012 - MAINTENANCE BLDG MAINTENANCE BLDG 0012	0003 - CAMPUS CENTER	CAMPUS CENTER	0003	5.619	4.758
003B - REC & CONVOCATION CTR REC & CONVOCATION CTR 003B 3.904 1.694 003C - CC STORAGE BLDG CC STORAGE BLDG 003C - - 0004 - M V LEE HALL M V LEE HALL 0004 1.303 - 004A - CENTRAL HEATING PLANT CENTRAL HEATING PLANT 004A 0.284 - 0005 - SHADY SHORE SHADY SHORE 0005A - - 0006 - J LANIGAN HALL J LANIGAN HALL 0005 3.074 1.668 0007 - J TYLER HALL OUO7 3.084 2.563 0008 - RICHARD S SHINEMAN CENTER RICHARD S SHINEMAN CENTER 0008 17.659 5.385 0010 - MARY WALKER HEALTH CENTER MARY WALKER HEALTH CENTER 0011 0.743 - 0011 - COMMISSARY BLDG COMMISSARY BLDG 0011 0.743 - 0012 - MAINTENANCE BLDG MAINTENANCE BLDG 0012 0.161 - 0013 - ME MAHAR HALL MAINTENANCE BLDG 0011 0.743 - 0014 - RICH HALL MORELAND HALL 0013 1.857 1.790 <td>003A - I POUCHER HALL</td> <td>I POUCHER HALL</td> <td>003A</td> <td>1.269</td> <td>1.016</td>	003A - I POUCHER HALL	I POUCHER HALL	003A	1.269	1.016
003C - CC STORAGE BLDG CC STORAGE BLDG 003C - - 0004 - M V LEE HALL M V LEE HALL 0004 1.303 - 004A - CENTRAL HEATING PLANT CENTRAL HEATING PLANT 004A 0.284 - 0005 - SHADY SHORE SHADY SHORE 0005 0.161 0.113 0005A - PRESIDENT GARAGE PRESIDENT GARAGE 0005 - - 0006 - J LANIGAN HALL J LANIGAN HALL 0006 3.074 1.668 0007 - J TYLER HALL 0007 3.084 2.563 0008 - RICHARD S SHINEMAN CENTER RICHARD S SHINEMAN CENTER 0008 17.659 5.385 0009 - WILBER HALL WILBER HALL 0007 3.084 2.563 0010 - MARY WALKER HEALTH CENTER MARY WALKER HEALTH CENTER 0010 0.461 0.770 0111 - COMMISSARY BLDG COMMISSARY BLDG 0011 0.743 - 0012 - MAINTENANCE BLDG MAINTENANCE BLDG 0011 0.743 - 0013 - M E MAHAR HALL MOTA 1.857 1.790 014 - NICH	003B - REC & CONVOCATION CTR	REC & CONVOCATION CTR	003B	3.904	1.694
0004 - M V LEE HALL 0004 1.303 - 004A - CENTRAL HEATING PLANT CENTRAL HEATING PLANT 004A 0.284 - 0005 - SHADY SHORE SHADY SHORE 0005 0.161 0.113 0005 - SHADY SHORE PRESIDENT GARAGE 0005A - - 0006 - J LANIGAN HALL J LANIGAN HALL 0006 3.074 1.668 0007 - J TYLER HALL J TYLER HALL 0007 3.084 2.563 0008 - RICHARD S SHINEMAN CENTER RICHARD S SHINEMAN CENTER 0008 7.659 5.385 0009 - WILBER HALL WILBER HALL 0007 2.531 2.805 0010 - MARY WALKER HEALTH CENTER MARY WALKER HEALTH CENTER 0010 0.461 0.770 0011 - COMMISSARY BLDG COMMISSARY BLDG 0011 0.743 - 0012 - MAINTENANCE BLDG MAINTENANCE BLDG 0012 0.161 - 0013 - M E MAHAR HALL MO14 1.513 1.207 0014 - RICH HALL MO14 1.513 1.207 015A - MORELAND HALL MORELAND H	003C - CC STORAGE BLDG	CC STORAGE BLDG	003C	-	-
004A - CENTRAL HEATING PLANT 004A 0.284 - 0005 - SHADY SHORE SHADY SHORE 0005 0.161 0.113 0005 - SHADY SHORE PRESIDENT GARAGE 0005 - - 0006 - J LANIGAN HALL J LANIGAN HALL 0006 3.074 1.668 0007 - J TYLER HALL J TYLER HALL 0007 3.084 2.563 0008 - RICHARD S SHINEMAN CENTER RICHARD S SHINEMAN CENTER 0008 17.659 5.385 0010 - MARY WALKER HEALTH CENTER MARY WALKER HEALTH CENTER 0010 0.461 0.770 011 - COMMISSARY BLDG COMMISSARY BLDG 0011 0.743 - 0012 - MAINTENANCE BLDG MAINTENANCE BLDG 0012 0.161 - 0013 - M E MAHAR HALL MI E MAHAR HALL 0013 1.857 1.790 0014 - RICH HALL MI E MAHAR HALL 0013 1.857 1.790 0014 - RICH HALL MORELAND HALL 0015 0.740 0.121 0155 - LONIS HALL MORELAND HALL 015A 0.448 0.085	0004 - M V LEE HALL	M V LEE HALL	0004	1.303	-
0005 - SHADY SHORE SHADY SHORE 0005 0.161 0.113 0005A - PRESIDENT GARAGE PRESIDENT GARAGE 0005A - - 0006 - J LANIGAN HALL J LANIGAN HALL 0006 3.074 1.668 0007 - J TYLER HALL 0007 3.084 2.563 0008 - RICHARD S SHINEMAN CENTER RICHARD S SHINEMAN CENTER 0008 17.659 5.385 0009 - WILBER HALL WILBER HALL 00009 2.531 2.805 0010 - MARY WALKER HEALTH CENTER MARY WALKER HEALTH CENTER 0010 0.461 0.770 0011 - COMMISSARY BLDG COMMISSARY BLDG 0011 0.743 - 0012 - MAINTENANCE BLDG MAINTENANCE BLDG 0011 0.743 - 0013 - M E MAHAR HALL MAHAR HALL 0013 1.857 1.790 0014 - RICH HALL MCKIN HALL 0014 1.513 1.207 0015 - MACKIN HALL MORELAND HALL 0015 0.740 0.121 015A - MORELAND HALL LONIS HALL 0015 0.740 0.121	004A - CENTRAL HEATING PLANT	CENTRAL HEATING PLANT	004A	0.284	-
D005A - PRESIDENT GARAGE PRESIDENT GARAGE 0005A - 0006 - J LANIGAN HALL J LANIGAN HALL 0006 3.074 1.668 0007 - J TYLER HALL J TYLER HALL 0007 3.084 2.563 0008 - RICHARD S SHINEMAN CENTER RICHARD S SHINEMAN CENTER 0008 17.659 5.385 0009 - WILBER HALL WILBER HALL 0009 2.531 2.805 0010 - MARY WALKER HEALTH CENTER MARY WALKER HEALTH CENTER 0010 0.461 0.770 0011 - COMMISSARY BLDG COMMISSARY BLDG 0011 0.743 - 0012 - MAINTENANCE BLDG MAINTENANCE BLDG 0012 0.161 - 0013 - M E MAHAR HALL M E MAHAR HALL 0013 1.857 1.790 0014 - RICH HALL MCICH HALL 0014 1.513 1.207 0015 - MACKIN HALL MORELAND HALL 0015 0.740 0.121 015A - MORELAND HALL MORELAND HALL 0015 0.740 0.121 015A - MORELAND HALL LONIS HALL 015B 0.509 0.093 <td>0005 - SHADY SHORE</td> <td>SHADY SHORE</td> <td>0005</td> <td>0.161</td> <td>0.113</td>	0005 - SHADY SHORE	SHADY SHORE	0005	0.161	0.113
0006 - J LANIGAN HALL J LANIGAN HALL 0006 3.074 1.668 0007 - J TYLER HALL J TYLER HALL 0007 3.084 2.563 0008 - RICHARD S SHINEMAN CENTER RICHARD S SHINEMAN CENTER 0008 17.659 5.385 0009 - WILBER HALL WILBER HALL 0009 2.531 2.805 0010 - MARY WALKER HEALTH CENTER MARY WALKER HEALTH CENTER 0010 0.461 0.770 0011 - COMMISSARY BLDG COMMISSARY BLDG 0011 0.743 - 0012 - MAINTENANCE BLDG MAINTENANCE BLDG 0012 0.161 - 0013 - M E MAHAR HALL M E MAHAR HALL 0013 1.857 1.790 0014 - RICH HALL M E MAHAR HALL 0014 1.513 1.207 0015 - MACKIN HALL MORELAND HALL 0015 0.740 0.121 015A - MORELAND HALL MORELAND HALL 0015 0.740 0.121 015A - MORELAND HALL LONIS HALL 0016 0.001 - 017 - J PENFIELD LIB J PENFIELD LIB 015B 0.509 <td< td=""><td>0005A - PRESIDENT GARAGE</td><td>PRESIDENT GARAGE</td><td>0005A</td><td>-</td><td>-</td></td<>	0005A - PRESIDENT GARAGE	PRESIDENT GARAGE	0005A	-	-
0007 - J TYLER HALL J TYLER HALL 0007 3.084 2.563 0008 - RICHARD S SHINEMAN CENTER RICHARD S SHINEMAN CENTER 0008 17.659 5.385 0009 - WILBER HALL WILBER HALL 0009 2.531 2.805 0010 - MARY WALKER HEALTH CENTER MARY WALKER HEALTH CENTER 0010 0.461 0.770 0011 - COMMISSARY BLDG COMMISSARY BLDG 0011 0.743 - 0012 - MAINTENANCE BLDG MAINTENANCE BLDG 0012 0.161 - 0013 - M E MAHAR HALL M E MAHAR HALL 0013 1.857 1.790 0014 - RICH HALL M E MAHAR HALL 0014 1.513 1.207 0015 - MACKIN HALL MACKIN HALL 0015 0.740 0.121 015A - MORELAND HALL MORELAND HALL 015A 0.448 0.085 015B - LONIS HALL LONIS HALL 015B 0.509 0.093 015B - LONIS HALL LONIS HALL 015B 0.509 0.093 0161 - OBSERVATORY OBSERVATORY 0016 0.001 - </td <td>0006 - J LANIGAN HALL</td> <td>J LANIGAN HALL</td> <td>0006</td> <td>3.074</td> <td>1.668</td>	0006 - J LANIGAN HALL	J LANIGAN HALL	0006	3.074	1.668
0008 - RICHARD S SHINEMAN CENTER RICHARD S SHINEMAN CENTER 0008 17.659 5.385 0009 - WILBER HALL WILBER HALL 0009 2.531 2.805 0010 - MARY WALKER HEALTH CENTER MARY WALKER HEALTH CENTER 0010 0.461 0.770 0011 - COMMISSARY BLDG COMMISSARY BLDG 0011 0.743 - 0012 - MAINTENANCE BLDG MAINTENANCE BLDG 0012 0.161 - 0013 - M E MAHAR HALL M E MAHAR HALL 0013 1.857 1.790 0014 - RICH HALL MICH HALL 0014 1.513 1.207 0015 - MACKIN HALL MORELAND HALL 0015 0.740 0.121 015A - MORELAND HALL MORELAND HALL 015A 0.448 0.085 015B - LONIS HALL LONIS HALL 015B 0.509 0.093 0016 - OBSERVATORY OBSERVATORY 0016 0.001 - 0017 - J PENFIELD LIB J PENFIELD LIB 0017 3.365 4.337 0019 - LAKER HALL LAKER HALL 0019 4.878 0.394 <	0007 - J TYLER HALL	J TYLER HALL	0007	3.084	2.563
0009 - WILBER HALL WILBER HALL 0009 2.531 2.805 0010 - MARY WALKER HEALTH CENTER MARY WALKER HEALTH CENTER 0010 0.461 0.770 0011 - COMMISSARY BLDG COMMISSARY BLDG 0011 0.743 - 0012 - MAINTENANCE BLDG MAINTENANCE BLDG 0012 0.161 - 0013 - M E MAHAR HALL M E MAHAR HALL 0013 1.857 1.790 0014 - RICH HALL M E MAHAR HALL 0014 1.513 1.207 0015 - MACKIN HALL MACKIN HALL 0015 0.740 0.121 015A - MORELAND HALL MARELAND HALL 015A 0.448 0.085 015B - LONIS HALL LONIS HALL 015B 0.509 0.093 0016 - OBSERVATORY OBSERVATORY 0016 0.001 - 0017 - J PENFIELD LIB J PENFIELD LIB 0017 3.365 4.337 0019 - LAKER HALL LAKER HALL 0019 4.878 0.394 0020 - GAR-20 GAR-20 0020 0.333 0.344 0021 - ROM	0008 - RICHARD S SHINEMAN CENTER	RICHARD S SHINEMAN CENTER	0008	17.659	5.385
0010 - MARY WALKER HEALTH CENTER MARY WALKER HEALTH CENTER 0010 0.461 0.770 0011 - COMMISSARY BLDG COMMISSARY BLDG 0011 0.743 - 0012 - MAINTENANCE BLDG MAINTENANCE BLDG 0012 0.161 - 0013 - M E MAHAR HALL M E MAHAR HALL 0013 1.857 1.790 0014 - RICH HALL M E MAHAR HALL 0014 1.513 1.207 0015 - MACKIN HALL MCKIN HALL 0015 0.740 0.121 015A - MORELAND HALL MORELAND HALL 015A 0.448 0.085 015B - LONIS HALL LONIS HALL 015B 0.509 0.093 0016 - OBSERVATORY OBSERVATORY 0016 0.001 - 0017 - J PENFIELD LIB J PENFIELD LIB 0019 4.878 0.394 0020 - GAR-20 0020 0.333 0.344 0021 - ROMNEY FIELD HOUSE ROMNEY FIELD HOUSE 0021 1.956 - 0022 - KING HALL KING HALL 0022 0.144 - 0023A - RICE CREEK FIELD STATIO	0009 - WILBER HALL	WILBER HALL	0009	2.531	2.805
0011 - COMMISSARY BLDG COMMISSARY BLDG 0011 0.743 - 0012 - MAINTENANCE BLDG MAINTENANCE BLDG 0012 0.161 - 0013 - M E MAHAR HALL M E MAHAR HALL 0013 1.857 1.790 0014 - RICH HALL M E MAHAR HALL 0014 1.513 1.207 0015 - MACKIN HALL MACKIN HALL 0015 0.740 0.121 015A - MORELAND HALL MORELAND HALL 015A 0.448 0.085 015B - LONIS HALL LONIS HALL 015B 0.509 0.093 0016 - OBSERVATORY OBSERVATORY 0016 0.001 - 0017 - J PENFIELD LIB J PENFIELD LIB 0019 4.878 0.394 0020 - GAR-20 GAR-20 0020 0.333 0.3444 0021 - ROMNEY FIELD HOUSE ROMNEY FIELD HOUSE 0021 1.956 - 0022 - KING HALL KING HALL 0022 0.144 - 0023A - RICE CREEK FIELD STATION RICE CREEK FIELD STATION 0.270	0010 - MARY WALKER HEALTH CENTER	MARY WALKER HEALTH CENTER	0010	0.461	0.770
0012 - MAINTENANCE BLDG MAINTENANCE BLDG 0012 0.161 - 0013 - M E MAHAR HALL M E MAHAR HALL 0013 1.857 1.790 0014 - RICH HALL RICH HALL 0014 1.513 1.207 0015 - MACKIN HALL MACKIN HALL 0015 0.740 0.121 015A - MORELAND HALL MORELAND HALL 015A 0.448 0.085 015B - LONIS HALL LONIS HALL 015B 0.509 0.093 0016 - OBSERVATORY OBSERVATORY 0016 0.001 - 0017 - J PENFIELD LIB J PENFIELD LIB 0017 3.365 4.337 0019 - LAKER HALL LAKER HALL 0019 4.878 0.394 0020 - GAR-20 GAR-20 0020 0.333 0.344 0021 - ROMNEY FIELD HOUSE ROMNEY FIELD HOUSE 0021 1.956 - 0022 - KING HALL KING HALL 0022 0.144 - 0023A - RICE CREEK FIELD STATION RICE CREEK FIELD STATION 0.23A 0.419 0.270	0011 - COMMISSARY BLDG	COMMISSARY BLDG	0011	0.743	-
0013 - M E MAHAR HALL 0013 1.857 1.790 0014 - RICH HALL RICH HALL 0014 1.513 1.207 0015 - MACKIN HALL MACKIN HALL 0015 0.740 0.121 015A - MORELAND HALL MORELAND HALL 015A 0.448 0.085 015B - LONIS HALL LONIS HALL 015B 0.509 0.093 0016 - OBSERVATORY O016 0.001 - 0017 - J PENFIELD LIB J PENFIELD LIB 0017 3.365 4.337 0019 - LAKER HALL LAKER HALL 0019 4.878 0.394 0020 - GAR-20 GAR-20 0020 0.333 0.344 0021 - ROMNEY FIELD HOUSE ROMNEY FIELD HOUSE 0021 1.956 - 0022 - KING HALL KING HALL 0022 0.144 - 0023A - RICE CREEK FIELD STATION RICE CREEK FIELD STATION 0.270 0.270	0012 - MAINTENANCE BLDG	MAINTENANCE BLDG	0012	0.161	-
Non-table RICH HALL Non-table No-table No-table	0013 - M E MAHAR HALL	M E MAHAR HALL	0013	1.857	1.790
0015 - MACKIN HALL MACKIN HALL 0015 0.740 0.121 015A - MORELAND HALL MORELAND HALL 015A 0.448 0.085 015B - LONIS HALL LONIS HALL 015B 0.509 0.093 0016 - OBSERVATORY O016 0.001 - 0017 - J PENFIELD LIB J PENFIELD LIB 0017 3.365 4.337 0019 - LAKER HALL LAKER HALL 0019 4.878 0.394 0020 - GAR-20 GAR-20 0020 0.333 0.344 0021 - ROMNEY FIELD HOUSE ROMNEY FIELD HOUSE 0021 1.956 - 0022 - KING HALL KING HALL 0022 0.144 - 0023A - RICE CREEK FIELD STATION RICE CREEK FIELD STATION 0.270 0.270	0014 - RICH HALL	RICH HALL	0014	1.513	1.207
015A - MORELAND HALL MORELAND HALL 015A 0.448 0.085 015B - LONIS HALL LONIS HALL 015B 0.509 0.093 0016 - OBSERVATORY OBSERVATORY 0016 0.001 - 0017 - J PENFIELD LIB J PENFIELD LIB 0017 3.365 4.337 0019 - LAKER HALL LAKER HALL 0019 4.878 0.394 0020 - GAR-20 GAR-20 0020 0.333 0.344 0021 - ROMNEY FIELD HOUSE ROMNEY FIELD HOUSE 0021 1.956 - 0022 - KING HALL KING HALL 0022 0.144 - 0023A - RICE CREEK FIELD STATION RICE CREEK FIELD STATION 0023A 0.419 0.270	0015 - MACKIN HALL	MACKIN HALL	0015	0.740	0.121
015B - LONIS HALL 015B 0.509 0.093 0016 - OBSERVATORY 0016 0.001 - 0017 - J PENFIELD LIB J PENFIELD LIB 0017 3.365 4.337 0019 - LAKER HALL 0019 4.878 0.394 0020 - GAR-20 GAR-20 0020 0.333 0.344 0021 - ROMNEY FIELD HOUSE ROMNEY FIELD HOUSE 0021 1.956 - 0022 - KING HALL KING HALL 0022 0.144 - 0023A - RICE CREEK FIELD STATION RICE CREEK FIELD STATION 0.270	015A - MORELAND HALL	MORELAND HALL	015A	0.448	0.085
0016 - OBSERVATORY OBSERVATORY 0016 0.001 - 0017 - J PENFIELD LIB J PENFIELD LIB 0017 3.365 4.337 0019 - LAKER HALL LAKER HALL 0019 4.878 0.394 0020 - GAR-20 GAR-20 0020 0.333 0.344 0021 - ROMNEY FIELD HOUSE ROMNEY FIELD HOUSE 0021 1.956 - 0022 - KING HALL KING HALL 0022 0.144 - 0023A - RICE CREEK FIELD STATION RICE CREEK FIELD STATION 0.023A 0.419 0.270	015B - LONIS HALL	LONIS HALL	015B	0.509	0.093
0017 - J PENFIELD LIB 0017 3.365 4.337 0019 - LAKER HALL LAKER HALL 0019 4.878 0.394 0020 - GAR-20 GAR-20 0020 0.333 0.344 0021 - ROMNEY FIELD HOUSE ROMNEY FIELD HOUSE 0021 1.956 - 0022 - KING HALL KING HALL 0022 0.144 - 0023A - RICE CREEK FIELD STATION RICE CREEK FIELD STATION 0023A 0.419 0.270	0016 - OBSERVATORY	OBSERVATORY	0016	0.001	-
0019 - LAKER HALL 0019 4.878 0.394 0020 - GAR-20 GAR-20 0020 0.333 0.344 0021 - ROMNEY FIELD HOUSE ROMNEY FIELD HOUSE 0021 1.956 - 0022 - KING HALL KING HALL 0022 0.144 - 0023A - RICE CREEK FIELD STATION RICE CREEK FIELD STATION 0023A 0.419 0.270	0017 - J PENFIELD LIB	J PENFIELD LIB	0017	3.365	4.337
0020 - GAR-20 GAR-20 0020 0.333 0.344 0021 - ROMNEY FIELD HOUSE ROMNEY FIELD HOUSE 0021 1.956 - 0022 - KING HALL KING HALL 0022 0.144 - 0023A - RICE CREEK FIELD STATION RICE CREEK FIELD STATION 0023A 0.419 0.270	0019 - LAKER HALL	LAKER HALL	0019	4.878	0.394
0021 - ROMNEY FIELD HOUSE 0021 1.956 - 0022 - KING HALL KING HALL 0022 0.144 - 0023A - RICE CREEK FIELD STATION RICE CREEK FIELD STATION 0023A 0.419 0.270	0020 - GAR-20	GAR-20	0020	0.333	0.344
0022 - KING HALL KING HALL 0022 0.144 - 0023A - RICE CREEK FIELD STATION RICE CREEK FIELD STATION 0023A 0.419 0.270	0021 - ROMNEY FIELD HOUSE	ROMNEY FIELD HOUSE	0021	1.956	-
0023A - RICE CREEK FIELD STATION RICE CREEK FIELD STATION 0023A 0.419 0.270	0022 - KING HALL	KING HALL	0022	0.144	-
	0023A - RICE CREEK FIELD STATION	RICE CREEK FIELD STATION	0023A	0.419	0.270

Demand, Peak

BLDG NUMBER AND NAME	BUILDING NAME	BLDG NUMBER	Peak demand heat, [mmbtu/h]	Peak demand cooling, [mmbtu/h]
0024A - BIO FIELD GARAGE	BIO FIELD GARAGE	0024A	-	-
0026 - CULKIN HALL	CULKIN HALL	0026	0.399	0.563
0028 - SEWAGE PUMP STATION	SEWAGE PUMP STATION	0028	0.005	-
0028A - SEWAGE PUMP STATION - SENECA	SEWAGE PUMP STATION - SENECA	0028A	0.001	-
0028B - SEWAGE PUMP STATION - BLG 12	SEWAGE PUMP STATION - BLG 12	0028B	0.001	-
0029 - HEWITT HALL	HEWITT HALL	0029	2.454	2.290
0031 - PATHFINDER DH	PATHFINDER DH	0031	0.779	0.728
0032 - SENECA HALL	SENECA HALL	0032	2.559	0.232
0033 - CAYUGA HALL	CAYUGA HALL	0033	1.786	0.160
0034 - ONONDAGA HALL	ONONDAGA HALL	0034	2.569	0.232
0035 - LITTLEPAGE DH	LITTLEPAGE DH	0035	0.583	0.605
0036 - ONEIDA HALL	ONEIDA HALL	0036	1.723	0.160
0037A - TOWNHOUSE A	TOWNHOUSE A	0037A	0.119	0.180
0037B - TOWNHOUSE B	TOWNHOUSE B	0037B	0.094	0.142
0037C - TOWNHOUSE C	TOWNHOUSE C	0037C	0.147	0.221
0037D - TOWNHOUSE D	TOWNHOUSE D	0037D	0.147	0.221
0037E - TOWNHOUSE E	TOWNHOUSE E	0037E	0.185	0.279
0037F - TOWNHOUSE F	TOWNHOUSE F	0037F	0.213	0.320
0037G - TOWNHOUSE G	TOWNHOUSE G	0037G	0.111	0.146
0037H - TOWNHOUSE H	TOWNHOUSE H	0037H	0.140	0.185
0037I - TOWNHOUSE I	TOWNHOUSE I	00371	0.172	0.227
0037J - TOWNHOUSE J	TOWNHOUSE J	0037J	0.172	0.228
0037K - TOWNHOUSE K	TOWNHOUSE K	0037K	0.228	0.301
0037L - TOWNHOUSE L	TOWNHOUSE L	0037L	0.172	0.227
0041 - JOHNSON HALL	JOHNSON HALL	0041	1.578	1.432
0042 - LAKESIDE DH	LAKESIDE DH	0042	0.606	0.599
0043 - RIGGS HALL	RIGGS HALL	0043	1.238	1.054
0044 - WATERBURY HALL	WATERBURY HALL	0044	1.195	-
0045 - SCALES HALL	SCALES HALL	0045	1.195	-
0046 - HART HALL	HART HALL	0046	2.844	-

Demand, Peak

			Peak demand	Peak demand
BLDG NUMBER AND NAME		BLDG NUMBER	neat, [mmbtu/h]	[mmbtu/h]
0047 - COOPER DH	COOPER DH	0047	0.786	0.508
0048 - FUNNELLE HALL	FUNNELLE HALL	0048	2.798	-
0049 - PUBLIC RESTROOM	PUBLIC RESTROOM	0049	-	-
0051 - FM RADIO TRANSMISSION FAC	FM RADIO TRANSMISSION FAC	0051	0.124	-
0061 - MAINTENANCE STORAGE	MAINTENANCE STORAGE	0061	-	-
0071 - POLE BARN (FALLBROOK)	POLE BARN (FALLBROOK)	0071	0.007	-
0080 - FT DRM ED SVC CONSORTIUM	FT DRM ED SVC CONSORTIUM	0080	-	-
0081 - RICE CREEK OBSERVATORY	RICE CREEK OBSERVATORY	0081	0.002	-
0082 - PRESS BOX	PRESS BOX	0082	0.001	-
0083 - RICE CREEK PAVILION	RICE CREEK PAVILION	0083	0.003	-
0104 - SECURITY PARKING OFFICE	SECURITY PARKING OFFICE	0104	0.050	0.043
0106 - VOLATILE STO	VOLATILE STO	0106	-	-
0107 - 1 ROOM SCHOOL HSE	1 ROOM SCHOOL HSE	0107	0.001	0.011
0108 - POWER STATION 1	POWER STATION 1	0108	0.001	-
0109 - POWER STATION 1A	POWER STATION 1A	0109	-	-
0110 - POWER STATION 2	POWER STATION 2	0110	-	-
PARKING LOT	PARKING LOT		-	-
FALLBROOK REC CENTER	FALLBROOK REC CENTER		0.173	0.077
S	UM		89.536	44.505

Pipe Catalogue: Based on ASTM A53 - Standard Specification for Pipe

Nom. Dia ["]	ex. Dia ["]	Int. Dia [″]	Heatloss Coefficient	
			Series 1 [W/m/K]	Series 2 [W/m/K]
1"	1.315	1.05	0.18	0.14
1.25"	1.66	1.38	0.18	0.16
1.5"	1.9	1.61	0.21	0.18
2"	2.375	2.07	0.24	0.20
2.5"	2.875	2.47	0.27	0.22
3"	3.5	3.07	0.30	0.24
4"	4.5	4.03	0.31	0.25
5"	5.563	5.05	0.37	0.30
6"	6.625	6.07	0.44	0.34
8"	8.625	7.98	0.48	0.36
10"	10.75	10.02	0.45	0.34
12"	12.75	11.94	0.53	0.40
14"	14	13.13	0.51	0.38
16"	16	15	0.54	0.39

Theoretical Capacity, CHW:

Assumptions:

- Supply Temp.: 40 °F (277.6 K)
- ≻ Return Temp.: 52 °F (284.3 K)
- > ANSI Schedule 40 (pipedimensions)
- Roughness: (0.1 mm)
- 0.0039″
- Max. Pressure gradient: 0.0133 psi/ft (300 Pa/m)
- ≻ Max. Velocities:

SlshVl}h î'	Yhorflw Îwêv'
2" - 6"	8.2
8" - 10"	9.8
12" - 14"	11.5
16" <	13.1

For CHW system Ramboll normally recommends to accept a higher pressure gradient to reduce the pipe size. The consequence is higher operational cost for pumping.

Nom. Dia [″]	ex. Dia [″]	Int. Dia [″]	Flow	Δ ⁻ 12	F °F
			[GPM]	Capacity [Tons]	Capacity [MMBtu/h]
1"	1.315	1.05	6	3	0.036
1.25"	1.66	1.38	12	6	0.075
1.5"	1.9	1.61	18	9	0.111
2"	2.375	2.07	37	19	0.223
2.5"	2.875	2.47	59	30	0.357
3"	3.5	3.07	104	52	0.629
4"	4.500	4.03	214	107	1.290
5"	5.563	5.05	391	196	2.358
6"	6.625	6.07	638	321	3.850
8"	8.625	7.98	1,322	665	7.983
10"	10.750	10.02	2,400	1,207	14.488
12"	12.750	11.94	3,813	1,918	23.020

Ramboll

Theoretical Capacity, HW:

Assumptions:

> Supply	Temp.:	149	٥F
(338.2	K)		

> Return Temp.: 113 °F (318.2 K)

- >ANSI Schedule 40 (pipedimensions)
- > Roughness: (0.1 mm)

0.0039″

Max. Pressure gradient: 0.0066 psi/ft (150 Pa/m)

	8.4	× / 1		
>	Max	Ve	OC	ties
	пала			cico.

Sish Vi}h î`	Yhariw Tw2v'
1"- 2"	3.3
2" - 6"	6.6
8" - 10"	8.2
12" - 14"	9.8

Nom. Dia [″]	ex. Dia [″]	Int. Dia [″]	Flow	Capacity [MMBtu/h]
			[GPM]	ΔT 36 ∘F
1"	1.315	1.05	4.5	0.080
1.25"	1.66	1.38	9.2	0.163
1.5"	1.9	1.61	14	0.243
2"	2.375	2.07	27	0.482
2.5"	2.875	2.47	44	0.770
3"	3.5	3.07	76	1.35
4"	4.5	4.03	156	2.75
5"	5.563	5.05	283	5.01
6"	6.625	6.07	462	8.16
8"	8.625	7.98	953	16.84
10"	10.75	10.02	1,724	30.48
12"	12.75	11.94	2,732	48.29
14"	14	13.13	3,507	61.98
16"	16	15	4,953	87.54

Simultaneity

Design, Centralized CHW: Simultaneity: 0.9 ~ 39 MMBtu/h

Assumptions:

Supply Temp.:	40 °F
> Return Temp.:	52 °F
≻Min. dP:	14.5 PSI

> ANSI Schedule 40 (pipedimensions)

Calculated Results:

Production		
Load	[MMbtu/h]	39.2
Flow	[GPM]	6,472
Temp. Supply	[F]	40
Temp. Return	[F]	52
Pressure, Supply	[psig]	128
Pressure, Return	[psig]	22
ΔP	[psi]	106*

Note:

* The model has not been configured to account for internal losses. An additional 14.5-21 psi should be added when specifying the main pumps.

The difference of approx. 240 ft of trench, compared to the heating model, is due to three building does not have a cooling demand and therefore not being supplied

Rambol

Design, Centralized HW: Simultaneity: 0.8 ~ 65 MMBtu/h

Assumptions:

Supply Temp.:	149 °F
≻ Return Temp.:	113 °F
≻Min. dP:	14.5 PSI

>ANSI Schedule 40 (pipedimensions)

Calculated Results:

Production		
Load	[MMbtu/h]	65.3
Flow	[GPM]	3,638
Temp. Supply	[F]	149
Temp. Return	[F]	113
Pressure, Supply	[psig]	74
Pressure, Return	[psig]	22
ΔP	[psi]	54*

Note:

* The model has not been configured to account for internal losses. An additional 14.5-21 psi should be added when specifying the main pumps.

Rambol

Distribution System, Centralized

Ramboll

Note:

Load

Flow

Design,	Cluste	er HW	<u>':</u>			
Simulta	neity:	0.83	~ 7	74	MMBtu/ł	٦

Assumptions:

Supply Temp.:	149 °F
≻ Return Temp.:	113 °F
≻Min. dP:	14.5 PSI

> ANSI Schedule 40 (pipedimensions)

Calculated Results:

Production		С	N	Е	W	S
Load	[MMbtu/h]	46.0	5.4	6.2	10.0	6.5
Flow	[GPM]	2,569	301	344	556	361
Temp. Supply	[F]	149	149	149	149	149
Temp. Return	[F]	113	113	113	113	113
Pressure, Supply	[psig]	61	42	39	48	40
Pressure, Return	[psig]	22	22	22	22	22
ΔP	[psi]	39*	20*	17*	26*	18*

Note:

* The model has not been configured to account for internal losses. An additional 14.5-21 psi should be added when specifying the main pumps.

Туре [″]	Cluster C [ft]	Cluster N [ft]	Cluster E [ft]	Cluster W [ft]	Cluster S [ft]
A) 1.5"	-	277	-	-	-
B) 2"	204	263	259	-	-
C) 2.5"	-	-	-	481	-
D) 3"	39	71	-	78	701
E) 4"	641	898	274	1016	391
F) 5"	689	499	504	254	104
G) 6"	583	-	-	299	-
H) 8"	1105	-	-	351	-
I) 10"	1036	-	-	-	-
J) 12"	630	-	-	-	-
K) 14"	336	-	-	-	-
L) 16"	-	-	-	-	-
M) 18"	-	-	-	-	-
SUM	5264	2008	1037	2479	1196

WANY

Road

MM

Ramboll

Comment

Óswe

A) 1.5" B) 2"

C) 2.5" D) 3"

E) 4" F) 5" G) 6" H) 8" I) 10"

udolph Road

Distribution System, Cluster

Туре [″]	Cluster C [ft]	Cluster N [ft]	Cluster E [ft]	Cluster W [ft]	Cluster S [ft]
A) 1.5"	-	277	-	-	-
B) 2"	-	-	-	-	-
C) 2.5"	-	-	259	-	-
D) 3"	243	71	-	62	701
E) 4"	62	696	122	992	391
F) 5"	650	963	655	22	104
G) 6"	787	-	-	1051	-
H) 8"	659	-	-	351	-
I) 10"	1252	-	-	-	-
J) 12"	749	-	-	-	-
K) 14"	593	-	-	-	-
L) 16"	268	-	-	-	-
M) 18"	-	-	-	-	-
SUM	5264	2008	1037	2479	1196

Appendix F EnergyPro Techno-Economic Analysis

		Scenario 0	Scenario 2a	Scenario 2b	Scenario 4a	Scenario 4b	Scenario 5b	Scenario 6a	Scenario 6b
				Cluster I			Centralized +	Controlized	Centralized
TECHNICAL DATA		Roll	Cluster + NG	Electric	Centralized +	Centralized +	WWHP +	Cascada + NG	Cascade +
		DdU	Peaking	Dealving	NG Peaking	Electric Peaking	Electric		Electric
	Units			Peaking			Peaking	Peaking	Peaking
Space Heating (SH) Demand	MWh-h	43,107	36,036	36,036	36,036	36,036	36,036	36,036	36,036
Domestic Hot Water (DHW) Demand	MWh-h	13,613	13,613	13,613	13,613	13,613	13,613	13,613	13,613
Network Losses	MWh-h	9,222	811	811	811	811	811	811	811
Total Heat Demand	MWh-h	65,941	50,460	50,460	50,460	50,460	50,460	50,460	50,460
Total Cooling Demand	MWh-c	12,984	8,887	8,887	8,887	8,887	8,887	8,887	8,887
Heating Production		46.400						1	
Central Steam	MWh-h	46,108	-	-	-	-	-	-	-
Natural Gas Boller	MWn-n	7,375	4,725	223	4,/13	223	223	3,558	17.275
GSHP	MWn-n	12,059	39,227	39,227	39,228	39,228	15,535	17,259	17,276
WWHP Caseado HD	MWn-n	-	-	-	-	-	26,026	-	24 226
CdSCdue HP	MINUT-II	-	-	4 4 4 0	-	4 4 2 9	2 005	23,123	24,230
Local Electric Boiler	MWb b	- 200	6 549	4,440	6 547	4,420	2,095	6 547	2,145
	MWb b	399	(20)	0,011	(20)	(20)	(20)	(20)	(20)
Total Heating Production	MWh-h	65 0/1	E0 460	E0 460	E0 460	E0 460	E0 460	E0 460	E0 460
Cooling Production		03,341	50,400	50,400	50,400	50,400	50,400	50,400	50,400
GSHP	MWh-c	1 697	3 389	3 389	3 617	3 617	3 617	3 617	3 617
Central Chillers	MWh-c	-	5 409	5 409	5 182	5 182	5 182	5 182	5 182
	MWh-c	11 287	88	88	88	88	88	88	88
TES Heat Loss	MWh-c	-	(0)	(0)	(0)	(0)	(0)	(0)	(0)
Total Cooling Production	MWh-c	12.984	8.886	8.886	8.887	8.887	8.887	8.887	8.887
Fuel Consumption		==/++ :	-,	-,	-/		-,	-/	-/
District Steam	MWh-f	65,820	-	-	-	-	-	-	-
Natural Gas Boiler	MWh-f	9,219	5,769	279	5,601	279	279	4,235	279
GSHP	MWh-el	3,636	11,355	11,355	11,406	11,406	5,003	5,469	5,473
WWHP	MWh-el	-	-	-	-	-	6,889	-	-
Cascade HP	MWh-el	-	-	-	-	-	-	8,766	9,305
Electric Boiler	MWh-el	-	-	4,530	-	4,518	2,138	-	2,187
Local Electric Boiler	MWh-el	274	6,548	6,613	6,547	6,612	6,612	6,547	6,612
Central Chillers	MWh-el	-	1,202	1,202	1,152	1,152	1,152	1,152	1,152
Local Cooling	MWh-el	2,609	29	29	29	29	29	29	29
Dry-Cooler or Pumping Operation	MWh-el	-	894	894	894	894	102	-	-
Electricity for uses other than	MWh-el	31,506	25.369	25,369	25.369	25,369	25.369	25,369	25.369
heating/cooling		110.001			===;====	50,050	47.570		
Total Fuel Consumption	MWh	113,064	51,165	50,271	50,998	50,258	47,573	51,567	50,406
CO2e Emissions	MT COD.	11 027			1			1 1	
District Steam	MT CO2e	1,927	1.045	-	1.015	-	-	-	-
	MT CO2e	1,070	1,045	51	1,015	51	51	/0/	51
GSRP Control Chillors	MT CO2e	-	-	-	-	-	-	-	-
	MT CO2e	-	-	-	-	-	-	-	-
Electric Beiler	MT CO2e	_	-		_	_	_	_	_
Local Electric Boiler	MT CO2e	-	-	-	-	-			
Local Cooling	MT CO2e	_	-	-	-	_	-	_	
Cascado HB	MT CO2e			-			-		-
Castaue IIF	MT CO2e	-	-	-	-	-	-	-	-
Electricity for uses other than	MI COZE	-	-	-	-	-	-	-	-
heating/cooling	MT CO2e	-	-	-	-	-	-	-	-
Total CO2e Emissions	MT CO2e	13,597	1,045	51	1,015	51	51	767	51

Legend: MWh-h MWh-c MWh-el MWh-f MT CO₂e

Megawatt hours of heating production Megawatt hours of cooling production Megawatt hours of electric consumption Megawatt hours of feui consumption Metric tons of equivalent carbon emissions

SUNY Oswego – Clean Energy Master Plan

	Scenario 0	Scenario 2a	Scenario 2b	Scenario 4a	Scenario 4b	Scenario 5b	Scenario 6a	Scenario 6b
CAPEX	BaU	Cluster + NG Peaking	Cluster + Electric Peaking	Centralized + NG Peaking	Centralized + Electric Peaking	Centralized + WWHP + Electric Peaking	Centralized Cascade + NG Peaking	Centralized Cascade + Electric Peaking
Domestic Water Heating Equipment	\$ 3,101,237	\$ 3,101,237	\$ 3,101,237	\$ 3,101,237	\$ 3,101,237	\$ 3,101,237	\$ 3,101,237	\$ 3,101,237
Thermal Distribution	\$ 24,700,000	\$ 11,561,372	\$ 11,561,372	\$ 13,656,780	\$ 13,656,780	\$ 13,656,780	\$ 13,656,780	\$ 13,656,780
Hot Water Heat Exchangers	\$ 6,963,745	\$ 6,963,745	\$ 6,963,745	\$ 6,963,745	\$ 6,963,745	\$ 6,963,745	\$ 6,963,745	\$ 6,963,745
Chilled Water Heat Exchangers	\$ -	\$ 4,838,244	\$ 4,838,244	\$ 4,838,244	\$ 4,838,244	\$ 4,838,244	\$ 4,838,244	\$ 4,838,244
Geothermal Wellfield	\$ -	\$ 57,944,113	\$ 57,944,113	\$ 49,143,608	\$ 49,143,608	\$ 40,475,416	\$ 49,143,608	\$ 49,143,608
Heat Pumps	\$ -	\$ 17,323,247	\$ 17,323,247	\$ 16,397,424	\$ 16,397,424	\$ 15,254,034	\$ 25,114,425	\$ 25,114,425
Heating Thermal Energy Tanks	\$ -	\$ 8,458,582	\$ 8,458,582	\$ 8,141,671	\$ 8,141,671	\$ 8,141,671	\$ 8,141,671	\$ 8,141,671
Waste Water Energy Recovery	\$ -	\$ -	\$ -	\$ -	\$ -	\$ 8,165,365	\$ -	\$ -
Dry Cooler Borefield Balancing	ş -	\$ 3,292,910	\$ 3,292,910	\$ 2,081,294	\$ 2,081,294	\$ 494,886	\$ 494,886	\$ 494,886
Peaking Gas Boilers	\$ 2,725,549	\$ 3,390,858	\$ -	\$ 2,725,549	\$ -	\$ -	\$ 2,725,549	\$ -
Peaking Electric Boilers	\$ -	\$ -	\$ 4,216,135	\$ -	\$ 3,820,287	\$ 3,748,893	\$ -	\$ 3,820,287
Campus Electrical Infrastructure Upgrades	\$ -	\$ 16,133,775	\$ 22,017,640	\$ 15,011,595	\$ 19,231,844	\$ 19,231,844	\$ 15,011,595	\$ 19,231,844
Total	\$ 37,490,531	\$ 133,008,083	\$ 139,717,226	\$ 122,061,148	\$ 127,376,135	\$ 124,072,115	\$ 129,191,741	\$ 134,506,728

		Scenario 0		Scenario 2a		Scenario 2b		Scenario 4a		Scenario 4b		Scenario 5b		Scenario 6a		Scenario 6b	
NPV COSTS		Dell	GS	SHP + Natural	G	SHP + Electric	Α	S+GS HP + NG		AS+GS HP +	AS	HP Cascade +	A	SHP Cascade +	Dece	entralized + NG	
		BaO		Gas Peaking		Peaking		Peaking	E	lectric Peaking		NG Peaking	E	lectric Peaking		Peaking	
Fuel Cost																	
District Steam	\$	13,336,957	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	
District LTHW	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	
Natural Gas Boiler	\$	1,867,958	\$	1,168,869	\$	56,484	\$	1,136,015	\$	56,484	\$	56,484	\$	975,299	\$	56,484	
GSHP	\$	3,178,277	\$	9,924,950	\$	9,500,311	\$	9,965,957	\$	9,545,254	\$	4,295,153	\$	4,696,242	\$	4,700,712	
Central Chillers	\$	-	\$	1,050,698	\$	1,005,744	\$	1,006,111	\$	963,639	\$	988,660	\$	988,886	\$	988,995	
WWHP	\$	-	\$	-	\$	-	\$	-	\$	-	\$	5,915,129	\$	-	\$	-	
Electric Boiler	\$	-	\$	-	\$	3,790,135	\$	-	\$	3,780,912	\$	1,835,223	\$	-	\$	1,878,361	
Local Electric Boiler	\$	239,485	\$	5,723,114	\$	5,542,962	\$	5,720,626	\$	5,543,724	\$	5,681,448	\$	5,626,788	\$	5,683,296	
Local Cooling	\$	2,280,473	\$	25,637	\$	25,637	\$	25,637	\$	25,637	\$	25,637	\$	25,637	\$	25,637	
Cascade HP	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	7,528,071	\$	7,991,665	
Dry-Cooler or Pumping Operation	\$	-	\$	781,011	\$	781,011	\$	781,055	\$	781,055	\$	89,535	\$	-	\$	-	
Electricity for uses other than	¢	27 537 740	\$	22 173 735	\$	22 173 735	4	22 173 735	\$	22 173 735	¢	22 173 735	\$	22 173 735	\$	22 173 735	
heating/cooling	Ť	27,557,710	Ψ	22/1/ 5// 55	Ψ.	22/170/700	Ψ.	22/1/0//00	Ψ.	22/1/ 5// 55	Ψ.	22/1/ 5// 55	Ψ.	22/1/ 5// 55	÷	22/1/ 5// 55	
Total Fuel Cost	\$	48,440,891	\$	40,848,014	\$	42,876,018	\$	40,809,135	\$	42,870,438	\$	41,061,004	\$	42,014,658	\$	43,498,884	
O&M Cost														1			
District Steam	\$	2,337,360	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	
District LTHW	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	
Natural Gas Boiler	\$	277,170	\$	684,128	\$	8,594	\$	683,898	\$	8,594	\$	8,594	\$	660,882	\$	8,594	
GSHP	\$	632,926	\$	1,656,886	\$	1,656,886	\$	1,663,889	\$	1,663,889	\$	937,771	\$	990,607	\$	991,128	
Central Chillers	\$	-	\$	262,895	\$	262,895	\$	262,267	\$	262,267	\$	262,267	\$	142,925	\$	142,925	
WWHP	\$	-	\$	-	\$	-	\$	-	\$	-	\$	797,634	\$	-	\$	-	
Electric Boiler	\$	-	\$	-	\$	386,169	\$	-	\$	386,000	\$	352,395	\$	-	\$	353,100	
Local Electric Boiler	\$	10,777	\$	300,737	\$	301,626	\$	300,722	\$	301,626	\$	301,626	\$	300,722	\$	301,626	
Local Cooling	\$	636,627	\$	8,400	\$	8,400	\$	8,400	\$	8,400	\$	8,400	\$	8,400	\$	8,400	
Cascade HP	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	263,094	\$	263,094	
Dry-Cooler or Pumping Operation	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	
Total O&M Cost	\$	3,894,859	\$	2,913,046	\$	2,624,569	\$	2,919,176	\$	2,630,776	\$	2,668,687	\$	2,366,630	\$	2,068,867	
CO2e Cost																	
Imported Electricity	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	
Natural Gas	\$	35,795,184	\$	2,751,720	\$	132,973	\$	2,671,962	\$	132,973	\$	132,973	\$	2,020,400	\$	132,973	
Total CO2e Cost	\$	35,795,184	\$	2,751,720	\$	132,973	\$	2,671,962	\$	132,973	\$	132,973	\$	2,020,400	\$	132,973	
CAPEX																	
Domestic Water Heating Equipment	\$	4,803,707	\$	5,091,803	\$	5,091,803	\$	5,091,803	\$	5,091,803	\$	5,091,803	\$	5,091,803	\$	5,091,803	
Thermal Distribution	\$	23,302,466	\$	11,561,372	\$	11,561,372	\$	13,656,780	\$	13,656,780	\$	13,656,780	\$	13,656,780	\$	13,656,780	
Hot Water Heat Exchangers	\$	6,569,734	\$	6,963,745	\$	6,963,745	\$	6,963,745	\$	6,963,745	\$	6,963,745	\$	6,963,745	\$	6,963,745	
Chilled Water Heat Exchangers	\$	-	\$	4,838,244	\$	4,838,244	\$	4,838,244	\$	4,838,244	\$	4,838,244	\$	4,838,244	\$	4,838,244	
Geothermal Wellfield	\$	-	\$	57,944,113	\$	57,944,113	\$	49,143,608	\$	49,143,608	\$	40,475,416	\$	49,143,608	\$	49,143,608	
Heat Pumps	\$	-	\$	17,323,247	\$	17,323,247	\$	16,397,424	\$	16,397,424	\$	15,254,034	\$	25,114,425	\$	25,114,425	
Heating Thermal Energy Tanks	\$	-	\$	8,458,582	\$	8,458,582	\$	8,141,671	\$	8,141,671	\$	8,141,671	\$	8,141,671	\$	8,141,671	
Waste Water Energy Recovery	\$	-	\$	-	\$	-	\$	-	\$	-	\$	8,165,365	\$	-	\$	-	
Dry Cooler Borefield Balancing	\$	-	\$	3,292,910	\$	3,292,910	\$	2,081,294	\$	2,081,294	\$	494,886	\$	494,886	\$	494,886	
Peaking Gas Boilers	\$	2,725,549	\$	3,390,858	\$	-	\$	2,725,549	\$	-	\$	-	\$	2,725,549	\$	-	
Peaking Electric Boilers	\$	-	\$	-	\$	4,216,135	\$	-	\$	3,820,287	\$	3,748,893	\$	-	\$	3,820,287	
Campus Electrical Infrastructure Upgrades	\$	-	\$	16,133,775	\$	22,017,640	\$	15,011,595	\$	19,231,844	\$	19,231,844	\$	15,011,595	\$	19,231,844	
Tatal CAREY Coat		37 404 456		121 000 010		1 44 707 702		124 054 744		120 200 700		126 062 601		121 102 207		126 107 201	
Total CAPEX Cost	\$	37,401,456	\$	134,998,649	Ş	141,707,792	Ş	124,051,714	\$	129,366,700	\$	126,062,681	\$	131,182,307	ş	136,497,294	
Residual value		(1.404.053)		(1.227.044)		(1.227.044)		(1.227.044)		(1.227.044)		(1.227.044)		(1.227.044)		(1.227.044)	
Domestic water Heating Equipment	\$	(1,494,953)	\$	(1,327,044)	\$	(1,327,044)	\$	(1,327,044)	\$	(1,327,044)	\$	(1,327,044)	\$	(1,327,044)	\$	(1,327,044)	
Inermal Distribution	\$	(14,886,037)	\$	(6,936,823)	\$	(6,936,823)	\$	(8,194,068)	\$	(8,194,068)	\$	(8,194,068)	\$	(8,194,068)	\$	(8,194,068)	
Hot water Heat Exchangers	\$	(1,823,996)	\$	(1,392,749)	\$	(1,392,749)	\$	(1,392,749)	\$	(1,392,749)	\$	(1,392,749)	\$	(1,392,749)	\$	(1,392,749)	
Chilled water Heat Exchangers	\$	-	\$	(967,649)	\$	(967,649)	\$	(967,649)	\$	(967,649)	\$	(967,649)	\$	(967,649)	\$	(967,649)	
Geothermal Wellfield		-	\$	(28,972,057)	\$	(28,972,057)	\$	(24,5/1,804)	\$	(24,5/1,804)	\$	(20,237,708)	\$	(24,5/1,804)	\$	(24,571,804)	
Heat Pumps		-	\$	(3,464,649)	\$	(3,464,649)	\$	(3,2/9,485)	\$	(3,2/9,485)	\$	(3,050,807)	\$	(5,022,885)	\$	(5,022,885)	
Heating Thermal Energy Tanks		-	\$	(2,819,527)	\$	(2,819,527)	\$	(2,/13,890)	\$	(2,/13,890)	\$	(2,/13,890)	\$	(2,/13,890)	\$	(2,/13,890)	
Waste Water Energy Recovery		-	\$	-	\$	-	\$	-	\$	-	\$	(1,633,073)	\$	-	\$	-	
Dry Cooler Borefield Balancing	\$	-	\$	-	\$	-	\$	-	\$ ¢	-	\$	-	\$	-	\$	-	
Peaking Gas Boilers		(545,110)	\$	(678,172)	\$	-	\$	(545,110)	\$	-	\$	-	\$	(545,110)	\$	-	
Peaking Electric Boilers	\$	-	\$	-	\$	(843,227)	\$	-	\$	(764,057)	\$	(749,779)	\$	-	\$	(764,057)	
Campus Electrical Infrastructure Upgrades	\$	-	\$	(9,680,265)	\$	(13,210,584)	\$	(9,006,957)	\$	(11,539,107)	\$	(11,539,107)	\$	(9,006,957)	\$	(11,539,107)	
Total Residual Value Total Net Present Value	\$ \$	(18,750,096)	\$ \$	(56,238,935) 125,272,494	\$ \$	(59,934,310)	\$ \$	(51,998,756) 118,453,230	\$ \$	(54,749,853) 120,251,034	\$ \$	(51,805,873) 118,119,471	\$ \$	(53,742,156) 123,841,838	\$ \$	(56,493,253) 125,704,764	
				,_,_,_,_,		127, 107,043		110, 100, 200		120,201,004			-		+		

Annual Cash (2022 USD)	Flow	NPV	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041	2042	2043	2044	2045	2046	2047	2048	2049
Scenario 0	BaU Evol Costo	48 440 801	2 161 154 6	2 161 154	2 2 161 154 2	2 161 154	2 161 164	2 2 161 154 4	2 161 154 4	2 161 154 6	2 161 154	2 3 161 154	A 3 161 154	2 161 154 6	2 161 154	2 2 161 154 2	2 161 154 6	2 161 154	2 161 154 6	2 161 154 6	2 161 154 6	2 161 154
	ORM Costs	\$ 48,440,891	3,161,154 \$	3,161,154	\$ 3,161,154 \$	3,161,154	3,161,154	\$ 3,161,154 \$	3,161,154 3	3,161,154 \$	3,161,154	\$ 3,161,154	\$ 3,161,154	3,161,154 \$	3,161,154	\$ 3,161,154 \$	3,161,154 \$	3,161,154	3,161,154 \$	3,161,154 \$	3,161,154 \$	3,161,154
	CO e Costs	s 3,094,039	2 2 34,171 5	2 1 2 4 7 4 2	\$ 2,161,026 e	2 199 120	2 2 2 16 2 25	e 2.243,171 5	2 257 116	2 294, 210 6	2 325 101	\$ 2,329,609	e 2.265.902	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 433 979	\$ 2,461,072 s	2 499 266 4	2 515 460	2 2 556 252 e	2 560 940 6	2 597 042 6	2 610 640
	CAPEY	\$ 37,401,456	0.679.545	6 952 996	¢ 6.052.006 ¢	6 052 006	6 052 006	e . e	2,237,220	2,204,310 3	2,323,101	¢ 2,550,050	\$ 2,303,032	2,333,007 4	2,433,070	¢ 1,401,071 4	2,400,200 \$	620 247	620 247 ¢	620 247 \$	620 247 \$	620 247
	Residual Value	\$ (18,750,096)	s (3,787,660) s	(3 397 060)	\$ (3.551.570) \$	(3 706 080)	5 (3.860.590)	ç . ç	- 4		-	s -	š		-	s - s		(413 498)	(454 848) \$	(496 198) \$	(537 548) \$	(578,898)
	Total	\$ 106,782,295	\$ 11,413,758 \$	9,106,003	\$ 8,978,688 \$	8,851,372	\$ 8,724,056	\$ 5,658,843 \$	5,672,440	5,699,635 \$	5,740,426	\$ 5,754,023	\$ 5,781,217	\$ 5,808,411 \$	5,849,203	\$ 5,876,397 \$	5,903,591 \$	6,137,534	5 6,136,976 \$	6,109,223 \$	6,095,067 \$	6,067,314
Scenario 2a	Cluster + NG P	Peaking																				
	ORM Costs	\$ 40,848,014	\$ 2,665,658 \$	2,665,658	\$ 2,665,658 \$	2,665,658	\$ 2,665,658	\$ 2,665,658 \$	2,665,658	2,665,658 \$	2,665,658	\$ 2,665,658	\$ 2,665,658	5 2,665,658 \$	2,665,658	\$ 2,665,658 \$	2,665,658 \$	2,665,658	\$ 2,665,658 \$	2,665,658 \$	2,665,658 \$	2,665,658
	CO e Costs	\$ 2,513,040	160,099 \$	190,099	\$ 190,099 \$	150,055	170,099	\$ 130,039 \$	170,055 1	130,039 \$	190,099	\$ 130,039	\$ 190,099	190,099 \$	190,099	\$ 190,099 \$	190,099 \$	103,035	190,099 \$	107.555	190,099 \$	190,099
	CAPEY	s 2,751,720 5	122,010 5	104,100	\$ 100,157 \$	100,207	1/0,3/8	\$ 1/2,400 \$	1/3,314 3	1/5,004 \$	1/8,/40	\$ 1/5,/05	\$ 101,070	103,900 \$	187,102	\$ 109,193 \$	191,203 \$	3 101 227	5 190,309 5	197,333 \$	199,045 \$	200,650
	Residual Value	\$ (56,238,935)	s (54,911,891) s	-	s · s			s - s	- 3	- 5	-	s -	\$		-	s - s	· 5	(2.067.491)	· · ·	· 5	- 5	
	Total	\$ 125,272,494	\$ 81,113,966 \$	3,019,864	\$ 3,021,955 \$	3,024,045	\$ 3,026,136	\$ 3,028,226 \$	3,029,271	3,031,362 \$	3,034,498	\$ 3,035,543	\$ 3,037,634	\$ 3,039,724 \$	3,042,860	\$ 3,044,950 \$	3,047,041 \$	4,082,877	\$ 3,052,267 \$	3,053,312 \$	3,055,403 \$	3,056,448
Scenario 2b	Cluster + Elect	tric Peaking																				
	Fuel Costs	\$ 42,876,018	\$ 2,798,002 \$	2,798,002	\$ 2,798,002 \$	2,798,002	\$ 2,798,002	\$ 2,798,002 \$	2,798,002	2,798,002 \$	2,798,002	\$ 2,798,002	\$ 2,798,002	5 2,798,002 \$	2,798,002	\$ 2,798,002 \$	2,798,002 \$	2,798,002	\$ 2,798,002 \$	2,798,002 \$	2,798,002 \$	2,798,002
	CO e Ceste	\$ 2,624,569	5 1/1,2/4 5	1/1,2/4	\$ 1/1,2/4 \$	0 1/1,2/4	6 1/1,2/4	\$ 1/1,2/4 \$	0 205 4	0 406 6	1/1,2/4	\$ 1/1,2/4	\$ 1/1,2/4	s 1/1,2/4 \$	1/1,2/4	\$ 1/1,2/4 \$	1/1,2/4 \$	1/1,2/4	0 406 4	1/1,2/4 \$	1/1,2/4 \$	1/1,2/4
	CAPEX	\$ 141 707 792	3 139 717 226 \$	7,930	\$ 0,031 \$	0,132	0,233	\$ 0,334 \$ \$ - \$	- 4	0,400 \$	6,637	\$ 0,000	\$ 0,707	5 0,070 \$ 5 - 6	5,041	\$ 7,142 \$	9,243 \$	3 101 237	5 5,420 5	5,34/ \$	5,040 \$	2,028
	Residual Value	\$ (59,934,310)	5 (58,607,266) S	-	s · s			s - s	- 3	- 5	-	s -	\$		-	s - s	· 5	(2.067.491)	· · ·	· 5	- 5	
	Total	\$ 127,407,043	\$ 84,087,065 \$	2,977,206	\$ 2,977,307 \$	2,977,408	\$ 2,977,509	\$ 2,977,610 \$	2,977,661	2,977,762 \$	2,977,913	\$ 2,977,964	\$ 2,978,065	\$ 2,978,166 \$	2,978,317	\$ 2,978,418 \$	2,978,519 \$	4,012,366	\$ 2,978,772 \$	2,978,822 \$	2,978,923 \$	2,978,974
Scenario 4a	Centralized + I	NG Peaking						· · · · · · · · · · · · · · · · · · ·														
	Fuel Costs	\$ 40,809,135	\$ 2,663,121 \$	2,663,121	\$ 2,663,121 \$	2,663,121	\$ 2,663,121	\$ 2,663,121 \$	2,663,121	2,663,121 \$	2,663,121	\$ 2,663,121	\$ 2,663,121	5 2,663,121 \$	2,663,121	\$ 2,663,121 \$	2,663,121 \$	2,663,121	\$ 2,663,121 \$	2,663,121 \$	2,663,121 \$	2,663,121
	CO-e Costs	\$ 2,919,176	5 190,499 S	190,499	\$ 190,499 \$	190,499	s 190,499	\$ 190,499 \$ ¢ 167.469 ¢	190,499 3	190,499 \$	190,499	s 190,499	\$ 190,499	5 190,499 S	190,499	\$ 190,499 \$ ¢ 193,700 ¢	190,499 \$ 195,730 ¢	190,499	190,499 \$	190,499 \$	190,499 \$	190,499
	CAPEX	\$ 124.051.714	122 061 148 5	139,330	\$ 101,380 \$		5 105,439	\$ 107,409 \$	100,404 1	170,314 \$	1/3,339	\$ 1/4,3/4	\$ 170,004	1/0,034 3	101,079	\$ 103,709 3	- 4	3 101 237	5 190,014 5	191,029 \$	- 4	194,673
	Residual Value	\$ (51,998,756)	s (50,671,712) s	-	s · s			s - s	- 3	- 5	-	s -	\$		-	s - s	· 5	(2.067.491)	· · ·	· 5	- 5	
	Total	\$ 118,453,230	\$ 74,400,376 \$	3,012,970	\$ 3,015,000 \$	3,017,030	\$ 3,019,060	\$ 3,021,090 \$	3,022,105	3,024,135 \$	3,027,180	\$ 3,028,195	\$ 3,030,225	\$ 3,032,255 \$	3,035,300	\$ 3,037,330 \$	3,039,359 \$	4,075,135	5 3,044,434 \$	3,045,449 \$	3,047,479 \$	3,048,494
Scenario 4b	Centralized + I	Electric Peaking	2 202 628 6	2 707 628	A 3 707 630 A	2 202 628	2 202 628	c 2.707.620 c	2 202 628	2 707 628 6	3 303 638	2 2 207 620	A 2 707 638	2 202 628 6	3 707 638	A 2 707 620 A	2 202 628	2 707 628	2 202 628 6	2 202 628	2 707 638	2 202 628
	O&M Costs	\$ 2,620,776	2,757,030 \$	171.679	\$ 2,797,030 3 ¢ 171,670 ¢	171 670	2,757,030	\$ 2,757,030 \$ ¢ 171,670 ¢	171 670	171 670 6	171 679	\$ 2,757,038 \$ 171,670	¢ 171.670	2,757,030 3	171 679	\$ 2,757,030 3 ¢ 171,670 ¢	171 670 6	171 670	2,797,030 \$	171.670 €	171 670 €	171.670
	CO.e Costs	\$ 132.973	7.829 \$	7,930	\$ 8.031 \$	8.132	8,233	s 8.334 s	8,385 \$	8,486 \$	8.637	\$ 8,688	\$ 8,789 5	8.890 \$	9.041	\$ 9,142 \$	9,243 \$	9,344 9	9,496 \$	9.547 \$	9,648 \$	9,698
	CAPEX	\$ 129,366,700 \$	127.376.135 S	-	s - s		s -	s - s	- 4	- 5	-	s -	\$	s - s	-	s - s	- s	3.101.237	s - s	- 5	- 5	-
	Residual Value	\$ (54,749,853)	5 (53,422,809) \$	-	\$ - \$		5 -	\$ - \$	- 4	- \$	-	\$ -	\$	s - s	-	\$ - \$	- \$	(2,067,491) 9	s - s	- \$	- \$	-
	Total	\$ 120,251,034	\$ 76,930,472 \$	2,977,247	\$ 2,977,348 \$	2,977,449	\$ 2,977,550	\$ 2,977,651 \$	2,977,702	2,977,803 \$	2,977,954	\$ 2,978,005	\$ 2,978,106	\$ 2,978,207 \$	2,978,358	\$ 2,978,459 \$	2,978,560 \$	4,012,407	\$ 2,978,813 \$	2,978,863 \$	2,978,964 \$	2,979,015
Connario Eb	Controlized + 1	WWWD + Electric Des	kina																			
Scenario 30	Fuel Costs	\$ 41.061.004	5 2.679.558 S	2 679 558	\$ 2,679,558	2 679 558	\$ 2.679.558	\$ 2,679,558 \$	2 679 558	2 679 558 \$	2 679 558	\$ 2,679,558	\$ 2,679,558	5 2 679 558 5	2 679 558	\$ 2,679,558	2 679 558 \$	2 679 558	2 679 558 5	2 679 558 \$	2 679 558 \$	2 679 558
1	O&M Costs	\$ 2,668,687	174,153 \$	174,153	\$ 174,153 \$	174,153	174,153	\$ 174,153 \$	174,153	174,153 \$	174,153	\$ 174,153	\$ 174,153	174,153 \$	174,153	\$ 174,153 \$	174,153 \$	174,153	174,153 \$	174,153 \$	174,153 \$	174,153
	CO ₂ e Costs	\$ 132,973 5	5 7,829 \$	7,930	\$ 8,031 \$	8,132	\$ 8,233	\$ 8,334 \$	8,385 \$	8,486 \$	8,637	\$ 8,688	\$ 8,789	\$ 8,890 \$	9,041	\$ 9,142 \$	9,243 \$	9,344 9	9,496 \$	9,547 \$	9,648 \$	9,698
	CAPEX	\$ 126,062,681 \$	\$ 124,072,115 \$		\$		s -	ş - ş	- 4	- \$	-	s -	\$. !	s - s	-	\$ - \$	· \$	3,101,237	s - s	- \$	- \$	
	Residual Value	\$ (51,805,873)	\$ (50,478,829) \$	-	s - s		s -	s - s	- 4	- \$	-	\$ -	\$	s - s	-	\$ - \$	- s	(2,067,491) 5	s - s	- \$	- \$	-
	Total	\$ 118,119,471	\$ 76,454,826 \$	2,861,641	\$ 2,861,742 \$	2,861,843	\$ 2,861,944	\$ 2,862,045 \$	2,862,096	2,862,197 \$	2,862,348	\$ 2,862,399	\$ 2,862,500	\$ 2,862,601 \$	2,862,752	\$ 2,862,853 \$	2,862,954 \$	3,896,801	\$ 2,863,207 \$	2,863,257 \$	2,863,358 \$	2,863,409
Scenario 6a	Centralized Ca	scade + NG Peaking																				
Littling ou	Fuel Costs	\$ 42.014.658	s 2.741.791 \$	2.741.791	\$ 2,741,791 \$	2.741.791	\$ 2,741,791	s 2.741.791 \$	2.741.791	2.741.791 \$	2,741,791	\$ 2,741,791	\$ 2,741,791	s 2.741.791 \$	2.741.791	\$ 2,741,791 \$	2.741.791 \$	2.741.791	\$ 2,741,791 \$	2.741.791 \$	2.741.791 \$	2,741,791
1	O&M Costs	\$ 2,366,630	\$ 154,441 \$	154,441	\$ 154,441 \$	154,441	5 154,441	\$ 154,441 \$	154,441	154,441 \$	154,441	\$ 154,441	\$ 154,441	s 154,441 s	154,441	\$ 154,441 \$	154,441 \$	154,441	154,441 \$	154,441 \$	154,441 \$	154,441
	CO ₂ e Costs	\$ 2,020,400	\$ 118,957 \$	120,492	\$ 122,027 \$	123,562	\$ 125,097	\$ 126,632 \$	127,399	128,934 \$	131,236	\$ 132,004	\$ 133,539	\$ 135,074 \$	137,376	\$ 138,911 \$	140,446 \$	141,981	\$ 144,283 \$	145,051 \$	146,586 \$	147,353
1	CAPEX	\$ 131,182,307 5	\$ 129,191,741 \$	-	\$ - \$		5 -	s - s	- 4	- \$		s -	\$	s - s	-	\$ - \$	- \$	3,101,237	s - s	- \$	- \$	-
	Residual Value	\$ (53,742,156)	\$ (52,415,112) \$	-	\$ - \$		5 -	\$ - \$	- 4	- \$	-	\$ -	\$	s - s	-	\$ - \$	- \$	(2,067,491)	s - s	- \$	- \$	-
	rotai	\$ 123,841,838	\$ 79,791,818 \$	3,016,725	\$ 3,018,260 \$	3,019,795	\$ 3,021,329	\$ 3,022,864 \$	3,023,632	3,025,167 \$	3,027,469	\$ 3,028,237	\$ 3,029,772	\$ 3,031,306 \$	3,033,609	\$ 3,035,144 \$	3,036,679 \$	4,071,959	3,040,516 \$	3,041,284 \$	3,042,818 \$	3,043,586
Scenario 6b	Centralized Ca	scade + Electric Pea	king																			
	Fuel Costs	\$ 43,498,884 :	2,838,649 \$	2,838,649	\$ 2,838,649 \$	2,838,649	\$ 2,838,649	\$ 2,838,649 \$	2,838,649	2,838,649 \$	2,838,649	\$ 2,838,649	\$ 2,838,649	5 2,838,649 \$	2,838,649	\$ 2,838,649 \$	2,838,649 \$	2,838,649	2,838,649 \$	2,838,649 \$	2,838,649 \$	2,838,649
1	O&M Costs	\$ 2,068,867	\$ 135,010 \$	135,010	\$ 135,010 \$	135,010	\$ 135,010	\$ 135,010 \$	135,010 \$	135,010 \$	135,010	\$ 135,010	\$ 135,010 5	\$ 135,010 \$	135,010	\$ 135,010 \$	135,010 \$	135,010	\$ 135,010 \$	135,010 \$	135,010 \$	135,010
1	CU2e Costs	\$ 132,973	5 7,829 \$	7,930	\$ 8,031 \$	8,132	\$ 8,233	\$ 8,334 \$	8,385 \$	8,486 \$	8,637	\$ 8,688	\$ 8,789 5	\$ 8,890 \$	9,041	\$ 9,142 \$	9,243 \$	9,344 9	9,496 \$	9,547 \$	9,648 \$	9,698
1	CAPEX Residual Value	\$ 136,497,294 5	134,506,728 \$	-	s · \$		-	s · s	- 4	- \$	-	s -	\$	s - s	-	3 - 5	- \$	3,101,237 5		- \$	- \$	-
1	Total	\$ (30,493,253) \$ 125 704 764	\$ (33,106,209) \$	2 091 590	s 2 091 600 6	2 091 701	- 2 091 902	5 5 - 5 - 5 - 5 - 5 - 5 -	2 992 044	2 092 145 6	2 092 206	÷ 2 092 247	6 2 992 449	2 2 2 2 2 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2	2 992 700	s 2 092 901 6	2 992 902 6	4 016 749 1	2 092 155 6	2 092 205 6	2 992 206 6	2 092 257
J		4 123//04//04	· 01/312/000 3	L/J01/309	* x, 201,050 3		+ 1,201,032	* 1,501,993 \$	2,702,044	2,302,143 3	L/JJZ/290	* ×,302,347	* ×, J02,440	· 2/202/349 3	2,382,700	* 1,702,0UI 3	2,202,902 3	-,010,749	a 2,203,133 3	2,203,203 3	2,203,300 3	· • • • • • • • • • • • • • • • • • • •

SUNY Oswego – Clean Energy Master Plan

Appendix G Trophy Point Cost Estimates

SCENARIO SUMMARY

	Sc.2a	Sc.2b	Sc.4a	Sc.4b	Sc.5b	Sc.6a	Sc.6b
DOMESTIC WATER HEATING EQUIPMENT	\$3,101,237	\$3,101,237	\$3,101,237	\$3,101,237	\$3,101,237	\$3,101,237	\$3,101,237
THERMAL DISTRIBUTION	\$11,561,372	\$11,561,372	\$13,656,780	\$13,656,780	\$13,656,780	\$13,656,780	\$13,656,780
HOT WATER HEAT EXCHANGERS	\$6,963,745	\$6,963,745	\$6,963,745	\$6,963,745	\$6,963,745	\$6,963,745	\$6,963,745
CHILLED WATER HEAT EXCHANGERS	\$4,838,244	\$4,838,244	\$4,838,244	\$4,838,244	\$4,838,244	\$4,838,244	\$4,838,244
GEOTHERMAL WELLFIELD	\$57,944,113	\$57,944,113	\$49,143,608	\$49,143,608	\$40,475,416	\$49,143,608	\$49,143,608
GEOTHERMAL HEAT PUMPS	\$17,323,247	\$17,323,247	\$16,397,424	\$16,397,424	\$15,254,034	\$25,114,425	\$25,114,425
HEATING THERMAL ENERGY TANKS	\$8,458,582	\$8,458,582	\$8,141,671	\$8,141,671	\$8,141,671	\$8,141,671	\$8,141,671
WASTE WATER ENERGY RECOVERY	\$0	\$0	\$0	\$0	\$8,165,365	\$0	\$0
DRY COOLER BOREFIELD BALANCING	\$3,292,910	\$3,292,910	\$2,081,294	\$2,081,294	\$494,886	\$494,886	\$494,886
PEAKING GAS BOILERS	\$3,390,858	\$0	\$2,725,549	\$0	\$0	\$2,725,549	\$0
PEAKING ELECTRIC BOILERS	\$0	\$4,216,135	\$0	\$3,820,287	\$3,748,893	\$0	\$3,820,287
CAMPUS ELECTRICAL INFRASTRUCTURE UPGRADES	\$16,133,775	\$22,017,640	\$15,011,595	\$19,231,844	\$19,231,844	\$15,011,595	\$19,231,844
TOTAL	\$133,008,083	\$139,717,226	\$122,061,148	\$127,376,135	\$124,072,115	\$129,191,741	\$134,506,728

SCENARIO DETAIL

Sc.2a

	Cluster C	Cluster N	Cluster F	Cluster W	Cluster S	Subtotal	Total with Markups
DOMESTIC WATER HEATING EQUIPMENT						Custota	manupo
	\$996.575	\$194,175	\$168.750	\$340.250	\$69.060	\$1,768,810	\$3,101,237
THERMAL DISTRIBUTION		• • • • • • •			+,	••••••••	<i></i>
2-Pipe Distribution	\$3.414.650	\$684.569	\$364.042	\$977.597	\$389.449	\$5.830.307	\$10.222.218
' Distribution Pumps/VFDs	\$371,620	\$96,785	\$96,785	\$126,680	\$71,925	\$763,795	\$1,339,154
HOT WATER HEAT EXCHANGERS							
HW HX	\$2,200,470	\$282,371	\$342,707	\$859,181	\$287,087	\$3,971,816	\$6,963,745
CHILLED WATER HEAT EXCHANGERS							
CHW HX	\$1,500,465	\$210,796	\$273,418	\$705,650	\$69,194	\$2,759,523	\$4,838,244
GEOTHERMAL WELLFIELD							
Geohermal Borefield	\$20,790,000	\$2,137,500	\$2,767,500	\$3,600,000	\$2,407,500	\$31,702,500	\$55,583,676
Geothermal Controls	\$100,000	\$100,000	\$100,000	\$100,000	\$100,000	\$500,000	\$876,645
Geohermal Loop Pumps	\$397,750	\$84,900	\$99,150	\$98,040	\$81,450	\$761,290	\$1,334,762
Geohermal Loop Pump Controls	\$25,000	\$15,000	\$15,000	\$15,000	\$15,000	\$85,000	\$149,030
Heat Pumps	\$3,149,600	\$375,200	\$473,840	\$443,840	\$315,200	\$4,757,680	\$8,341,593
Heat Pump Controls	\$40,000	\$20,000	\$20,000	\$20,000	\$20,000	\$120,000	\$210,395
Geothermal Misc.	\$2,143,648	\$661,693	\$957,575	\$684,407	\$555,420	\$5,002,743	\$8,771,259
HEATING THERMAL ENERGY TANKS							
TES	\$1,485,000	\$184,500	\$216,000	\$324,000	\$216,000	\$2,425,500	\$4,252,605
TES Controls	\$14,000	\$14,000	\$14,000	\$14,000	\$14,000	\$70,000	\$122,730
TES Pumps	\$94,860	\$39,260	\$37,660	\$57,100	\$37,660	\$266,540	\$467,322
TES Pump Controls	\$10,000	\$10,000	\$10,000	\$10,000	\$10,000	\$50,000	\$87,665
TES Misc	\$647,667	\$326,991	\$330,715	\$376,277	\$330,715	\$2,012,366	\$3,528,260
DRY COOLER BOREFIELD BALANCING							
Dry Cooler	\$273,600	\$48,555	\$46,980	\$97,650	\$79,515	\$546,300	\$957,822
Dry Cooler Controls	\$15,000	\$15,000	\$15,000	\$15,000	\$15,000	\$75,000	\$131,497
Dry Cooler Pumps	\$397,750	\$84,900	\$99,150	\$57,100	\$81,450	\$720,350	\$1,262,982
Dry Cooler Pump Controls	\$25,000	\$15,000	\$15,000	\$10,000	\$15,000	\$80,000	\$140,263
Dry Cooler Misc	\$91,296	\$91,296	\$91,296	\$91,296	\$91,296	\$456,482	\$800,345
PEAKING GAS BOILERS							
Boilers	\$670,000	\$156,640	\$106,640	\$160,960	\$108,640	\$1,202,880	\$2,108,997
Boiler Controls	\$60,000	\$30,000	\$30,000	\$30,000	\$30,000	\$180,000	\$315,592
Boiler Flue and Vent	\$45,600	\$11,760	\$11,760	\$11,760	\$8,320	\$89,200	\$156,393
Nat Gas Piping	\$0	\$0	\$0	\$84,318	\$0	\$84,318	\$147,834
Boiler Misc	\$208,760	\$45,780	\$45,780	\$45,780	\$31,499	\$377,599	\$662,041
CAMPUS ELECTRICAL INFRASTRUCTURE UPGRADES							
SUBSTATION 1 UPGRADES						\$7,916,100	\$13,879,219
SUBSTATION 2 UPGRADES						\$0	\$0
BUILDING SERVICE UPGRADES	\$454,800	\$114,300	\$264,300	\$452,500	\$0	\$1,285,900	\$2,254,556
TOTAL	\$39,623,111	\$6,050,971	\$7,013,050	\$9,808,386	\$5,450,381	\$75,861,998	\$133,008,083

Sc.2b

00.28	Cluster C	Cluster N	Cluster F	Cluster W	Cluster S	Subtotal	Markups
DOMESTIC WATER HEATING EQUIPMENT						Custotal	manupo
DHW	\$996,575	\$194,175	\$168,750	\$340,250	\$69,060	\$1,768,810	\$3,101,237
THERMAL DISTRIBUTION							
2-Pipe Distribution	\$3,414,650	\$684,569	\$364,042	\$977,597	\$389,449	\$5,830,307	\$10,222,218
Distribution Pumps/VFDs	\$371,620	\$96,785	\$96,785	\$126,680	\$71,925	\$763,795	\$1,339,154
HOT WATER HEAT EXCHANGERS							
HW HX	\$2,200,470	\$282,371	\$342,707	\$859,181	\$287,087	\$3,971,816	\$6,963,745
CHILLED WATER HEAT EXCHANGERS							
CHW HX	\$1,500,465	\$210,796	\$273,418	\$705,650	\$69,194	\$2,759,523	\$4,838,244
GEOTHERMAL WELLFIELD							
Geohermal Borefield	\$20,790,000	\$2,137,500	\$2,767,500	\$3,600,000	\$2,407,500	\$31,702,500	\$55,583,676
Geothermal Controls	\$100,000	\$100,000	\$100,000	\$100,000	\$100,000	\$500,000	\$876,645
Geohermal Loop Pumps	\$397,750	\$84,900	\$99,150	\$98,040	\$81,450	\$761,290	\$1,334,762
Geohermal Loop Pump Controls	\$25,000	\$15,000	\$15,000	\$15,000	\$15,000	\$85,000	\$149,030
Heat Pumps	\$3,149,600	\$375,200	\$473,840	\$443,840	\$315,200	\$4,757,680	\$8,341,593
Heat Pump Controls	\$40,000	\$20,000	\$20,000	\$20,000	\$20,000	\$120,000	\$210,395
Geothermal Misc.	\$2,143,648	\$661,693	\$957,575	\$684,407	\$555,420	\$5,002,743	\$8,771,259
HEATING THERMAL ENERGY TANKS							
TES	\$1,485,000	\$184,500	\$216,000	\$324,000	\$216,000	\$2,425,500	\$4,252,605
TES Controls	\$14,000	\$14,000	\$14,000	\$14,000	\$14,000	\$70,000	\$122,730
TES Pumps	\$94,860	\$39,260	\$37,660	\$57,100	\$37,660	\$266,540	\$467,322
TES Pump Controls	\$10,000	\$10,000	\$10,000	\$10,000	\$10,000	\$50,000	\$87,665
TES Misc	\$647,667	\$326,991	\$330,715	\$376,277	\$330,715	\$2,012,366	\$3,528,260
DRY COOLER BOREFIELD BALANCING							
Dry Cooler	\$273,600	\$48,555	\$46,980	\$97,650	\$79,515	\$546,300	\$957,822
Dry Cooler Controls	\$15,000	\$15,000	\$15,000	\$15,000	\$15,000	\$75,000	\$131,497
Dry Cooler Pumps	\$397,750	\$84,900	\$99,150	\$57,100	\$81,450	\$720,350	\$1,262,982
Dry Cooler Pump Controls	\$25,000	\$15,000	\$15,000	\$10,000	\$15,000	\$80,000	\$140,263
Dry Cooler Misc	\$91,296	\$91,296	\$91,296	\$91,296	\$91,296	\$456,482	\$800,345
PEAKING ELECTRIC BOILERS							
Boilers	\$1,070,820	\$229,680	\$154,920	\$234,000	\$157,680	\$1,847,100	\$3,238,502
Boiler Controls	\$60,000	\$30,000	\$30,000	\$30,000	\$30,000	\$180,000	\$315,592
Boiler Flue and Vent						\$0	\$0
Nat Gas Piping						\$0	\$0
Boiler Misc	\$208,760	\$45,780	\$45,780	\$45,780	\$31,499	\$377,599	\$662,041
CAMPUS ELECTRICAL INFRASTRUCTURE UPGRADES							
SUBSTATION 1 UPGRADES						\$9,082,000	\$15,923,380
SUBSTATION 2 UPGRADES						\$627,300	\$1,099,839
BUILDING SERVICE UPGRADES	\$454,800	\$565,100	\$565,100	\$698,500	\$565,100	\$2,848,600	\$4,994,422
TOTAL	\$39,978,331	\$6,563,051	\$7,350,370	\$10,031,348	\$6,056,201	\$79,688,600	\$139,717,226

Sc.4a

00.44	Centralized	Cluster S	Subtotal	Markups
DOMESTIC WATER HEATING EQUIPMENT				
DHW	\$1,699,750	\$69,060	\$1,768,810	\$3,101,237
THERMAL DISTRIBUTION				
2-Pipe Distribution	\$6,919,370	\$389,449	\$7,308,819	\$12,814,479
Distribution Pumps/VFDs	\$408,487	\$71,925	\$480,412	\$842,301
HOT WATER HEAT EXCHANGERS				
HW HX	\$3,684,729	\$287,087	\$3,971,816	\$6,963,745
CHILLED WATER HEAT EXCHANGERS				
CHW HX	\$2,690,329	\$69,194	\$2,759,523	\$4,838,244
GEOTHERMAL WELLFIELD				
Geohermal Borefield	\$24,637,500	\$2,407,500	\$27,045,000	\$47,417,728
Geothermal Controls	\$100,000	\$100,000	\$200,000	\$350,658
Geohermal Loop Pumps	\$662,917	\$81,450	\$744,367	\$1,305,091
Geohermal Loop Pump Controls	\$25,000	\$15,000	\$40,000	\$70,132
Heat Pumps	\$4,472,723	\$315,200	\$4,787,923	\$8,394,618
Heat Pump Controls	\$40,000	\$20,000	\$60,000	\$105,197
Geothermal Misc.	\$3,949,031	\$555,420	\$4,504,451	\$7,897,609
HEATING THERMAL ENERGY TANKS				
TES	\$2,209,500	\$216,000	\$2,425,500	\$4,252,605
TES Controls	\$14,000	\$14,000	\$28,000	\$49,092
TES Pumps	\$118,575	\$37,660	\$156,235	\$273,925
TES Pump Controls	\$10,000	\$10,000	\$20,000	\$35,066
TES Misc	\$1,683,203	\$330,715	\$2,013,919	\$3,530,983
DRY COOLER BOREFIELD BALANCING				
Dry Cooler	\$375,771	\$79,515	\$455,286	\$798,249
Dry Cooler Controls	\$15,000	\$15,000	\$30,000	\$52,599
Dry Cooler Pumps	\$397,750	\$81,450	\$479,200	\$840,177
Dry Cooler Pump Controls	\$25,000	\$15,000	\$40,000	\$70,132
Dry Cooler Misc	\$91,296	\$91,296	\$182,593	\$320,138
PEAKING GAS BOILERS				
Boilers	\$996,106	\$108,640	\$1,104,746	\$1,936,940
Boiler Controls	\$60,000	\$30,000	\$90,000	\$157,796
Boiler Flue and Vent	\$51,300	\$8,320	\$59,620	\$104,531
Nat Gas Piping	\$0	\$0	\$0	\$0
Boiler Misc	\$268,669	\$31,499	\$300,168	\$526,281
CAMPUS ELECTRICAL INFRASTRUCTURE UPGRADES				
SUBSTATION 1 UPGRADES			\$7,916,100	\$13,879,219
SUBSTATION 2 UPGRADES			\$0	\$0
BUILDING SERVICE UPGRADES	\$645,858	\$0	\$645,858	\$1,132,376
TOTAL	\$56,251,864	\$5,450,381	\$69,618,345	\$122,061,148

Sc.4b

	Centralized	Cluster S	Subtotal	Markups
DOMESTIC WATER HEATING EQUIPMENT				
DHW	\$1,699,750	\$69,060	\$1,768,810	\$3,101,237
THERMAL DISTRIBUTION				
2-Pipe Distribution	\$6,919,370	\$389,449	\$7,308,819	\$12,814,479
Distribution Pumps/VFDs	\$408,487	\$71,925	\$480,412	\$842,301
HOT WATER HEAT EXCHANGERS				
HW HX	\$3,684,729	\$287,087	\$3,971,816	\$6,963,745
CHILLED WATER HEAT EXCHANGERS				
CHW HX	\$2,690,329	\$69,194	\$2,759,523	\$4,838,244
GEOTHERMAL WELLFIELD				
Geohermal Borefield	\$24,637,500	\$2,407,500	\$27,045,000	\$47,417,728
Geothermal Controls	\$100,000	\$100,000	\$200,000	\$350,658
Geohermal Loop Pumps	\$662,917	\$81,450	\$744,367	\$1,305,091
Geohermal Loop Pump Controls	\$25,000	\$15,000	\$40,000	\$70,132
Heat Pumps	\$4,472,723	\$315,200	\$4,787,923	\$8,394,618
Heat Pump Controls	\$40,000	\$20,000	\$60,000	\$105,197
Geothermal Misc.	\$3,949,031	\$555,420	\$4,504,451	\$7,897,609
HEATING THERMAL ENERGY TANKS				
TES	\$2,209,500	\$216,000	\$2,425,500	\$4,252,605
TES Controls	\$14,000	\$14,000	\$28,000	\$49,092
TES Pumps	\$118,575	\$37,660	\$156,235	\$273,925
TES Pump Controls	\$10,000	\$10,000	\$20,000	\$35,066
TES Misc	\$1,683,203	\$330,715	\$2,013,919	\$3,530,983
DRY COOLER BOREFIELD BALANCING				
Dry Cooler	\$375,771	\$79,515	\$455,286	\$798,249
Dry Cooler Controls	\$15,000	\$15,000	\$30,000	\$52,599
Dry Cooler Pumps	\$397,750	\$81,450	\$479,200	\$840,177
Dry Cooler Pump Controls	\$25,000	\$15,000	\$40,000	\$70,132
Dry Cooler Misc	\$91,296	\$91,296	\$182,593	\$320,138
PEAKING ELECTRIC BOILERS				
Boilers	\$1,592,016	\$157,680	\$1,749,696	\$3,067,724
Boiler Controls	\$60,000	\$30,000	\$90,000	\$157,796
Boiler Flue and Vent	\$0	\$0	\$0	\$0
Nat Gas Piping	\$0	\$0	\$0	\$0
Boiler Misc	\$307,730	\$31,499	\$339,229	\$594,767
CAMPUS ELECTRICAL INFRASTRUCTURE UPGRADES				
SUBSTATION 1 UPGRADES			\$9,082,000	\$15,923,380
SUBSTATION 2 UPGRADES			\$627,300	\$1,099,839
BUILDING SERVICE UPGRADES	\$694,604	\$565,100	\$1,259,704	\$2,208,626
TOTAL	\$56,884,280	\$6,056,201	\$72,649,781	\$127,376,135
Sc.5b

	Centralized	Cluster S	Subtotal	Markups
DOMESTIC WATER HEATING EQUIPMENT				-
DHW	\$1,699,750	\$69,060	\$1,768,810	\$3,101,237
THERMAL DISTRIBUTION				
2-Pipe Distribution	\$6,919,370	\$389,449	\$7,308,819	\$12,814,479
Distribution Pumps/VFDs	\$408,487	\$71,925	\$480,412	\$842,301
HOT WATER HEAT EXCHANGERS				
HW HX	\$3,684,729	\$287,087	\$3,971,816	\$6,963,745
CHILLED WATER HEAT EXCHANGERS				
CHW HX	\$2,690,329	\$69,194	\$2,759,523	\$4,838,244
GEOTHERMAL WELLFIELD				
Geohermal Borefield	\$20,025,000	\$2,407,500	\$22,432,500	\$39,330,678
Geothermal Controls	\$100,000	\$100,000	\$200,000	\$350,658
Geohermal Loop Pumps	\$331,458	\$81,450	\$412,908	\$723,948
Geohermal Loop Pump Controls	\$25,000	\$15,000	\$40,000	\$70,132
Heat Pumps	\$4,472,723	\$315,200	\$4,787,923	\$8,394,618
Heat Pump Controls	\$40,000	\$20,000	\$60,000	\$105,197
Geothermal Misc.	\$3,296,892	\$555,420	\$3,852,311	\$6,754,219
HEATING THERMAL ENERGY TANKS				
TES	\$2,209,500	\$216,000	\$2,425,500	\$4,252,605
TES Controls	\$14,000	\$14,000	\$28,000	\$49,092
TES Pumps	\$118,575	\$37,660	\$156,235	\$273,925
TES Pump Controls	\$10,000	\$10,000	\$20,000	\$35,066
TES Misc	\$1,683,203	\$330,715	\$2,013,919	\$3,530,983
DRY COOLER BOREFIELD BALANCING				
Dry Cooler	\$0	\$79,515	\$79,515	\$139,413
Dry Cooler Controls	\$0	\$15,000	\$15,000	\$26,299
Dry Cooler Pumps	\$0	\$81,450	\$81,450	\$142,805
Dry Cooler Pump Controls	\$0	\$15,000	\$15,000	\$26,299
Dry Cooler Misc	\$0	\$91,296	\$91,296	\$160,069
PEAKING ELECTRIC BOILERS				
Boilers	\$1,592,016	\$108,640	\$1,700,656	\$2,981,742
Boiler Controls	\$60,000	\$30,000	\$90,000	\$157,796
Boiler Flue and Vent	\$0	\$8,320	\$8,320	\$14,587
Nat Gas Piping	\$0	\$0	\$0	\$0
Boiler Misc	\$307,730	\$31,499	\$339,229	\$594,767
WASTE WATER ENERGY RECOVERY				
WASTE WATER ENERGY RECOVERY	\$4,657,167	\$0	\$4,657,167	\$8,165,365
CAMPUS ELECTRICAL INFRASTRUCTURE UPGRADES				
SUBSTATION 1 UPGRADES			\$9,082,000	\$15,923,380
SUBSTATION 2 UPGRADES			\$627,300	\$1,099,839
BUILDING SERVICE UPGRADES	\$694,604	\$565,100	\$1,259,704	\$2,208,626
TOTAL	\$55,040,532	\$6,015,481	\$70,765,312	\$124,072,115

Sc.6a

	Centralized	Cluster S	Subtotal	Markups
DOMESTIC WATER HEATING EQUIPMENT				
DHW	\$1,699,750	\$69,060	\$1,768,810	\$3,101,237
THERMAL DISTRIBUTION				
2-Pipe Distribution	\$6,919,370	\$389,449	\$7,308,819	\$12,814,479
Distribution Pumps/VFDs	\$408,487	\$71,925	\$480,412	\$842,301
HOT WATER HEAT EXCHANGERS				
HW HX	\$3,684,729	\$287,087	\$3,971,816	\$6,963,745
CHILLED WATER HEAT EXCHANGERS				
CHW HX	\$2,690,329	\$69,194	\$2,759,523	\$4,838,244
GEOTHERMAL WELLFIELD				
Geohermal Borefield	\$24,637,500	\$2,407,500	\$27,045,000	\$47,417,728
Geothermal Controls	\$100,000	\$100,000	\$200,000	\$350,658
Geohermal Loop Pumps	\$662,917	\$81,450	\$744,367	\$1,305,091
Geohermal Loop Pump Controls	\$25,000	\$15,000	\$40,000	\$70,132
Heat Pumps	\$9,444,520	\$315,200	\$9,759,720	\$17,111,619
Heat Pump Controls	\$40,000	\$20,000	\$60,000	\$105,197
Geothermal Misc.	\$3,949,031	\$555,420	\$4,504,451	\$7,897,609
HEATING THERMAL ENERGY TANKS				
TES	\$2,209,500	\$216,000	\$2,425,500	\$4,252,605
TES Controls	\$14,000	\$14,000	\$28,000	\$49,092
TES Pumps	\$118,575	\$37,660	\$156,235	\$273,925
TES Pump Controls	\$10,000	\$10,000	\$20,000	\$35,066
TES Misc	\$1,683,203	\$330,715	\$2,013,919	\$3,530,983
DRY COOLER BOREFIELD BALANCING				
Dry Cooler		\$79,515	\$79,515	\$139,413
Dry Cooler Controls		\$15,000	\$15,000	\$26,299
Dry Cooler Pumps		\$81,450	\$81,450	\$142,805
Dry Cooler Pump Controls		\$15,000	\$15,000	\$26,299
Dry Cooler Misc		\$91,296	\$91,296	\$160,069
PEAKING GAS BOILERS				
Boilers	\$996,106	\$108,640	\$1,104,746	\$1,936,940
Boiler Controls	\$60,000	\$30,000	\$90,000	\$157,796
Boiler Flue and Vent	\$51,300	\$8,320	\$59,620	\$104,531
Nat Gas Piping	\$0	\$0	\$0	\$0
Boiler Misc	\$268,669	\$31,499	\$300,168	\$526,281
CAMPUS ELECTRICAL INFRASTRUCTURE UPGRADES				
SUBSTATION 1 UPGRADES			\$7,916,100	\$13,879,219
SUBSTATION 2 UPGRADES			\$0	\$0
BUILDING SERVICE UPGRADES	\$645,858	\$0	\$645,858	\$1,132,376
TOTAL	\$60,318,843	\$5,450,381	\$73,685,323	\$129,191,741

Sc.6b

	Centralized	Cluster S	Subtotal	Markups
DOMESTIC WATER HEATING EQUIPMENT				
DHW	\$1,699,750	\$69,060	\$1,768,810	\$3,101,237
THERMAL DISTRIBUTION				
2-Pipe Distribution	\$6,919,370	\$389,449	\$7,308,819	\$12,814,479
Distribution Pumps/VFDs	\$408,487	\$71,925	\$480,412	\$842,301
HOT WATER HEAT EXCHANGERS				
HW HX	\$3,684,729	\$287,087	\$3,971,816	\$6,963,745
CHILLED WATER HEAT EXCHANGERS				
CHW HX	\$2,690,329	\$69,194	\$2,759,523	\$4,838,244
GEOTHERMAL WELLFIELD				
Geohermal Borefield	\$24,637,500	\$2,407,500	\$27,045,000	\$47,417,728
Geothermal Controls	\$100,000	\$100,000	\$200,000	\$350,658
Geohermal Loop Pumps	\$662,917	\$81,450	\$744,367	\$1,305,091
Geohermal Loop Pump Controls	\$25,000	\$15,000	\$40,000	\$70,132
Heat Pumps	\$9,444,520	\$315,200	\$9,759,720	\$17,111,619
Heat Pump Controls	\$40,000	\$20,000	\$60,000	\$105,197
Geothermal Misc.	\$3,949,031	\$555,420	\$4,504,451	\$7,897,609
HEATING THERMAL ENERGY TANKS				
TES	\$2,209,500	\$216,000	\$2,425,500	\$4,252,605
TES Controls	\$14,000	\$14,000	\$28,000	\$49,092
TES Pumps	\$118,575	\$37,660	\$156,235	\$273,925
TES Pump Controls	\$10,000	\$10,000	\$20,000	\$35,066
TES Misc	\$1,683,203	\$330,715	\$2,013,919	\$3,530,983
DRY COOLER BOREFIELD BALANCING				
Dry Cooler		\$79,515	\$79,515	\$139,413
Dry Cooler Controls		\$15,000	\$15,000	\$26,299
Dry Cooler Pumps		\$81,450	\$81,450	\$142,805
Dry Cooler Pump Controls		\$15,000	\$15,000	\$26,299
Dry Cooler Misc		\$91,296	\$91,296	\$160,069
PEAKING ELECTRIC BOILERS				
Boilers	\$1,592,016	\$157,680	\$1,749,696	\$3,067,724
Boiler Controls	\$60,000	\$30,000	\$90,000	\$157,796
Boiler Flue and Vent	\$0	\$0	\$0	\$0
Nat Gas Piping	\$0	\$0	\$0	\$0
Boiler Misc	\$307,730	\$31,499	\$339,229	\$594,767
CAMPUS ELECTRICAL INFRASTRUCTURE UPGRADES				
SUBSTATION 1 UPGRADES			\$9,082,000	\$15,923,380
SUBSTATION 2 UPGRADES			\$627,300	\$1,099,839
BUILDING SERVICE UPGRADES	\$694,604	\$565,100	\$1,259,704	\$2,208,626
TOTAL	\$60,951,259	\$6,056,201	\$76,716,760	\$134,506,728

Construction Services & Consulting

CAMPUS ENERGY MASTER PLAN ESTIMATE

CAMPUS ENERGY STUDY SUNY OSWEGO

OSWEGO, NY

PREPARED FOR: RAMBOL

PROJECT NO: 23-0287a

August 09, 2023 (Revision 1)

Trophy Point, LLC

Construction Services & Consulting

4588 South Park Avenue Blasdell, NY 14219

787 Pine Valley Drive, Suite A Pittsburgh, PA 15239 347 West 36th St., Suite 1101 New York, NY 10018

Highland Pkwy, Suite 875A Downers Grove, IL 60515

ESTIMATE NOTES / ASSUMPTIONS / CLARIFICATIONS

- BASED ON RAMBOL CAMPUS ENERGY MASTER PLAN DOCUMENTS DATED 05/11/2023.
- NEW YORK STATE PREVAILING WAGE RATES FOR OSWEGO COUNTY.
- NORMAL WORKING HOURS AND CONDITIONS; EXCLUDES ANY PREMIUMS FOR A CONDENSED CONSTRUCTION SCHEDULE.
- SINGLE PRIME CONTRACT (COMPETITIVELY BID).
- PREMISES TO BE OCCUPIED DURING CONSTRUCTION.
- PROJECT WILL BE PHASED OVER A 27 YEAR PERIOD.

EXCLUSIONS:

- SOFT COSTS (DESIGN FEES, ETC.)
- CONSTRUCTION CONTINGENCY (OWNER CHANGE ORDER RESERVE)
- CONSTRUCTION MANAGER FEES, MARKUPS OR GENERAL CONDITIONS
- PROJECT LABOR AGREEMENTS
- ROCK EXCAVATION
- NO PROVISIONS FOR UNSTABLE SOILS
- SOIL REMEDIATION
- ASBESTOS AND HAZARDOUS MATERIALS ABATEMENT (IF APPLICABLE)
- A/V CABLING AND EQUIPMENT
- FF&E

Note: This estimate represents a reasonable opinion of cost based on several public and proprietary sources of information. It is not a prediction of the successful bid from a contractor as bids will vary due to fluctuating market conditions, errors and omissions, proprietary specifications, lack of surplus bidders, perception of risk, and so on. Consequently, this estimate is expected to fall within the range of bids from multiple competitive contractors or subcontractors. However, we do not warrant that bids or negotiated prices will not vary from the final construction cost estimate.

Causting Service & Consoliting RAMBOL

PROJECT SUMMARY	то	TAL COST
CLUSTER C	\$	68,673,409
CLUSTER E	\$	11,832,515
CLUSTER N	\$	10,408,705
CLUSTER S	\$	9,556,098
CLUSTER W	\$	16,403,582
CAMPUS ELECTRICAL INFRASTRUCTURE UPGRADES	\$	16,133,775
SCENARIO 2a TOTAL	<u>\$</u>	133,008,083
PEAKING NATURAL GAS BOILERS	\$	(3,390,858)
PEAKING ELECTRIC BOILERS	\$	4,216,135
CAMPUS ELECTRICAL INFRASTRUCTURE UPGRADES (NATURAL GAS BOILERS)	\$	(16,133,775)
CAMPUS ELECTRICAL INFRASTRUCTURE UPGRADES (ELECTRIC BOILERS)	\$	22,017,640
SCENARIO 2b TOTAL	<u>\$</u>	139,717,226
WASTE WATER ENERGY RECOVERY	\$	8,165,365

CLUSTER C SUMMARY

		TOTAL	TOTAL	TOTAL	% OF
SUMMARY		MATERIAL	LABOR	COST	TOTAL
		¢607.607	¢269.069	¢006 575	1 450/
DOMESTIC WATER REATING EQUIPMENT		\$027,007	\$308,908	\$990,575	1.43%
HOT WATER HEAT EXCHANGERS AND CAMP	US DISTRIBUTION	\$3,662,264	\$2,324,476	\$5,986,740	8.72%
CHILLED WATER HEAT EXCHANGERS AND C	AMPUS DISTRIBUTION	\$1,065,957	\$434,508	\$1,500,465	2.18%
GEOTHERMAL WELLFIELD		\$17,033,838	\$9,612,160	\$26,645,998	38.80%
HEATING THERMAL ENERGY TANKS		\$1,490,920	\$760,608	\$2,251,527	3.28%
DRY COOLER BOREFIELD BALANCING		\$659,476	\$143,170	\$802,646	1.17%
PEAKING GAS BOILERS		\$652,160	\$332,200	\$984,360	1.43%
SUBTOTAL - CLUSTER C SUMMARY			_	\$39,168,311	100.00%
GENERAL CONDITIONS	15.0%			\$5,875,247	8.56%
OVERHEAD AND PROFIT	10.0%			\$4,504,356	6.56%
DESIGN CONTINGENCY	20.0%			\$9,909,583	14.43%
BID CONTINGENCY	5.0%			\$2,972,875	4.33%
PHASING	10.0%			\$6,243,037	9.09%
TOTAL - CLUSTER C SUMMARY			-	\$68,673,409	100.00%
PEAKING ELECTRIC BOILERS - ADD ALTERN	ATE	\$394,100	-\$38,880	\$355,220	0.51%
GENERAL CONDITIONS	15.0%	. ,		\$53,283	0.08%
OVERHEAD AND PROFIT	10.0%			\$40,850	0.06%
DESIGN CONTINGENCY	20.0%			\$89,871	0.13%
BID CONTINGENCY	5.0%			\$26,961	0.04%
PHASING	10.0%			\$56,619	0.08%
TOTAL - PEAKING ELECTRIC BOILERS - AD	D ALTERNATE		-	\$622,804	0.90%
	15.0%	\$2,526,467	\$2,130,700	\$4,657,167	6.78%
	10.0%			9090,070 \$535 571	1.01%
	20.0%			9000,074 ¢1 179 962	1 700/
	20.0%			φ1,170,203 ¢353 170	0.51%
	0.0 <i>%</i>			9000,479 \$740.000	4.070/
THASING	10.070			φ142,300	1.07%
TOTAL - WASTE WATER ENERGY RECOVER	RY		-	\$8,165,365	11.84%

		- C.	_		-	•
Construction	Sarah	108 Å	Sente	alting	2	RAMBOL

	C	LUSTER C DETAIL				
		MATER	IAL	LAB	OR	
DESCRIPTION	QUANTITY	UNIT PRICE	TOTAL	UNIT PRICE	TOTAL	TOTAL
DOMESTIC WATER HEATING EQUIPMENT						
POINT OF USE WATER HEATERS						
J C Park Hall Cluster C	5 EA	\$1,855.00	\$9,275	\$720.00	\$3,600	\$12,875
Campus Center Cluster C	14 EA	\$1,855.00	\$25,970	\$720.00	\$10,080	\$36,050
I Poucher Hall Cluster C	3 EA	\$1,855.00	\$5,565	\$720.00	\$2,160	\$7,725
M V Lee Hall Cluster C	5 EA	\$1,855.00	\$9,275	\$720.00	\$3,600	\$12,875
J Lanigan Hall Cluster C	7 EA	\$1,855.00	\$12,985	\$720.00	\$5,040	\$18,025
J Tyler Hall Cluster C	9 EA	\$1,855.00	\$16,695	\$720.00	\$6,480	\$23,175
Wilber Hall Cluster C	8 EA	\$1,855.00	\$14,840	\$720.00	\$5,760	\$20,600
M E Mahar Hall Cluster C	7 EA	\$1,855.00	\$12,985	\$720.00	\$5,040	\$18,025
J Penfield Lib Cluster C	14 EA	\$1,855.00	\$25,970	\$720.00	\$10,080	\$36,050
Culkin Hall Cluster C	5 EA	\$1,855.00	\$9,275	\$720.00	\$3,600	\$12,875
Hewitt Hall Cluster C	10 EA	\$1,855.00	\$18,550	\$720.00	\$7,200	\$25,750
ELECTRIC DOMESTIC WATER HEATERS W	/ITH TANKS					
Central Heating Plant (12.3 kW) Cluster C	1 EA	\$3,150.00	\$3,150	\$1,440.00	\$1,440	\$4,590
DOMESTIC WATER AIR SOURCE HEAT PU	MP					
Rec & Convocation Ctr (300 mbh) Cluster C	1 EA	\$17,500.00	\$17,500	\$1,800.00	\$1,800	\$19,300
Richard S Shineman (800 mbh) Cluster C	2 EA	\$48,560.00	\$97,120	\$3,600.00	\$7,200	\$104,320
Hart Hall (900 mbh) Cluster C	1 EA	\$52,300.00	\$52,300	\$3,600.00	\$3,600	\$55,900
Cooper DH (300 mbh) Cluster C	1 EA	\$17,500.00	\$17,500	\$1,800.00	\$1,800	\$19,300
Funnelle Hall (900 mbh) Cluster C	1 EA	\$52,300.00	\$52,300	\$3,600.00	\$3,600	\$55,900
Domestic water piping, above slab, copper type L, 2" diameter (20 If per water piece of equipment	1,880 LF	\$36.60	\$68,808	\$23.10	\$43,428	\$112,236
Domestic water piping fiberglass insulation with all service jacket, 1" thickness for copper piping, 2" diameter	1,880 LF	\$3.80	\$7,144	\$9.50	\$17,860	\$25.004
Direct digital control of domestic water heaters(est 4 pts each)	94 EA	\$1,600.00	\$150,400	\$2,400.00	\$225,600	\$376,000
TOTAL DOMESTIC WATER HEATING EQUI	PMENT		\$627,607		\$368,968	\$996,575
HOT WATER HEAT EXCHANGERS AND CA	MPUS DISTRIBUTI	ON				
J C Park Hall (1921 mbh) Cluster C	1 EA	\$23,052.00	\$23,052	\$2,880.00	\$2,880	\$25,932

Campus Center (5619 mbh) Cluster C

\$56,190.00

\$112,380

\$5,400.00

\$10,800

2 EA

\$123,180

TROPHY POINT OSWEGO, NY

Construction Services & Cancelling RAMBOL

CLUSTER C DETAIL

		MATER	MATERIAL		LABOR		
DESCRIPTION	QUANTITY	UNIT PRICE	TOTAL	UNIT PRICE	TOTAL	TOTAL	
I Poucher Hall (1269 mbh) Cluster C	1 EA	\$15,228.00	\$15,228	\$2,880.00	\$2,880	\$18,108	
Rec & Convocation (3904 mbh) Cluster C	2 EA	\$46,848.00	\$93,696	\$3,600.00	\$7,200	\$100,896	
M V Lee Hall (1303 mbh) Cluster C	1 EA	\$15,636.00	\$15,636	\$2,880.00	\$2,880	\$18,516	
Central Heating Plant (284 mbh) Cluster C	1 EA	\$4,260.00	\$4,260	\$1,440.00	\$1,440	\$5,700	
J Lanigan Hall (3074 mbh) Cluster C	2 EA	\$36,888.00	\$73,776	\$4,500.00	\$9,000	\$82,776	
J Tyler Hall (3084 mbh) Cluster C	2 EA	\$37,008.00	\$74,016	\$4,500.00	\$9,000	\$83,016	
Richard S Shineman (17659 mbh) Cluster C	2 EA	\$158,931.00	\$317,862	\$10,800.00	\$21,600	\$339,462	
Wilber Hall (2531 mbh) Cluster C	2 EA	\$30,372.00	\$60,744	\$2,880.00	\$5,760	\$66,504	
M E Mahar Hall (1857 mbh) Cluster C	2 EA	\$22,284.00	\$44,568	\$2,160.00	\$4,320	\$48,888	
J Penfield Lib (3365 mbh) Cluster C	2 EA	\$123,365.00	\$246,730	\$3,800.00	\$7,600	\$254,330	
Culkin Hall (399 mbh) Cluster C	1 EA	\$5,985.00	\$5,985	\$2,160.00	\$2,160	\$8,145	
Hewitt Hall (2454 mbh) Cluster C	2 EA	\$29,448.00	\$58,896	\$3,600.00	\$7,200	\$66,096	
Hart Hall (2844 mbh) Cluster C	2 EA	\$34,128.00	\$68,256	\$3,600.00	\$7,200	\$75,456	
Cooper DH (786 mbh) Cluster C	1 EA	\$11,790.00	\$11,790	\$2,160.00	\$2,160	\$13,950	
Funnelle Hall (2798 mbh) Cluster C	2 EA	\$33,468.00	\$66,936	\$3,600.00	\$7,200	\$74,136	
Pumps, end suction base mounted, 4711 gpm, 247 ft hd, 450 hp, including VFDs and accessories Cluster C	2 EA	\$144,300.00	\$288,600	\$21,600.00	\$43,200	\$331,800	
Direct digital control of heat exchangers (est 8 pts each)	28 EA	\$3,200.00	\$89,600	\$4,800.00	\$134,400	\$224,000	
Direct digital control of pumps (est 5 pts each)	2 EA	\$2,000.00	\$4,000	\$3,000.00	\$6,000	\$10,000	
Isolation valves, automatic	112 EA	\$745.00	\$83,440	\$570.00	\$63,840	\$147,280	
Flow meters, ultrasonic	17 EA	\$1,500.00	\$25,500	\$760.00	\$12,920	\$38,420	
Temperature transmitters	224 EA	\$150.00	\$33,600	\$95.00	\$21,280	\$54,880	
Differential pressure switch	28 EA	\$875.00	\$24,500	\$190.00	\$5,320	\$29,820	
Heating hot water piping, welded black steel, schedule 40, on yoke & roll hanger assemblies, 10' OC, (80 lf per HX)							
- 2-1/2" diameter	240 LF	\$32.00	\$7,679	\$56.30	\$13,512	\$21,191	
- 3" diameter	160 LF	\$33.90	\$5,424	\$61.50	\$9,840	\$15,264	
- 4" diameter	1,200 LF	\$48.40	\$58,080	\$72.00	\$86,400	\$144,480	
- 6" diameter	560 LF	\$64.60	\$36,176	\$81.00	\$45,360	\$81,536	
- 8" diameter	80 LF	\$112.50	\$9,000	\$100.60	\$8,048	\$17,048	

Heating hot water fiberglass pipe insulation with all service jacket, 1-1/2" thickness for iron piping

		MATER	IAL	LAB	OR	
DESCRIPTION	QUANTITY	UNIT PRICE	TOTAL	UNIT PRICE	TOTAL	TOTAL
	04015	* 0.00	\$4.050	0 40.00	\$0.544	* 4 * *
- 2-1/2" diameter	240 LF	\$6.90	\$1,656	\$10.60	\$2,544	\$4,200
- 3" diameter	160 LF	\$7.30	\$1,168	\$11.20	\$1,792	\$2,960
- 4" diameter	1,200 LF	\$8.30	\$9,960	\$13.50	\$16,200	\$26,160
- 6" diameter	560 LF	\$9.80	\$5,488	\$17.30	\$9,688	\$15,176
- 8" diameter	80 LF	\$13.60	\$1,088	\$21.20	\$1,696	\$2,784
Buried hydronic piping, schedule 10, welded black steel, factory applied polyurethane foam with exterior HDPE jacket including integral leak detection cable						
- 3" diameter Cluster C	486 LF	\$39.80	\$19,343	\$81.60	\$39,658	\$59,000
- 4" diameter Cluster C	124 LF	\$47.30	\$5,865	\$92.40	\$11,458	\$17,323
- 5" diameter Cluster C	1,300 LF	\$56.30	\$73,190	\$100.50	\$130,650	\$203,840
- 6" diameter Cluster C	1,574 LF	\$62.80	\$98,847	\$106.50	\$167,631	\$266,478
- 8" diameter Cluster C	1,318 LF	\$108.00	\$142,344	\$123.10	\$162,246	\$304,590
- 10" diameter Cluster C	2,504 LF	\$156.60	\$392,126	\$150.10	\$375,850	\$767,977
- 12" diameter Cluster C	1,498 LF	\$195.20	\$292,410	\$195.60	\$293,009	\$585,418
- 14" diameter Cluster C	1,186 LF	\$236.30	\$280,252	\$241.10	\$285,945	\$566,196
- 16" diameter Cluster C	536 LF	\$281.40	\$150,830	\$284.40	\$152,438	\$303,269
Site utilities earthwork including excavation, select backfill and disposal on site (6' wide by 4' deep trench), single trench for chilled and hot water	4,678 CY	\$48.80	\$228,286	\$24.00	\$112,272	\$340,558
TOTAL HOT WATER HEAT EXCHANGERS	AND CAMPUS DIST		\$3,662,264		\$2,324,476	\$5,986,740
CHILLED WATER HEAT EXCHANGERS AN	O CAMPUS DISTRI	BUTION				
J C Park Hall (1739 mbh) Cluster C	1 EA	\$20,868.00	\$20,868	\$2,160.00	\$2,160	\$23,028
Campus Center (4758 mbh) Cluster C	2 EA	\$52,338.00	\$104,676	\$4,500.00	\$9,000	\$113,676
I Poucher Hall (1016 mbh) Cluster C	1 EA	\$12,192.00	\$12,192	\$2,160.00	\$2,160	\$14,352
Rec & Convocation (1694 mbh) Cluster C	2 EA	\$20,328.00	\$40,656	\$2,160.00	\$4,320	\$44,976
M V Lee Hall (0 mbh) Cluster C	0 EA	\$0.00	\$0	\$0.00	\$0	\$0
Central Heating Plant (0 mbh) Cluster C	0 EA	\$0.00	\$0	\$0.00	\$0	\$0
J Lanigan Hall (3002 mbh) Cluster C	2 EA	\$36,024.00	\$72,048	\$2,880.00	\$5,760	\$77,808
J Tyler Hall (2563 mbh) Cluster C	2 EA	\$30,756.00	\$61,512	\$2,880.00	\$5,760	\$67,272
Richard S Shineman (5385 mbh) Cluster C	2 EA	\$59,235.00	\$118,470	\$4,500.00	\$9,000	\$127,470

Construction Services & Sesseling RAMBOL

CLUSTER C DETAIL

		MATER	IAL	LABO	OR	
DESCRIPTION	QUANTITY	UNIT PRICE	TOTAL	UNIT PRICE	TOTAL	TOTAL
Wilber Hall (2805 mbh) Cluster C	2 EA	\$33,660.00	\$67,320	\$2,880.00	\$5,760	\$73,080
M E Mahar Hall (1790 mbh) Cluster C	2 EA	\$21,480.00	\$42,960	\$2,880.00	\$5,760	\$48,720
J Penfield Lib (4337 mbh) Cluster C	2 EA	\$52,044.00	\$104,088	\$3,800.00	\$7,600	\$111,688
Culkin Hall (563 mbh) Cluster C	1 EA	\$8,445.00	\$8,445	\$2,160.00	\$2,160	\$10,605
Hewitt Hall (2290 mbh) Cluster C	2 EA	\$27,480.00	\$54,960	\$3,600.00	\$7,200	\$62,160
Hart Hall (0 mbh) Cluster C	0 EA	\$0.00	\$0	\$0.00	\$0	\$0
Cooper DH (508 mbh) Cluster C	1 EA	\$7,620.00	\$7,620	\$2,160.00	\$2,160	\$9,780
Funnelle Hall (0 mbh) Cluster C	0 EA	\$0.00	\$0	\$0.00	\$0	\$0
Direct digital control of heat exchangers (est 8 pts each)	22 EA	\$3,200.00	\$70,400	\$4,800.00	\$105,600	\$176,000
Isolation valves, automatic	88 EA	\$745.00	\$65,560	\$570.00	\$50,160	\$115,720
Flow meters, ultrasonic	13 EA	\$1,500.00	\$19,500	\$760.00	\$9,880	\$29,380
Temperature transmitters	176 EA	\$150.00	\$26,400	\$95.00	\$16,720	\$43,120
Differential pressure switch	22 EA	\$875.00	\$19,250	\$190.00	\$4,180	\$23,430
Chilled water piping, welded black steel, schedule 40, on yoke & roll hanger assemblies, 10' OC, (80 If per HX)						
- 3" diameter	160 LF	\$33.90	\$5,424	\$61.50	\$9,840	\$15,264
- 4" diameter	80 LF	\$48.40	\$3,872	\$72.00	\$5,760	\$9,632
- 6" diameter	1,040 LF	\$64.60	\$67,184	\$81.00	\$84,240	\$151,424
- 8" diameter	480 LF	\$112.50	\$54,000	\$100.60	\$48,288	\$102,288
Chilled water fiberglass pipe insulation with all service jacket, 1-1/2" thickness for iron piping						
- 3" diameter	160 LF	\$7.30	\$1,168	\$11.20	\$1,792	\$2,960
- 4" diameter	80 LF	\$8.30	\$664	\$13.50	\$1,080	\$1,744
- 6" diameter	1,040 LF	\$9.80	\$10,192	\$17.30	\$17,992	\$28,184
- 8" diameter	480 LF	\$13.60	\$6,528	\$21.20	\$10,176	\$16,704
TOTAL CHILLED WATER HEAT EXCHANGE	RS AND CAMPUS		\$1,065,957		\$434,508	\$1,500,465
GEOTHERMAL WELLFIELD						

\$8,316,000

\$8,316,000

1 LS

depth

\$20,790,000

Construction Services & Secretizing RAMBOL

CLUSTER C DETAIL

		MATER	IAL	LAB	OR	
DESCRIPTION	QUANTITY	UNIT PRICE	TOTAL	UNIT PRICE	TOTAL	TOTAL
Direct digital control of wellfield (est 100 pts each)	1 LS	\$40,000.00	\$40,000	\$60,000.00	\$60,000	\$100,000
Water to water heat pumps, serving the geothermal wellfield, 8222 mbh	4 EA	\$755,000.00	\$3,020,000	\$32,400.00	\$129,600	\$3,149,600
Direct digital control of WWHP (est 10 pts each)	4 EA	\$4,000.00	\$16,000	\$6,000.00	\$24,000	\$40,000
Electrical service upgrade, 5kV, including MCC, transformers and panels	1 LS	\$200,000.00	\$200,000	\$300,000.00	\$300,000	\$500,000
4" concrete slab, vapor barrier, 6x6 6/6 welded wire mesh, 6" stone base, bulkheads and edge forms, finish, cure and protect	400 SF	\$5.50	\$2,200	\$6.10	\$2,440	\$4,640
Wellfield water piping, welded black steel, schedule 40, on yoke & roll hanger assemblies, 10' OC, (from wellfield to HP)						
- 12" diameter	4,320 LF	\$193.10	\$834,192	\$153.50	\$663,120	\$1,497,312
Site utilities earthwork including excavation, select backfill and disposal on site (6' wide by 4' deep trench)	1,920 CY	\$48.80	\$93,696	\$25.00	\$48,000	\$141,696
Pumps, end suction base mounted, 3300 gpm, 50 ft hd, 60 hp, including VFDs and accessories	5 EA	\$68,750.00	\$343,750	\$10,800.00	\$54,000	\$397,750
Direct digital control of pumps (est 5 pts						
each)	5 EA	\$2,000.00	\$10,000	\$3,000.00	\$15,000	\$25,000
TOTAL GEOTHERMAL WELLFIELD			\$17,033,838		\$9,612,160	\$26,645,998
HEATING THERMAL ENERGY TANKS						
Thermal energy storage tank, serving heating hot water system, 330000 gallons	1 EA	\$1,039,500.00	\$1,039,500	\$445,500.00	\$445,500	\$1,485,000
Direct digital control of tanks (est 14 pts each)	1 EA	\$5,600.00	\$5,600	\$8,400.00	\$8,400	\$14,000
36" concrete slab material foundation, vapor barrier, 6x6 6/6 welded wire mesh, 6" stone base forms finish cure and protect	3 844 SF	\$38.30	\$147 225	\$33.00	\$126 852	\$274 077
Foundation support for the concrete pad	115	\$30,000,00	\$30.000	\$20,000,00	\$20,000	\$50 000
Shoring for excavation	1 5/8 95	¢00,000.00	¢20,000	¢01 70	\$20,000 \$20,000	¢00,000
Farthwork including excavation select	1,0 4 0 OF	φ20.00	ψ30,900	φ 24. 70	ψ30,230	φ09, 190
backfill and disposal on site for tank pad (half tank buried)	1,210 CY	\$48.80	\$59,048	\$25.00	\$30,250	\$89,298
Foundation support for the concrete pad	1 LS	\$30,000.00	\$30,000	\$20,000.00	\$20,000	\$50,000

		MATER	IAL	LAB	OR	
DESCRIPTION	QUANTITY	UNIT PRICE	TOTAL	UNIT PRICE	TOTAL	TOTAL
Pumps, end suction base mounted, 1710 gpm, 60 ft hd, 40hp, including VFDs and accessories	2 EA	\$38,430.00	\$76,860	\$9,000.00	\$18,000	\$94,860
Direct digital control of pumps (est 5 pts each)	2 EA	\$2,000.00	\$4,000	\$3,000.00	\$6,000	\$10,000
Buried hydronic piping, schedule 10, welded black steel, factory applied polyurethane foam with exterior HDPE jacket including integral leak detection cable						
- 12" diameter	200 LF	\$195.20	\$39,040	\$195.60	\$39,120	\$78,160
Earthwork including excavation, select backfill and disposal on site for pipe	178 CY	\$48.80	\$8,686	\$25.00	\$4,450	\$13,136
Nitrogen generator, 20 cfm	1 EA	\$20,000.00	\$20,000	\$3,800.00	\$3,800	\$23,800
TOTAL HEATING THERMAL ENERGY TANKS	3		\$1,490,920		\$760,608	\$2,251,527
DRY COOLER BOREFIELD BALANCING						
Dry cooler (1260 tons)	1 EA	\$252,000.00	\$252,000	\$21,600.00	\$21,600	\$273,600
Direct digital control of dry coolers (est 15 pts each)	1 EA	\$6,000.00	\$6,000	\$9,000.00	\$9,000	\$15,000
Pumps, end suction base mounted, 3300 gpm, 50 ft hd, 60 hp, including VFDs and accessories	5 EA	\$68,750.00	\$343,750	\$10,800.00	\$54,000	\$397,750
Direct digital control of pumps (est 5 pts each)	5 EA	\$2,000.00	\$10,000	\$3,000.00	\$15,000	\$25,000
Buried hydronic piping, schedule 10, welded black steel, factory applied polyurethane foam with exterior HDPE jacket including integral leak detection cable						
- 12" diameter	200 LF	\$195.20	\$39,040	\$195.60	\$39,120	\$78,160
Earthwork including excavation, select backfill and disposal on site for pipe	178 CY	\$48.80	\$8,686	\$25.00	\$4,450	\$13,136
TOTAL DRY COOLER BOREFIELD BALANCI	NG		\$659,476		\$143,170	\$802,646
PEAKING GAS BOILERS						
Boiler, natural gas, 8475 mbh, serving the hot water system	4 EA	\$124,300.00	\$497,200	\$43,200.00	\$172,800	\$670,000

CLUSTER	
CLUSIER	

		MATERIAL		LABOR			
DESCRIPTION	QUANTITY	UNIT PRICE	TOTAL	UNIT PRICE	TOTAL	TOTAL	
Direct digital control of boilors (act 15 pts							
each)	4 EA	\$6,000.00	\$24,000	\$9,000.00	\$36,000	\$60,000	
Heating hot water system components	1 LS	\$75,000.00	\$75,000	\$60,000.00	\$60,000	\$135,000	
4" concrete slab, vapor barrier, 6x6 6/6 welded wire mesh, 6" stone base, bulkheads and edge forms, finish, cure and	400.05	6	4 0,000				
protect	400 SF	\$5.50	\$2,200	\$6.20	\$2,480	\$4,680	
Boiler flue and vent	4 EA	\$6,000.00	\$24,000	\$5,400.00	\$21,600	\$45,600	
Heating hot water piping, welded black steel, schedule 40, on yoke & roll hanger assemblies, 10' OC, (80 lf per HX)							
- 6" diameter	400 LF	\$64.60	\$25,840	\$81.00	\$32,400	\$58,240	
Heating hot water fiberglass pipe insulation with all service jacket, 1-1/2" thickness for iron piping							
- 6" diameter	400 LF	\$9.80	\$3,920	\$17.30	\$6,920	\$10,840	
TOTAL PEAKING GAS BOILERS			\$652,160		\$332,200	\$984,360	
PEAKING ELECTRIC BOILERS - ADD ALTER	NATE						
Boiler, natural gas, 8250 mbh, serving the hot water system	-4 EA	\$124,300.00	(\$497,200)	\$43,200.00	(\$172,800)	(\$670,000)	
Direct digital control of boilers (est 15 pts each)	-4 EA	\$6,000.00	(\$24,000)	\$9,000.00	(\$36,000)	(\$60,000)	
Heating hot water system components	-1 LS	\$75,000.00	(\$75,000)	\$60,000.00	(\$60,000)	(\$135,000)	
4" concrete slab, vapor barrier, 6x6 6/6 welded wire mesh, 6" stone base, bulkheads and edge forms, finish, cure and							
protect	-400 SF	\$5.50	(\$2,200)	\$6.20	(\$2,480)	(\$4,680)	
Boiler flue and vent	-4 EA	\$6,000.00	(\$24,000)	\$5,400.00	(\$21,600)	(\$45,600)	
Heating hot water piping, welded black steel, schedule 40, on yoke & roll hanger assemblies, 10' OC, (80 lf per HX)							
- 6" diameter	-400 LF	\$64.60	(\$25,840)	\$81.00	(\$32,400)	(\$58,240)	
Heating hot water fiberglass pipe insulation with all service jacket, 1-1/2" thickness for iron piping							
- 6" diameter	-400 LF	\$9.80	(\$3,920)	\$17.30	(\$6,920)	(\$10,840)	
Boiler, electric, 8250 mbh, serving the hot water system	4 EA	\$228,825.00	\$915,300	\$38,880.00	\$155,520	\$1,070,820	

		MATER	IAL	LAB	OR	
DESCRIPTION	QUANTITY	UNIT PRICE	TOTAL	UNIT PRICE	TOTAL	TOTAL
Direct digital control of boilers (est 15 pts each)	4 EA	\$6,000.00	\$24,000	\$9,000.00	\$36,000	\$60,000
Heating hot water system components	1 LS	\$75,000.00	\$75,000	\$60,000.00	\$60,000	\$135,000
4" concrete slab, vapor barrier, 6x6 6/6 welded wire mesh, 6" stone base, bulkheads and edge forms, finish, cure and protect	400 SF	\$5.50	\$2,200	\$6.20	\$2,480	\$4,680
Heating hot water piping, welded black steel, schedule 40, on yoke & roll hanger assemblies, 10' OC, (80 If per HX)						
- 6" diameter	400 LF	\$64.60	\$25,840	\$81.00	\$32,400	\$58,240
Heating hot water fiberglass pipe insulation with all service jacket, 1-1/2" thickness for iron piping						
- 6" diameter	400 LF	\$9.80	\$3,920	\$17.30	\$6,920	\$10,840
TOTAL PEAKING ELECTRIC BOILERS - ADI	DALTERNATE		\$394,100		(\$38,880)	\$355,220
WASTE WATER ENERGY RECOVERY						
Wastewater heat exchanger (16400 mbh)	1 EA	\$147,600.00	\$147,600	\$10,800.00	\$10,800	\$158,400
Pumps, end suction base mounted, 660 gpm, 80 ft hd, 50 hp, including VFDs and accessories Cluster W	4 EA	\$49,700.00	\$198,800	\$9,000.00	\$36,000	\$234,800
Direct digital control of heat exchangers (est						
8 pts each)	1 EA	\$3,200.00	\$3,200	\$4,800.00	\$4,800	\$8,000
Direct digital control of pumps (est 5 pts each)	4 EA	\$2,000.00	\$8,000	\$3,000.00	\$12,000	\$20,000
Buried hydronic piping, schedule 10, welded black steel, factory applied polyurethane foam with exterior HDPE jacket including integral leak detection cable						
- 12" diameter	10,000 LF	\$195.20	\$1,952,000	\$195.60	\$1,956,000	\$3,908,000
Earthwork including excavation, select backfill and disposal on site for pipe	4,444 CY	\$48.80	\$216,867	\$25.00	\$111,100	\$327,967
TOTAL WASTE WATER ENERGY RECOVER	Ŷ		\$2,526,467		\$2,130,700	\$4,657,167

CLUSTER E SUMMARY

		TOTAL	TOTAL	TOTAL	% OF
SUMMARY		MATERIAL	LABOR	COST	TOTAL
DOMESTIC WATER HEATING EQUIPMENT		\$88,818	\$79,932	\$168,750	1.43%
HOT WATER HEAT EXCHANGERS AND CA	AMPUS DISTRIBUTION	\$452,378	\$351,156	\$803,534	6.79%
CHILLED WATER HEAT EXCHANGERS AN	D CAMPUS DISTRIBUTION	\$161,416	\$112,002	\$273,418	2.31%
GEOTHERMAL WELLFIELD		\$2,678,280	\$1,754,785	\$4,433,065	37.47%
HEATING THERMAL ENERGY TANKS		\$382,600	\$225,776	\$608,375	5.14%
DRY COOLER BOREFIELD BALANCING		\$183,176	\$84,250	\$267,426	2.26%
PEAKING GAS BOILERS		\$133,440	\$60,740	\$194,180	1.64%
SUBTOTAL - CLUSTER E SUMMARY			_	\$6,748,750	100.00%
GENERAL CONDITIONS	15.0%			\$1,012,312	8.56%
OVERHEAD AND PROFIT	10.0%			\$776,106	6.56%
DESIGN CONTINGENCY	20.0%			\$1,707,434	14.43%
BID CONTINGENCY	5.0%			\$512,230	4.33%
PHASING	10.0%			\$1,075,683	9.09%
TOTAL - CLUSTER E SUMMARY			-	\$11,832,515	100.00%
PEAKING ELECTRIC BOILERS - ADD ALTE	ERNATE	\$43,000	-\$6,480	\$36,520	0.31%
GENERAL CONDITIONS	15.0%			\$5,478	0.05%
OVERHEAD AND PROFIT	10.0%			\$4,200	0.04%
DESIGN CONTINGENCY	20.0%			\$9,240	0.08%
BID CONTINGENCY	5.0%			\$2,772	0.02%
PHASING	10.0%			\$5,821	0.05%
TOTAL - PEAKING ELECTRIC BOILERS	- ADD ALTERNATE		-	\$64,030	0.54%

	c	LUSTER E DETAIL				
MATERIAL LABOR						
DESCRIPTION	QUANTITY	UNIT PRICE	TOTAL	UNIT PRICE	TOTAL	TOTAL
DOMESTIC WATER HEATING EQUIPMENT						
POINT OF USE WATER HEATERS						
Sheldon Hall Cluster E	9 EA	\$1,855.00	\$16,695	\$720.00	\$6,480	\$23,175
Rich Hall Cluster E	4 EA	\$1,855.00	\$7,420	\$720.00	\$2,880	\$10,300
Mackin Hall Cluster E	3 EA	\$1,855.00	\$5,565	\$720.00	\$2,160	\$7,725
Moreland Hall Cluster E	2 EA	\$1,855.00	\$3,710	\$720.00	\$1,440	\$5,150
Lonis Hall Cluster E	2 EA	\$1,855.00	\$3,710	\$720.00	\$1,440	\$5,150
ELECTRIC DOMESTIC WATER HEATERS W	TH TANKS					
Gar-20 (4.5 kW) Cluster E	1 EA	\$1,150.00	\$1,150	\$1,440.00	\$1,440	\$2,590
DOMESTIC WATER AIR SOURCE HEAT PUN	IP					
Domestic water piping, above slab, copper type L, 2" diameter (20 If per water piece of equipment	420 LF	\$36.60	\$15,372	\$23.10	\$9,702	\$25,074
Domestic water piping fiberglass insulation with all service jacket, 1" thickness for copper piping, 2" diameter	420 LF	\$3.80	\$1,596	\$9.50	\$3,990	\$5,586
Direct digital control of domestic water heaters(est 4 pts each)	21 EA	\$1,600.00	\$33,600	\$2,400.00	\$50,400	\$84,000
TOTAL DOMESTIC WATER HEATING EQUIP	MENT		\$88,818		\$79,932	\$168,750
HOT WATER HEAT EXCHANGERS AND CAN	IPUS DISTRIBUTI	ON				
Sheldon Hall (3840 mbh) Cluster E	2 EA	\$46,080.00	\$92,160	\$4,500.00	\$9,000	\$101,160
Rich Hall (1513 mbh) Cluster E	1 EA	\$22,695.00	\$22,695	\$2,880.00	\$2,880	\$25,575
Mackin Hall (740 mbh) Cluster E	1 EA	\$11,100.00	\$11,100	\$2,160.00	\$2,160	\$13,260
Moreland Hall (448 mbh) Cluster E	1 EA	\$6,720.00	\$6,720	\$2,160.00	\$2,160	\$8,880
Lonis Hall (509 mbh) Cluster E	1 EA	\$7,635.00	\$7,635	\$2,160.00	\$2,160	\$9,795
Gar-20 (333 mbh) Cluster E	1 EA	\$4,995.00	\$4,995	\$2,160.00	\$2,160	\$7,155
Pumps, end suction base mounted, 580 gpm, 102 ft hd, 25 hp, including VFDs and accessories Cluster E	2 EA	\$32,465.00	\$64,930	\$7,200.00	\$14,400	\$79,330
Direct digital control of heat exchangers (est 8 pts each)	7 EA	\$3,200.00	\$22,400	\$4,800.00	\$33,600	\$56,000
Direct digital control of pumps (est 5 pts each)	2 EA	\$2,000.00	\$4,000	\$3,000.00	\$6,000	\$10,000
Isolation valves, automatic	28 EA	\$745.00	\$20,860	\$570.00	\$15,960	\$36,820

Flow meters, ultrasonic

\$1,500.00

\$9,000

\$760.00

6 EA

\$13,560

\$4,560

Construction Services & Secretizing RAMBOL

		MATERI	MATERIAL		LABOR	
DESCRIPTION	QUANTITY	UNIT PRICE	TOTAL	UNIT PRICE	TOTAL	TOTAL
Temperature transmitters	56 EA	\$150.00	\$8,400	\$95.00	\$5,320	\$13,720
Differential pressure switch	7 EA	\$875.00	\$6,125	\$190.00	\$1,330	\$7,455
Heating hot water piping, welded black steel, schedule 40, on yoke & roll hanger assemblies, 10' OC, (80 lf per HX)						
- 2-1/2" diameter	320 LF	\$32.00	\$10,238	\$56.30	\$18,016	\$28,254
- 3" diameter	80 LF	\$33.90	\$2,712	\$61.50	\$4,920	\$7,632
- 6" diameter	80 LF	\$64.60	\$5,168	\$81.00	\$6,480	\$11,648
Heating hot water fiberglass pipe insulation with all service jacket, 1-1/2" thickness for iron piping						
- 2-1/2" diameter	320 LF	\$6.90	\$2,208	\$10.60	\$3,392	\$5,600
- 3" diameter	80 LF	\$7.30	\$584	\$11.20	\$896	\$1,480
- 6" diameter	80 LF	\$9.80	\$784	\$17.30	\$1,384	\$2,168
Buried hydronic piping, schedule 10, welded black steel, factory applied polyurethane foam with exterior HDPE jacket including integral leak detection cable						
- 2-1/2" diameter Cluster E	518 LF	\$37.50	\$19,425	\$73.50	\$38,073	\$57,498
- 4" diameter Cluster E	244 LF	\$47.30	\$11,541	\$92.40	\$22,546	\$34,087
- 5" diameter Cluster E	1,310 LF	\$56.30	\$73,753	\$100.50	\$131,655	\$205,408
Site utilities earthwork including excavation, select backfill and disposal on site (6' wide by 4' deep trench), single trench for chilled and hot water	921 CY	\$48.80	\$44,945	\$24.00	\$22,104	\$67,049
TOTAL HOT WATER HEAT EXCHANGERS A	AND CAMPUS DIST		\$452,378		\$351,156	\$803,534
CHILLED WATER HEAT EXCHANGERS AND) CAMPUS DISTRI	BUTION				
Sheldon Hall (1982 mbh) Cluster E	2 EA	\$23,784.00	\$47,568	\$2,880.00	\$5,760	\$53,328
Rich Hall (1207 mbh) Cluster E	1 EA	\$14,484.00	\$14,484	\$2,880.00	\$2,880	\$17,364
Mackin Hall (121 mbh) Cluster E	1 EA	\$1,815.00	\$1,815	\$1,440.00	\$1,440	\$3,255
Moreland Hall (85 mbh) Cluster E	1 EA	\$1,275.00	\$1,275	\$1,440.00	\$1,440	\$2,715
Lonis Hall (93 mbh) Cluster E	1 EA	\$1,395.00	\$1,395	\$1,440.00	\$1,440	\$2,835
Gar-20 (344 mbh) Cluster E	1 EA	\$5,160.00	\$5,160	\$2,160.00	\$2,160	\$7,320
Direct digital control of heat exchangers (est 8 pts each)	7 EA	\$3,200.00	\$22,400	\$4,800.00	\$33,600	\$56,000
Isolation valves, automatic	28 EA	\$745.00	\$20,860	\$570.00	\$15,960	\$36,820

Gassinuction Services & Senselling RAMBOL

PROJECT NO: 23-0287a CAMPUS ENERGY MASTER PLAN ESTIMATE PUBLISHED: 06/08/2023 REVISION 1: 08/09/2023

CLUSTER	E DETAIL
OLOO I LIK	

		MATER	MATERIAL		LABOR	
DESCRIPTION	QUANTITY	UNIT PRICE	TOTAL	UNIT PRICE	TOTAL	TOTAL
	0.54	A 4 500 00	* 0.000	*7 00.00	* 4 5 0 0	
Flow meters, ultrasonic	6 EA	\$1,500.00	\$9,000	\$760.00	\$4,560	\$13,560
Temperature transmitters	56 EA	\$150.00	\$8,400	\$95.00	\$5,320	\$13,720
Differential pressure switch	7 EA	\$875.00	\$6,125	\$190.00	\$1,330	\$7,455
Chilled water piping, welded black steel, schedule 40, on yoke & roll hanger assemblies, 10' OC, (80 lf per HX)						
- 2-1/2" diameter	320 LF	\$32.00	\$10,238	\$56.30	\$18,016	\$28,254
- 4" diameter	80 LF	\$48.40	\$3,872	\$72.00	\$5,760	\$9,632
- 6" diameter	80 LF	\$64.60	\$5,168	\$81.00	\$6,480	\$11,648
Chilled water fiberglass pipe insulation with all service jacket, 1-1/2" thickness for iron piping						
- 2-1/2" diameter	320 LF	\$6.90	\$2,208	\$10.60	\$3,392	\$5,600
- 4" diameter	80 LF	\$8.30	\$664	\$13.50	\$1,080	\$1,744
- 6" diameter	80 LF	\$9.80	\$784	\$17.30	\$1,384	\$2,168
GEOTHERMAL WELLFIELD						
Wellfield piping, includes vertical piping within the wellfield and distribution connecting each well, 123 bore holes, 500' depth	1 LS	\$1,660,500	\$1,660,500	\$1,107,000	\$1,107,000	\$2,767,500
Direct digital control of wellfield (est 100 pts each)	1 LS	\$40,000.00	\$40,000	\$60,000.00	\$60,000	\$100,000
Water to water heat pumps, serving the geothermal wellfield, 2302 mbh	2 EA	\$211,000.00	\$422,000	\$25,920.00	\$51,840	\$473,840
Direct digital control of WWHP (est 10 pts each)	2 EA	\$4,000.00	\$8,000	\$6,000.00	\$12,000	\$20,000
Electrical service upgrade, 5kV, including MCC, transformers and panels	1 LS	\$200,000.00	\$200,000	\$300,000.00	\$300,000	\$500,000
4" concrete slab, vapor barrier, 6x6 6/6 welded wire mesh, 6" stone base, bulkheads and edge forms, finish, cure and protect	200 SF	\$5.50	\$1,100	\$6.10	\$1,220	\$2,320
Wellfield water piping, welded black steel, schedule 40, on yoke & roll hanger assemblies, 10' OC, (from wellfield to HP)						
- 12" diameter	1,200 LF	\$193.10	\$231,720	\$153.50	\$184,200	\$415,920

	c	LUSTER E DETAIL				
	OR					
DESCRIPTION	QUANTITY	UNIT PRICE	TOTAL	UNIT PRICE	TOTAL	TOTAL
Site utilities earthwork including excavation, select backfill and disposal on site (6' wide by 4' deep trench)	533 CY	\$48.80	\$26,010	\$25.00	\$13,325	\$39,335
Pumps, end suction base mounted, 950 gpm, 50 ft hd, 20 hp, including VFDs and accessories	3 EA	\$27,650.00	\$82,950	\$5,400.00	\$16,200	\$99,150
Direct digital control of pumps (est 5 pts each)	3 EA	\$2,000.00	\$6,000	\$3,000.00	\$9,000	\$15,000
TOTAL GEOTHERMAL WELLFIELD			\$2,678,280		\$1,754,785	\$4,433,065
HEATING THERMAL ENERGY TANKS						
Thermal energy storage tank, serving heating hot water system, 48000 gallons	1 EA	\$151,200.00	\$151,200	\$64,800.00	\$64,800	\$216,000
Direct digital control of tanks (est 14 pts each)	1 EA	\$5,600.00	\$5,600	\$8,400.00	\$8,400	\$14,000
36" concrete slab material foundation, vapor barrier, 6x6 6/6 welded wire mesh, 6" stone base, forms, finish, cure and protect	1,156 SF	\$38.30	\$44,275	\$33.00	\$38,148	\$82,423
Foundation support for the concrete pad	1 LS	\$30,000.00	\$30,000	\$20,000.00	\$20,000	\$50,000
Shoring for excavation	424 SF	\$20.00	\$8,480	\$24.70	\$10,473	\$18,953
Earthwork including excavation, select backfill and disposal on site for tank pad (half tank buried)	193 CY	\$48.80	\$9,418	\$25.00	\$4,825	\$14,243
Foundation support for the concrete pad	1 LS	\$30,000.00	\$30,000	\$20,000.00	\$20,000	\$50,000
Pumps, end suction base mounted, 220 gpm, 60 ft hd, 7.5 hp, including VFDs and accessories	2 EA	\$15,950.00	\$31,900	\$2,880.00	\$5,760	\$37,660
Direct digital control of pumps (est 5 pts each)	2 EA	\$2,000.00	\$4,000	\$3,000.00	\$6,000	\$10,000
Buried hydronic piping, schedule 10, welded black steel, factory applied polyurethane foam with exterior HDPE jacket including integral leak detection cable						
- 12" diameter	200 LF	\$195.20	\$39,040	\$195.60	\$39,120	\$78,160
Earthwork including excavation, select backfill and disposal on site for pipe	178 CY	\$48.80	\$8,686	\$25.00	\$4,450	\$13,136
Nitrogen generator, 20 cfm	1 EA	\$20,000.00	\$20,000	\$3,800.00	\$3,800	\$23,800

TOTAL HEATING THERMAL ENERGY TANKS

\$382,600

\$608,375

\$225,776

CLUSTER E DETAIL								
		MATER	IAL	LAB	OR			
DESCRIPTION	QUANTITY	UNIT PRICE	TOTAL	UNIT PRICE	TOTAL	TOTAL		
DRY COOLER BOREFIELD BALANCING								
Dry cooler (180 tons)	1 EA	\$40,500.00	\$40,500	\$6,480.00	\$6,480	\$46,980		
Direct digital control of dry coolers (est 15 pts each)	1 EA	\$6,000.00	\$6,000	\$9,000.00	\$9,000	\$15,000		
Pumps, end suction base mounted, 950 gpm, 50 ft hd, 20 hp, including VFDs and accessories	3 EA	\$27,650.00	\$82,950	\$5,400.00	\$16,200	\$99,150		
Direct digital control of pumps (est 5 pts each)	3 EA	\$2,000.00	\$6,000	\$3,000.00	\$9,000	\$15,000		
Buried hydronic piping, schedule 10, welded black steel, factory applied polyurethane foam with exterior HDPE jacket including integral leak detection cable								
- 12" diameter	200 LF	\$195.20	\$39,040	\$195.60	\$39,120	\$78,160		
Earthwork including excavation, select backfill and disposal on site for pipe	178 CY	\$48.80	\$8,686	\$25.00	\$4,450	\$13,136		
TOTAL DRY COOLER BOREFIELD BALANCI	NG		\$183,176		\$84,250	\$267,426		
PEAKING GAS BOILERS								
Boiler, natural gas, 2450 mbh, serving the hot water system	2 EA	\$49,000.00	\$98,000	\$4,320.00	\$8,640	\$106,640		
Direct digital control of boilers (est 15 pts each)	2 EA	\$6,000.00	\$12,000	\$9,000.00	\$18,000	\$30,000		
Heating hot water system components	1 LS	\$5,000.00	\$5,000	\$10,000.00	\$10,000	\$15,000		
4" concrete slab, vapor barrier, 6x6 6/6 welded wire mesh, 6" stone base, bulkheads and edge forms, finish, cure and protect	200 SF	\$5.50	\$1,100	\$6.20	\$1,240	\$2,340		
Boiler flue and vent	2 EA	\$3,000.00	\$6,000	\$2,880.00	\$5,760	\$11,760		
Heating hot water piping, welded black steel, schedule 40, on yoke & roll hanger assemblies, 10' OC, (100 lf per boiler)								
- 4" diameter	200 LF	\$48.40	\$9,680	\$72.00	\$14,400	\$24,080		
Heating hot water fiberglass pipe insulation with all service jacket, 1-1/2" thickness for iron piping								
- 4" diameter	200 LF	\$8.30	\$1,660	\$13.50	\$2,700	\$4,360		

CLUSTER E DETAIL								
		MATER	AL	LABOR				
DESCRIPTION	QUANTITY	UNIT PRICE	TOTAL	UNIT PRICE	TOTAL	TOTAL		
TOTAL PEAKING GAS BOILERS			\$133,440		\$60,740	\$194,180		
PEAKING ELECTRIC BOILERS - ADD ALTER	RNATE							
Boiler, natural gas, 2450 mbh, serving the hot water system	-2 EA	\$49,000.00	(\$98,000)	\$4,320.00	(\$8,640)	(\$106,640)		
Direct digital control of boilers (est 15 pts each)	-2 EA	\$6,000.00	(\$12,000)	\$9,000.00	(\$18,000)	(\$30,000)		
Heating hot water system components	-1 LS	\$5,000.00	(\$5,000)	\$10,000.00	(\$10,000)	(\$15,000)		
4" concrete slab, vapor barrier, 6x6 6/6 welded wire mesh, 6" stone base, bulkheads and edge forms, finish, cure and protect	-200 SF	\$5.50	(\$1,100)	\$6.20	(\$1,240)	(\$2,340)		
Boiler flue and vent	-2 EA	\$3,000.00	(\$6,000)	\$2,880.00	(\$5,760)	(\$11,760)		
Heating hot water piping, welded black steel, schedule 40, on yoke & roll hanger assemblies, 10' OC, (100 lf per boiler)								
- 4" diameter	-200 LF	\$48.40	(\$9,680)	\$72.00	(\$14,400)	(\$24,080)		
Heating hot water fiberglass pipe insulation with all service jacket, 1-1/2" thickness for iron piping								
- 4" diameter	-200 LF	\$8.30	(\$1,660)	\$13.50	(\$2,700)	(\$4,360)		
Boiler, electric, 2450 mbh, serving the hot water system	2 EA	\$73,500.00	\$147,000	\$3,960.00	\$7,920	\$154,920		
Direct digital control of boilers (est 15 pts each)	2 EA	\$6,000.00	\$12,000	\$9,000.00	\$18,000	\$30,000		
Heating hot water system components	1 LS	\$5,000.00	\$5,000	\$10,000.00	\$10,000	\$15,000		
4" concrete slab, vapor barrier, 6x6 6/6 welded wire mesh, 6" stone base, bulkheads and edge forms, finish, cure and protect	200 SF	\$5.50	\$1,100	\$6.20	\$1,240	\$2,340		
Heating hot water piping, welded black steel, schedule 40, on yoke & roll hanger assemblies, 10' OC, (100 lf per boiler)								
- 4" diameter	200 LF	\$48.40	\$9,680	\$72.00	\$14,400	\$24,080		
Heating hot water fiberglass pipe insulation with all service jacket, 1-1/2" thickness for iron piping								
- 4" diameter	200 LF	\$8.30	\$1,660	\$13.50	\$2,700	\$4,360		
TOTAL PEAKING ELECTRIC BOILERS - ADD	ALTERNATE		\$43,000		(\$6,480)	\$36,520		

CLUSTER N SUMMARY

		TOTAL	TOTAL	TOTAL	% OF
SUMMARY		MATERIAL	LABOR	COST	TOTAL
DOMESTIC WATER HEATING EQUIPMENT		\$153,387	\$40,788	\$194,175	1.87%
HOT WATER HEAT EXCHANGERS AND CA	AMPUS DISTRIBUTION	\$520,299	\$543,426	\$1,063,725	10.22%
CHILLED WATER HEAT EXCHANGERS AN	ID CAMPUS DISTRIBUTION	\$122,614	\$88,182	\$210,796	2.03%
GEOTHERMAL WELLFIELD		\$2,028,528	\$1,365,765	\$3,394,293	32.61%
HEATING THERMAL ENERGY TANKS		\$360,136	\$214,615	\$574,751	5.52%
DRY COOLER BOREFIELD BALANCING	\$170,501	\$84,250	\$254,751	2.45%	
PEAKING GAS BOILERS		\$183,440	\$60,740	\$244,180	2.35%
SUBTOTAL - CLUSTER N SUMMARY			_	\$5,936,671	100.00%
GENERAL CONDITIONS	15.0%			\$890,501	8.56%
OVERHEAD AND PROFIT	10.0%			\$682,717	6.56%
DESIGN CONTINGENCY	20.0%			\$1,501,978	14.43%
BID CONTINGENCY	5.0%			\$450,593	4.33%
PHASING	10.0%			\$946,246	9.09%
TOTAL - CLUSTER N SUMMARY			-	\$10,408,705	100.00%
PEAKING ELECTRIC BOILERS - ADD ALTE	ERNATE	\$130,000	-\$6,720	\$123,280	1.16%
GENERAL CONDITIONS	15.0%			\$18,492	0.17%
OVERHEAD AND PROFIT	10.0%			\$14,177	0.13%
DESIGN CONTINGENCY	20.0%			\$31,190	0.29%
BID CONTINGENCY	5.0%			\$9,357	0.09%
PHASING	10.0%			\$19,650	0.18%
TOTAL - PEAKING ELECTRIC BOILERS	- ADD ALTERNATE		-	\$216,146	2.03%

	C	LUSTER N DETAIL				
		MATER	IAL	LABOR		
DESCRIPTION	QUANTITY	UNIT PRICE	TOTAL	UNIT PRICE	TOTAL	TOTAL
DOMESTIC WATER HEATING EQUIPMENT						
POINT OF USE WATER HEATERS						
Shady Shore Cluster N	1 EA	\$1,855.00	\$1,855	\$720.00	\$720	\$2,575
Mary Walker Health Cluster N	2 EA	\$1,855.00	\$3,710	\$720.00	\$1,440	\$5,150
DOMESTIC WATER AIR SOURCE HEAT PUN	ΛP					
Johnson Hall (500 mbh) Cluster N	1 EA	\$26,890.00	\$26,890	\$2,160.00	\$2,160	\$29,050
Lakeside DH (300 mbh) Cluster N	2 EA	\$17,500.00	\$35,000	\$1,800.00	\$3,600	\$38,600
Riggs Hall (400 mbh) Cluster N	1 EA	\$21,420.00	\$21,420	\$1,800.00	\$1,800	\$23,220
Waterbury Hall (400 mbh) Cluster N	1 EA	\$21,420.00	\$21,420	\$1,800.00	\$1,800	\$23,220
Scales Hall (400 mbh) Cluster N	1 EA	\$21,420.00	\$21,420	\$1,800.00	\$1,800	\$23,220
Domestic water piping, above slab, copper type L, 2" diameter (20 If per water piece of equipment	180 LF	\$36.60	\$6,588	\$23.10	\$4,158	\$10,746
Domestic water piping fiberglass insulation with all service jacket, 1" thickness for copper piping, 2" diameter	180 LF	\$3.80	\$684	\$9.50	\$1,710	\$2,394
Direct digital control of domestic water heaters(est 4 pts each)	9 EA	\$1,600.00	\$14,400	\$2,400.00	\$21,600	\$36,000
TOTAL DOMESTIC WATER HEATING EQUIP	MENT		\$153,387		\$40,788	\$194,175
HOT WATER HEAT EXCHANGERS AND CAN	MPUS DISTRIBUTI	ON				
Shady Shore (161 mbh) Cluster N	1 EA	\$2,415.00	\$2,415	\$1,440.00	\$1,440	\$3,855
Mary Walker Health (461 mbh) Cluster N	1 EA	\$6,915.00	\$6,915	\$2,160.00	\$2,160	\$9,075
Johnson Hall (1578 mbh) Cluster N	1 EA	\$18,936.00	\$18,936	\$2,880.00	\$2,880	\$21,816
Lakeside DH (606 mbh) Cluster N	1 EA	\$9,090.00	\$9,090	\$2,160.00	\$2,160	\$11,250
Riggs Hall (1238 mbh) Cluster N	1 EA	\$14,856.00	\$14,856	\$2,880.00	\$2,880	\$17,736
Waterbury Hall (1195 mbh) Cluster N	1 EA	\$14,340.00	\$14,340	\$2,880.00	\$2,880	\$17,220
Scales Hall (1195 mbh) Cluster N	1 EA	\$14,340.00	\$14,340	\$2,880.00	\$2,880	\$17,220
Pumps, end suction base mounted, 600 gpm, 104 ft hd, 25 hp, including VFDs and accessories Cluster N	2 EA	\$32,465.00	\$64,930	\$7,200.00	\$14,400	\$79,330
Direct digital control of heat exchangers (est 8 pts each)	7 EA	\$3,200.00	\$22,400	\$4,800.00	\$33,600	\$56,000
Direct digital control of pumps (est 5 pts each)	2 EA	\$2,000.00	\$4,000	\$3,000.00	\$6,000	\$10,000

Isolation valves, automatic

\$745.00

\$20,860

\$570.00

\$15,960

28 EA

\$36,820

		MATER	MATERIAL		LABOR		
DESCRIPTION	QUANTITY	UNIT PRICE	TOTAL	UNIT PRICE	TOTAL	TOTAL	
Flow meters, ultrasonic	7 EA	\$1.500.00	\$10.500	\$760.00	\$5.320	\$15.820	
Temperature transmitters	56 EA	\$150.00	\$8,400	\$95.00	\$5,320	\$13.720	
Differential pressure switch	7 EA	\$875.00	\$6.125	\$190.00	\$1.330	\$7,455	
Heating hot water piping, welded black steel, schedule 40, on yoke & roll hanger assemblies, 10' OC, (80 lf per HX)						. ,	
- 2-1/2" diameter	240 LF	\$32.00	\$7,679	\$56.30	\$13,512	\$21,191	
- 3" diameter	320 LF	\$33.90	\$10,848	\$61.50	\$19,680	\$30,528	
Heating hot water fiberglass pipe insulation with all service jacket, 1-1/2" thickness for iron piping							
- 2-1/2" diameter	240 LF	\$6.90	\$1,656	\$10.60	\$2,544	\$4,200	
- 3" diameter	320 LF	\$7.30	\$2,336	\$11.20	\$3,584	\$5,920	
Buried hydronic piping, schedule 10, welded black steel, factory applied polyurethane foam with exterior HDPE jacket including integral leak detection cable							
- 1-1/2" diameter Cluster N	554 LF	\$22.90	\$12,687	\$51.10	\$28,309	\$40,996	
- 3" diameter Cluster N	142 LF	\$39.80	\$5,652	\$81.60	\$11,587	\$17,239	
- 4" diameter Cluster N	1,392 LF	\$47.30	\$65,842	\$92.40	\$128,621	\$194,462	
- 5" diameter Cluster N	1,926 LF	\$56.30	\$108,434	\$100.50	\$193,563	\$301,997	
Site utilities earthwork including excavation, select backfill and disposal on site (6' wide by 4' deep trench), single trench for chilled and hot water	1,784 CY	\$48.80	\$87,059	\$24.00	\$42,816	\$129,875	
TOTAL HOT WATER HEAT EXCHANGERS A	ND CAMPUS DIS		\$520,299		\$543,426	\$1,063,725	
CHILLED WATER HEAT EXCHANGERS AND) CAMPUS DISTRI	BUTION					
Shady Shore (136 mbh) Cluster N	1 EA	\$2,040.00	\$2,040	\$1,440.00	\$1,440	\$3,480	
Mary Walker Health (770 mbh) Cluster N	1 EA	\$11,550.00	\$11,550	\$2,160.00	\$2,160	\$13,710	
Johnson Hall (1432 mbh) Cluster N	1 EA	\$17,184.00	\$17,184	\$2,880.00	\$2,880	\$20,064	
Lakeside DH (599 mbh) Cluster N	1 EA	\$8,985.00	\$8,985	\$2,160.00	\$2,160	\$11,145	
Riggs Hall (1054 mbh) Cluster N	1 EA	\$12,648.00	\$12,648	\$2,880.00	\$2,880	\$15,528	
Waterbury Hall (0 mbh) Cluster N	0 EA	\$0.00	\$0	\$0.00	\$0	\$0	
Scales Hall (0 mbh) Cluster N	0 EA	\$0.00	\$0	\$0.00	\$0	\$0	
Direct digital control of heat exchangers (est 8 pts each)	5 EA	\$3,200.00	\$16,000	\$4,800.00	\$24,000	\$40,000	

Construction Services & Secretizing RAMBOL

		MATER	MATERIAL		LABOR	
DESCRIPTION	QUANTITY	UNIT PRICE	TOTAL	UNIT PRICE	TOTAL	TOTAL
	00 F A	A7 (5, 00)	A () A A	*	* 4 4 4 9 9	
Isolation valves, automatic	20 EA	\$745.00	\$14,900	\$570.00	\$11,400	\$26,300
Flow meters, ultrasonic	5 EA	\$1,500.00	\$7,500	\$760.00	\$3,800	\$11,300
Temperature transmitters	40 EA	\$150.00	\$6,000	\$95.00	\$3,800	\$9,800
Differential pressure switch	5 EA	\$875.00	\$4,375	\$190.00	\$950	\$5,325
Chilled water piping, welded black steel, schedule 40, on yoke & roll hanger assemblies, 10' OC, (80 lf per HX)						
- 2-1/2" diameter	80 LF	\$32.00	\$2,560	\$56.30	\$4,504	\$7,064
- 3" diameter	80 LF	\$33.90	\$2,712	\$61.50	\$4,920	\$7,632
- 4" diameter	160 LF	\$48.40	\$7,744	\$72.00	\$11,520	\$19,264
- 6" diameter	80 LF	\$64.60	\$5,168	\$81.00	\$6,480	\$11,648
Chilled water fiberglass pipe insulation with all service jacket, 1-1/2" thickness for iron piping						
- 2-1/2" diameter	80 LF	\$6.90	\$552	\$10.60	\$848	\$1,400
- 3" diameter	80 LF	\$7.30	\$584	\$11.20	\$896	\$1,480
- 4" diameter	160 LF	\$8.30	\$1,328	\$13.50	\$2,160	\$3,488
- 6" diameter	80 LF	\$9.80	\$784	\$17.30	\$1,384	\$2,168
TOTAL CHILLED WATER HEAT EXCHANGE	RS AND CAMPU	S DISTRIBUTION	\$122,614		\$88,182	\$210,796
GEOTHERMAL WELLFIELD						
Wellfield piping, includes vertical piping within the wellfield and distribution connecting each well, 95 bore holes, 500' depth	1 LS	\$1,282,500	\$1,282,500	\$855,000	\$855,000	\$2,137,500
Direct digital control of wellfield (est 100 pts each)	1 LS	\$40,000.00	\$40,000	\$60,000.00	\$60,000	\$100,000
Water to water heat pumps, serving the geothermal wellfield, 1809 mbh	2 EA	\$166,000.00	\$332,000	\$21,600.00	\$43,200	\$375,200
Direct digital control of WWHP (est 10 pts each)	2 EA	\$4,000.00	\$8,000	\$6,000.00	\$12,000	\$20,000
Electrical service upgrade, 5kV, including MCC, transformers and panels	1 LS	\$200,000.00	\$200,000	\$300,000.00	\$300,000	\$500,000
4" concrete slab, vapor barrier, 6x6 6/6 welded wire mesh, 6" stone base, bulkheads and edge forms, finish, cure and protect	200 SF	\$5.50	\$1,100	\$6.10	\$1,220	\$2,320

		MATER	IAL	LABOR		
DESCRIPTION	QUANTITY	UNIT PRICE	TOTAL	UNIT PRICE	TOTAL	TOTAL
Wellfield water piping, welded black steel, schedule 40, on yoke & roll hanger assemblies, 10' OC, (from wellfield to HP)						
- 12" diameter	420 LF	\$193.10	\$81,102	\$153.50	\$64,470	\$145,572
Site utilities earthwork including excavation, select backfill and disposal on site (6' wide by 4' deep trench)	187 CY	\$48.80	\$9,126	\$25.00	\$4,675	\$13,801
Pumps, end suction base mounted, 750 gpm, 50 ft hd, 15 hp, including VFDs and accessories	3 EA	\$22,900.00	\$68,700	\$5,400.00	\$16,200	\$84,900
Direct digital control of pumps (est 5 pts each)	3 EA	\$2,000.00	\$6,000	\$3,000.00	\$9,000	\$15,000
TOTAL GEOTHERMAL WELLFIELD			\$2,028,528		\$1,365,765	\$3,394,293
HEATING THERMAL ENERGY TANKS						
Thermal energy storage tank, serving heating hot water system, 41000 gallons	1 EA	\$129,150.00	\$129,150	\$55,350.00	\$55,350	\$184,500
Direct digital control of tanks (est 14 pts each)	1 EA	\$5,600.00	\$5,600	\$8,400.00	\$8,400	\$14,000
36" concrete slab material foundation, vapor barrier, 6x6 6/6 welded wire mesh, 6" stone base, forms, finish, cure and protect	1,156 SF	\$38.30	\$44,275	\$33.00	\$38,148	\$82,423
Foundation support for the concrete pad	1 LS	\$30,000.00	\$30,000	\$20,000.00	\$20,000	\$50,000
Shoring for excavation	377 SF	\$20.00	\$7,540	\$24.70	\$9,312	\$16,852
Earthwork including excavation, select backfill and disposal on site for tank pad (half tank buried)	171 CY	\$48.80	\$8,345	\$25.00	\$4,275	\$12,620
Foundation support for the concrete pad	1 LS	\$30,000.00	\$30,000	\$20,000.00	\$20,000	\$50,000
Pumps, end suction base mounted, 270 gpm, 60 ft hd, 7.5 hp, including VFDs and accessories	2 EA	\$16,750.00	\$33,500	\$2,880.00	\$5,760	\$39,260
Direct digital control of pumps (est 5 pts each)	2 EA	\$2,000.00	\$4,000	\$3,000.00	\$6,000	\$10,000
Buried hydronic piping, schedule 10, welded black steel, factory applied polyurethane foam with exterior HDPE jacket including integral leak detection cable						
- 12" diameter	200 LF	\$195.20	\$39,040	\$195.60	\$39,120	\$78,160
Earthwork including excavation, select backfill and disposal on site for pipe	178 CY	\$48.80	\$8,686	\$25.00	\$4,450	\$13,136

	C	LUSTER N DETAIL				
		MATER	IAL	LAB	OR	
DESCRIPTION	QUANTITY	UNIT PRICE	TOTAL	UNIT PRICE	TOTAL	TOTAL
Nitrogen generator, 20 cfm	1 EA	\$20,000.00	\$20,000	\$3,800.00	\$3,800	\$23,800
TOTAL HEATING THERMAL ENERGY TANKS	3		\$360,136		\$214,615	\$574,751
DRY COOLER BOREFIELD BALANCING						
Dry cooler (187 tons)	1 EA	\$42,075.00	\$42,075	\$6,480.00	\$6,480	\$48,555
Direct digital control of dry coolers (est 15 pts each)	1 EA	\$6,000.00	\$6,000	\$9,000.00	\$9,000	\$15,000
Pumps, end suction base mounted, 750 gpm, 50 ft hd, 15 hp, including VFDs and accessories	3 EA	\$22,900.00	\$68,700	\$5,400.00	\$16,200	\$84,900
Direct digital control of pumps (est 5 pts each)	3 EA	\$2,000.00	\$6,000	\$3,000.00	\$9,000	\$15,000
Buried hydronic piping, schedule 10, welded black steel, factory applied polyurethane foam with exterior HDPE jacket including integral leak detection cable						
- 12" diameter	200 LF	\$195.20	\$39,040	\$195.60	\$39,120	\$78,160
Earthwork including excavation, select backfill and disposal on site for pipe	178 CY	\$48.80	\$8,686	\$25.00	\$4,450	\$13,136
TOTAL DRY COOLER BOREFIELD BALANCI	NG		\$170,501		\$84,250	\$254,751
PEAKING GAS BOILERS						
Boiler, natural gas, 3700 mbh, serving the hot water system	2 EA	\$74,000.00	\$148,000	\$4,320.00	\$8,640	\$156,640
Direct digital control of boilers (est 15 pts each)	2 EA	\$6,000.00	\$12,000	\$9,000.00	\$18,000	\$30,000
Heating hot water system components	1 LS	\$5,000.00	\$5,000	\$10,000.00	\$10,000	\$15,000
4" concrete slab, vapor barrier, 6x6 6/6 welded wire mesh, 6" stone base, bulkheads and edge forms, finish, cure and protect	200 SF	\$5.50	\$1,100	\$6.20	\$1,240	\$2,340
Boiler flue and vent	2 EA	\$3,000.00	\$6,000	\$2,880.00	\$5,760	\$11,760
Heating hot water piping, welded black steel, schedule 40, on yoke & roll hanger assemblies, 10' OC, (100 lf per boiler)						
- 4" diameter	200 LF	\$48.40	\$9,680	\$72.00	\$14,400	\$24,080

		MATERIAL		LABOR			
DESCRIPTION	QUANTITY	UNIT PRICE	TOTAL	UNIT PRICE	TOTAL	TOTAL	
Heating hot water fiberglass pipe insulation with all service jacket, 1-1/2" thickness for iron piping							
- 4" diameter	200 LF	\$8.30	\$1,660	\$13.50	\$2,700	\$4,360	
TOTAL PEAKING GAS BOILERS			\$183,440		\$60,740	\$244,180	
PEAKING ELECTRIC BOILERS - ADD ALTER	RNATE						
Boiler, natural gas, 2150 mbh, serving the hot water system	-2 EA	\$43,000.00	(\$86,000)	\$4,320.00	(\$8,640)	(\$94,640)	
Direct digital control of boilers (est 15 pts each)	-2 EA	\$6,000.00	(\$12,000)	\$9,000.00	(\$18,000)	(\$30,000)	
Heating hot water system components	-1 LS	\$5,000.00	(\$5,000)	\$10,000.00	(\$10,000)	(\$15,000)	
4" concrete slab, vapor barrier, 6x6 6/6 welded wire mesh, 6" stone base, bulkheads and edge forms, finish, cure and protect	-200 SF	\$5.50	(\$1,100)	\$6.20	(\$1,240)	(\$2,340)	
Boiler flue and vent	-2 EA	\$3.000.00	(\$6.000)	\$2.880.00	(\$5.760)	(\$11,760)	
Heating hot water piping, welded black steel, schedule 40, on yoke & roll hanger assemblies, 10' OC, (100 lf per boiler)			(+-,)	,	(+-))	(0.1.1,1.00)	
- 4" diameter	-200 LF	\$48.40	(\$9,680)	\$72.00	(\$14,400)	(\$24,080)	
Heating hot water fiberglass pipe insulation with all service jacket, 1-1/2" thickness for iron piping							
- 4" diameter	-200 LF	\$8.30	(\$1,660)	\$13.50	(\$2,700)	(\$4,360)	
Boiler, electric, 3700 mbh, serving the hot water system	2 EA	\$111,000.00	\$222,000	\$3,840.00	\$7,680	\$229,680	
Direct digital control of boilers (est 15 pts each)	2 EA	\$6,000.00	\$12,000	\$9,000.00	\$18,000	\$30,000	
Heating hot water system components	1 LS	\$5,000.00	\$5,000	\$10,000.00	\$10,000	\$15,000	
4" concrete slab, vapor barrier, 6x6 6/6 welded wire mesh, 6" stone base, bulkheads and edge forms, finish, cure and protect	200 SF	\$5.50	\$1,100	\$6.20	\$1,240	\$2,340	
Heating hot water piping, welded black steel, schedule 40, on yoke & roll hanger assemblies, 10' OC, (100 lf per boiler)							
- 4" diameter	200 LF	\$48.40	\$9,680	\$72.00	\$14,400	\$24,080	
Heating hot water fiberglass pipe insulation with all service jacket, 1-1/2" thickness for iron piping							

SUNY OSWEGO, NY Construction Sources a Descelling RAMBOL

		MATERIAL		LABOR		
DESCRIPTION	QUANTITY	UNIT PRICE	TOTAL	UNIT PRICE	TOTAL	TOTAL
- 4" diameter	200 LF	\$8.30	\$1,660	\$13.50	\$2,700	\$4,360
TOTAL PEAKING ELECTRIC BOILERS - ADD	ALTERNATE		\$130,000		(\$6,720)	\$123,280

CLUSTER S SUMMARY

		TOTAL	TOTAL	TOTAL	% OF
S U M M A R Y		MATERIAL	LABOR	COST	TOTAL
DOMESTIC WATER HEATING EQUIPMENT		\$37,444	\$31,616	\$69,060	0.72%
HOT WATER HEAT EXCHANGERS AND CA	AMPUS DISTRIBUTION	\$414,507	\$333,954	\$748,461	7.83%
CHILLED WATER HEAT EXCHANGERS AN	ID CAMPUS DISTRIBUTION	\$36,422	\$32,772	\$69,194	0.72%
GEOTHERMAL WELLFIELD		\$2,066,910	\$1,427,660	\$3,494,570	36.57%
HEATING THERMAL ENERGY TANKS		\$382,600	\$225,776	\$608,375	6.37%
DRY COOLER BOREFIELD BALANCING	\$195,851	\$86,410	\$282,261	2.95%	
PEAKING GAS BOILERS		\$127,879	\$50,580	\$178,459	1.87%
SUBTOTAL - CLUSTER S SUMMARY			-	\$5,450,381	100.00%
GENERAL CONDITIONS	15.0%			\$817,557	8.56%
OVERHEAD AND PROFIT	10.0%			\$626,794	6.56%
DESIGN CONTINGENCY	20.0%			\$1,378,946	14.43%
BID CONTINGENCY	5.0%			\$413,684	4.33%
PHASING	10.0%			\$868,736	9.09%
TOTAL - CLUSTER S SUMMARY			-	\$9,556,098	100.00%
PEAKING ELECTRIC BOILERS - ADD ALTE	ERNATE	\$46,000	-\$5,280	\$40,720	0.42%
GENERAL CONDITIONS	15.0%			\$6,108	0.06%
OVERHEAD AND PROFIT	10.0%			\$4,683	0.05%
DESIGN CONTINGENCY	20.0%			\$10,302	0.11%
BID CONTINGENCY	5.0%			\$3,091	0.03%
PHASING	10.0%			\$6,490	0.07%
TOTAL - PEAKING ELECTRIC BOILERS	- ADD ALTERNATE		_	\$71,394	0.74%

CLUSTER S DETAIL								
		MATER	IAL	LAB	OR			
DESCRIPTION	QUANTITY	UNIT PRICE	TOTAL	UNIT PRICE	TOTAL	TOTAL		
DOMESTIC WATER HEATING EQUIPMENT								
POINT OF USE WATER HEATERS								
Commissary Bldg Cluster S	2 EA	\$1,855.00	\$3,710	\$720.00	\$1,440	\$5,150		
Romney Field House Cluster S	4 EA	\$1,855.00	\$7,420	\$720.00	\$2,880	\$10,300		
ELECTRIC DOMESTIC WATER HEATERS W	ITH TANKS							
Maintenance Bldg (4.5 kW) Cluster S	1 EA	\$1,150.00	\$1,150	\$1,440.00	\$1,440	\$2,590		
Laker Hall (18 kW) Cluster S	1 EA	\$5,900.00	\$5,900	\$1,440.00	\$1,440	\$7,340		
DOMESTIC WATER AIR SOURCE HEAT PUM	/IP							
Domestic water piping, above slab, copper type L, 2" diameter (20 If per water piece of equipment	160 LF	\$36.60	\$5,856	\$23.10	\$3,696	\$9,552		
Domestic water piping fiberglass insulation with all service jacket, 1" thickness for copper piping, 2" diameter	160 LF	\$3.80	\$608	\$9.50	\$1,520	\$2,128		
Direct digital control of domestic water heaters(est 4 pts each)	8 EA	\$1,600.00	\$12,800	\$2,400.00	\$19,200	\$32,000		
TOTAL DOMESTIC WATER HEATING EQUIP	MENT		\$37,444		\$31,616	\$69,060		
HOT WATER HEAT EXCHANGERS AND CAN	IPUS DISTRIBUTI	ON						
Commissary Bldg (743 mbh) Cluster S	1 EA	\$11,145.00	\$11,145	\$2,160.00	\$2,160	\$13,305		
Maintenance Bldg (161 mbh) Cluster S	1 EA	\$2,415.00	\$2,415	\$1,440.00	\$1,440	\$3,855		
Laker Hall (4878 mbh) Cluster S	2 EA	\$53,658.00	\$107,316	\$4,500.00	\$9,000	\$116,316		
Romney Field House (1956 mbh) Cluster S	1 EA	\$23,472.00	\$23,472	\$2,880.00	\$2,880	\$26,352		
Pumps, end suction base mounted, 361 gpm, 90 ft hd, 15 hp, including VFDs and accessories Cluster S	2 EA	\$22,900.00	\$45,800	\$5,400.00	\$10,800	\$56,600		
Direct digital control of heat exchangers (est 8 pts each)	5 EA	\$3,200.00	\$16,000	\$4,800.00	\$24,000	\$40,000		
Direct digital control of numps (act 5 pts								

Direct digital control of pumps (est 5 pts each) 2 EA \$2,000.00 \$4,000 \$3,000.00 \$6,000 Isolation valves, automatic 20 EA \$745.00 \$14,900 \$570.00 \$11,400 \$1,500.00 \$6,000 \$760.00 \$3,040 Flow meters, ultrasonic 4 EA Temperature transmitters 40 EA \$150.00 \$6,000 \$95.00 \$3,800 Differential pressure switch 5 EA \$875.00 \$4,375 \$190.00 \$950 Heating hot water piping, welded black steel,

schedule 40, on yoke & roll hanger assemblies, 10' OC, (80 lf per HX) \$10,000

\$26,300

\$9,040

\$9,800

\$5,325

		MATER	MATERIAL		LABOR	
DESCRIPTION	QUANTITY	UNIT PRICE	TOTAL	UNIT PRICE	TOTAL	TOTAL
- 2-1/2" diameter	160 LF	\$32.00	\$5,119	\$56.30	\$9,008	\$14,127
- 4" diameter	80 LF	\$48.40	\$3,872	\$72.00	\$5,760	\$9,632
- 6" diameter	80 LF	\$64.60	\$5,168	\$81.00	\$6,480	\$11,648
Heating hot water fiberglass pipe insulation with all service jacket, 1-1/2" thickness for iron piping						
- 2-1/2" diameter	160 LF	\$6.90	\$1,104	\$10.60	\$1,696	\$2,800
- 4" diameter	80 LF	\$8.30	\$664	\$13.50	\$1,080	\$1,744
- 6" diameter	80 LF	\$9.80	\$784	\$17.30	\$1,384	\$2,168
Buried hydronic piping, schedule 10, welded black steel, factory applied polyurethane foam with exterior HDPE jacket including integral leak detection cable						
- 3" diameter Cluster S	1,402 LF	\$39.80	\$55,800	\$81.60	\$114,403	\$170,203
- 4" diameter Cluster S	782 LF	\$47.30	\$36,989	\$92.40	\$72,257	\$109,245
- 5" diameter Cluster S	208 LF	\$56.30	\$11,710	\$100.50	\$20,904	\$32,614
Site utilities earthwork including excavation, select backfill and disposal on site (6' wide by 4' deep trench), single trench for chilled and hot water	1,063 CY	\$48.80	\$51,874	\$24.00	\$25,512	\$77,386
TOTAL HOT WATER HEAT EXCHANGERS	AND CAMPUS DIS	TRIBUTION	\$414,507		\$333,954	\$748,461
CHILLED WATER HEAT EXCHANGERS AND	D CAMPUS DISTRI	BUTION				
Commissary Bldg (0 mbh) Cluster S	0 EA	\$0.00	\$0	\$0.00	\$0	\$0
Maintenance Bldg (0 mbh) Cluster S	0 EA	\$0.00	\$0	\$0.00	\$0	\$0
Laker Hall (394 mbh) Cluster S	2 EA	\$5,910.00	\$11,820	\$2,160.00	\$4,320	\$16,140
Romney Field House (0 mbh) Cluster S	0 EA	\$0.00	\$0	\$0.00	\$0	\$0
Direct digital control of heat exchangers (est 8 pts each)	2 EA	\$3,200.00	\$6,400	\$4,800.00	\$9,600	\$16,000
Isolation valves, automatic	8 EA	\$745.00	\$5,960	\$570.00	\$4,560	\$10,520
Flow meters, ultrasonic	1 EA	\$1,500.00	\$1,500	\$760.00	\$760	\$2,260
Temperature transmitters	16 EA	\$150.00	\$2,400	\$95.00	\$1,520	\$3,920
Differential pressure switch	2 EA	\$875.00	\$1,750	\$190.00	\$380	\$2,130
Chilled water piping, welded black steel, schedule 40, on yoke & roll hanger assemblies, 10' OC, (80 lf per HX)						
- 3" diameter	160 LF	\$33.90	\$5,424	\$61.50	\$9,840	\$15,264

CLUSTER S DETAIL

		MATERIAL		LABOR		
DESCRIPTION	QUANTITY	UNIT PRICE	TOTAL	UNIT PRICE	TOTAL	TOTAL
Chilled water fiberglass pipe insulation with all service jacket, 1-1/2" thickness for iron piping						
- 3" diameter	160 LF	\$7.30	\$1,168	\$11.20	\$1,792	\$2,960
TOTAL CHILLED WATER HEAT EXCHANGE	RS AND CAMPUS		\$36,422		\$32,772	\$69,194
GEOTHERMAL WELLFIELD						
Wellfield piping, includes vertical piping within the wellfield and distribution connecting each well, 107 bore holes, 500' depth	1 LS	\$1,444,500	\$1,444,500	\$963,000	\$963,000	\$2,407,500
Direct digital control of wellfield (est 100 pts each)	1 LS	\$40,000.00	\$40,000	\$60,000.00	\$60,000	\$100,000
Water to water heat pumps, serving the geothermal wellfield, 1480 mbh	2 EA	\$136,000.00	\$272,000	\$21,600.00	\$43,200	\$315,200
Direct digital control of WWHP (est 10 pts each)	2 EA	\$4,000.00	\$8,000	\$6,000.00	\$12,000	\$20,000
Electrical service upgrade, 5kV, including MCC, transformers and panels	1 LS	\$200,000.00	\$200,000	\$300,000.00	\$300,000	\$500,000
4" concrete slab, vapor barrier, 6x6 6/6 welded wire mesh, 6" stone base, bulkheads and edge forms, finish, cure and protect	200 SF	\$5.50	\$1,100	\$6.10	\$1,220	\$2,320
Wellfield water piping, welded black steel, schedule 40, on yoke & roll hanger assemblies, 10' OC, (from wellfield to HP)						
- 12" diameter	140 LF	\$193.10	\$27,034	\$153.50	\$21,490	\$48,524
Site utilities earthwork including excavation, select backfill and disposal on site (6' wide by 4' deep trench)	62 CY	\$48.80	\$3,026	\$25.00	\$1,550	\$4,576
Pumps, end suction base mounted, 600 gpm, 50 ft hd, 15 hp, including VFDs and accessories	3 EA	\$21,750.00	\$65,250	\$5,400.00	\$16,200	\$81,450
Direct digital control of pumps (est 5 pts each)	3 EA	\$2,000.00	\$6,000	\$3,000.00	\$9,000	\$15,000
TOTAL GEOTHERMAL WELLFIELD			\$2,066,910		\$1,427,660	\$3,494,570

HEATING THERMAL ENERGY TANKS

Gassinuction Services & Senselling RAMBOL

		MATERIAL		LABOR		
DESCRIPTION	QUANTITY	UNIT PRICE	TOTAL	UNIT PRICE	TOTAL	TOTAL
Thermal energy storage tank, serving heating hot water system, 48000 gallons	1 EA	\$151,200.00	\$151,200	\$64,800.00	\$64,800	\$216,000
Direct digital control of tanks (est 14 pts each)	1 EA	\$5,600.00	\$5,600	\$8,400.00	\$8,400	\$14,000
36" concrete slab material foundation, vapor barrier, 6x6 6/6 welded wire mesh, 6" stone base. forms. finish. cure and protect	1.156 SF	\$38.30	\$44.275	\$33.00	\$38.148	\$82.423
Foundation support for the concrete pad	115	\$30,000,00	\$30,000	\$20,000,00	\$20,000	\$50,000
Shoring for excavation	424 SF	\$20.00	\$8 480	\$24 70	\$10 473	\$18,953
Earthwork including excavation, select backfill and disposal on site for tank pad (balf tank buried)	193 CV	\$48.80	\$9,418	\$25.00	\$4,825	\$14.243
Foundation support for the concrete and	119	\$30,000,00	¢30,000	\$20.000	¢20,000	\$14,245
Pumps, end suction base mounted, 220 gpm, 60 ft hd, 7.5 hp, including VFDs and	2 64	\$30,000.00	\$30,000	\$20,000.00	\$5,760	\$37,660
Direct digital control of pumps (est 5 pts each)	2 EA	\$2,000.00	\$4,000	\$3,000.00	\$6,000	\$10,000
Buried hydronic piping, schedule 10, welded black steel, factory applied polyurethane foam with exterior HDPE jacket including integral leak detection cable						
- 12" diameter	200 LF	\$195.20	\$39,040	\$195.60	\$39,120	\$78,160
Earthwork including excavation, select backfill and disposal on site for pipe	178 CY	\$48.80	\$8,686	\$25.00	\$4,450	\$13,136
Nitrogen generator, 20 cfm	1 EA	\$20,000.00	\$20,000	\$3,800.00	\$3,800	\$23,800
TOTAL HEATING THERMAL ENERGY TANKS	3		\$382,600		\$225,776	\$608,375
DRY COOLER BOREFIELD BALANCING						
Dry cooler (315 tons)	1 EA	\$70,875.00	\$70,875	\$8,640.00	\$8,640	\$79,515
Direct digital control of dry coolers (est 15 pts each)	1 EA	\$6,000.00	\$6,000	\$9,000.00	\$9,000	\$15,000
Pumps, end suction base mounted, 600 gpm, 50 ft hd, 15 hp, including VFDs and accessories	3 EA	\$21,750.00	\$65,250	\$5,400.00	\$16,200	\$81,450
Direct digital control of pumps (est 5 pts each)	3 EA	\$2,000.00	\$6,000	\$3,000.00	\$9,000	\$15,000

		MATERIAL		LABOR			
DESCRIPTION	QUANTITY	UNIT PRICE	TOTAL	UNIT PRICE	TOTAL	TOTAL	
Buried hydronic piping, schedule 10, welded black steel, factory applied polyurethane foam with exterior HDPE jacket including integral leak detection cable							
- 12" diameter	200 LF	\$195.20	\$39,040	\$195.60	\$39,120	\$78,160	
Earthwork including excavation, select backfill and disposal on site for pipe	178 CY	\$48.80	\$8,686	\$25.00	\$4,450	\$13,136	
TOTAL DRY COOLER BOREFIELD BALANC	ING		\$195,851		\$86,410	\$282,261	
PEAKING GAS BOILERS							
Boiler, natural gas, 2500 mbh, serving the hot water system	2 EA	\$50,000.00	\$100,000	\$4,320.00	\$8,640	\$108,640	
Direct digital control of boilers (est 15 pts each)	2 EA	\$6,000.00	\$12,000	\$9,000.00	\$18,000	\$30,000	
Heating hot water system components	1 LS	\$3,000.00	\$3,000	\$5,000.00	\$5,000	\$8,000	
4" concrete slab, vapor barrier, 6x6 6/6 welded wire mesh, 6" stone base, bulkheads and edge forms, finish, cure and protect	200 SE	\$5.50	\$1 100	\$6 20	\$1 240	\$2 340	
Boiler flue and vent	200 GI	\$2,000,00	\$4,000	\$2 160 00	\$4 320	\$8 320	
Heating hot water piping, welded black steel, schedule 40, on yoke & roll hanger assemblies, 10' OC, (100 lf per boiler)		Ψ2,000.00	Ф 1,000	Ψ2,100.00	¢1,020	\$0,020	
- 2-1/2" diameter	200 LF	\$32.00	\$6,399	\$56.30	\$11,260	\$17,659	
Heating hot water fiberglass pipe insulation with all service jacket, 1-1/2" thickness for iron piping							
- 2-1/2" diameter	200 LF	\$6.90	\$1,380	\$10.60	\$2,120	\$3,500	
TOTAL PEAKING GAS BOILERS			\$127,879		\$50,580	\$178,459	
PEAKING ELECTRIC BOILERS - ADD ALTER	RNATE						
Boiler, natural gas, 2500 mbh, serving the hot water system	-2 EA	\$50,000.00	(\$100,000)	\$4,320.00	(\$8,640)	(\$108,640)	
Direct digital control of boilers (est 15 pts each)	-2 EA	\$6,000.00	(\$12,000)	\$9,000.00	(\$18,000)	(\$30,000)	
Heating hot water system components	-1 LS	\$3,000.00	(\$3,000)	\$5,000.00	(\$5,000)	(\$8,000)	
		MATER	IAL	LABOR			
---	-----------	-------------	-----------	------------	------------	------------	--
DESCRIPTION	QUANTITY	UNIT PRICE	TOTAL	UNIT PRICE	TOTAL	TOTAL	
4" concrete slab, vapor barrier, 6x6 6/6 welded wire mesh, 6" stone base, bulkheads and edge forms, finish, cure and protect	-200 SF	\$5.50	(\$1,100)	\$6.20	(\$1,240)	(\$2,340)	
Boiler flue and vent	-2 EA	\$2,000.00	(\$4,000)	\$2,160.00	(\$4,320)	(\$8,320)	
Heating hot water piping, welded black steel, schedule 40, on yoke & roll hanger assemblies, 10' OC, (100 lf per boiler)							
- 2-1/2" diameter	-200 LF	\$32.00	(\$6,399)	\$56.30	(\$11,260)	(\$17,659)	
Heating hot water fiberglass pipe insulation with all service jacket, 1-1/2" thickness for iron piping							
- 2-1/2" diameter	-200 LF	\$6.90	(\$1,380)	\$10.60	(\$2,120)	(\$3,500)	
Boiler, electric, 2500 mbh, serving the hot water system	2 EA	\$75,000.00	\$150,000	\$3,840.00	\$7,680	\$157,680	
Direct digital control of boilers (est 15 pts each)	2 EA	\$6,000.00	\$12,000	\$9,000.00	\$18,000	\$30,000	
Heating hot water system components	1 LS	\$3,000.00	\$3,000	\$5,000.00	\$5,000	\$8,000	
4" concrete slab, vapor barrier, 6x6 6/6 welded wire mesh, 6" stone base, bulkheads and edge forms, finish, cure and protect	200 SF	\$5.50	\$1,100	\$6.20	\$1,240	\$2,340	
Heating hot water piping, welded black steel, schedule 40, on yoke & roll hanger assemblies, 10' OC, (100 lf per boiler)							
- 2-1/2" diameter	200 LF	\$32.00	\$6,399	\$56.30	\$11,260	\$17,659	
Heating hot water fiberglass pipe insulation with all service jacket, 1-1/2" thickness for iron piping							
- 2-1/2" diameter	200 LF	\$6.90	\$1,380	\$10.60	\$2,120	\$3,500	
TOTAL PEAKING ELECTRIC BOILERS - ADD	ALTERNATE		\$46,000		(\$5,280)	\$40,720	

PROJECT NO: 23-0287a CAMPUS ENERGY MASTER PLAN ESTIMATE PUBLISHED: 06/08/2023 REVISION 1: 08/09/2023

CLUSTER W SUMMARY

		TOTAL	TOTAL	TOTAL	% OF
SUMMARY		MATERIAL	LABOR	COST	TOTAL
DOMESTIC WATER HEATING EQUIPMENT		\$235,126	\$105,124	\$340,250	2.07%
HOT WATER HEAT EXCHANGERS AND CA	AMPUS DISTRIBUTION	\$1,024,480	\$938,977	\$1,963,458	11.97%
CHILLED WATER HEAT EXCHANGERS AN	D CAMPUS DISTRIBUTION	\$361,774	\$343,876	\$705,650	4.30%
GEOTHERMAL WELLFIELD		\$2,992,022	\$1,969,265	\$4,961,287	30.25%
HEATING THERMAL ENERGY TANKS		\$497,451	\$283,926	\$781,377	4.76%
DRY COOLER BOREFIELD BALANCING		\$190,876	\$80,170	\$271,046	1.65%
PEAKING GAS BOILERS		\$227,762	\$105,056	\$332,818	2.03%
SUBTOTAL - CLUSTER W SUMMARY			-	\$9,355,886	100.00%
GENERAL CONDITIONS	15.0%			\$1,403,383	8.56%
OVERHEAD AND PROFIT	10.0%			\$1,075,927	6.56%
DESIGN CONTINGENCY	20.0%			\$2,367,039	14.43%
BID CONTINGENCY	5.0%			\$710,112	4.33%
PHASING	10.0%			\$1,491,235	9.09%
TOTAL - CLUSTER W SUMMARY			-	\$16,403,582	100.00%
PEAKING ELECTRIC BOILERS - ADD ALTE	RNATE	\$23,678	-\$46,716	-\$23,038	-0.14%
GENERAL CONDITIONS	15.0%			-\$3,456	-0.02%
OVERHEAD AND PROFIT	10.0%			-\$2,649	-0.02%
DESIGN CONTINGENCY	20.0%			-\$5,829	-0.04%
BID CONTINGENCY	5.0%			-\$1,749	-0.01%
PHASING	10.0%			-\$3,672	-0.02%
TOTAL - PEAKING ELECTRIC BOILERS	- ADD ALTERNATE		-	-\$40,392	-0.25%

		MATERIAL		LABOR			
DESCRIPTION	QUANTITY	UNIT PRICE	TOTAL	UNIT PRICE	TOTAL	TOTAL	
DOMESTIC WATER HEATING EQUIPMEN	г						
ELECTRIC DOMESTIC WATER HEATERS	WITH TANKS						
Littlepage DH (4.5 kW) Cluster W	1 EA	\$1,150.00	\$1,150	\$1,440.00	\$1,440	\$2,590	
DOMESTIC WATER AIR SOURCE HEAT P	JMP						
Pathfinder DH (300 mbh) Cluster W	2 EA	\$17,500.00	\$35,000	\$1,800.00	\$3,600	\$38,600	
Seneca Hall (400 mbh) Cluster W	1 EA	\$21,420.00	\$21,420	\$1,800.00	\$1,800	\$23,220	
Cayuga Hall (300 mbh) Cluster W	1 EA	\$17,500.00	\$17,500	\$1,800.00	\$1,800	\$19,300	
Onondaga Hall (400 mbh) Cluster W	1 EA	\$21,420.00	\$21,420	\$1,800.00	\$1,800	\$23,220	
Oneida Hall (300 mbh) Cluster W	1 EA	\$17,500.00	\$17,500	\$1,800.00	\$1,800	\$19,300	
DOMESTIC WATER STORAGE TANKS							
Townhouse A (50 gallon) Cluster W	5 EA	\$930.00	\$4,650	\$540.00	\$2,700	\$7,350	
Townhouse B (50 gallon) Cluster W	5 EA	\$930.00	\$4,650	\$540.00	\$2,700	\$7,350	
Townhouse C (50 gallon) Cluster W	5 EA	\$930.00	\$4,650	\$540.00	\$2,700	\$7,350	
Townhouse D (50 gallon) Cluster W	5 EA	\$930.00	\$4,650	\$540.00	\$2,700	\$7,350	
Townhouse E (50 gallon) Cluster W	5 EA	\$930.00	\$4,650	\$540.00	\$2,700	\$7,350	
Townhouse F (50 gallon) Cluster W	5 EA	\$930.00	\$4,650	\$540.00	\$2,700	\$7,350	
Townhouse G (50 gallon) Cluster W	5 EA	\$930.00	\$4,650	\$540.00	\$2,700	\$7,350	
Townhouse H (50 gallon) Cluster W	5 EA	\$930.00	\$4,650	\$540.00	\$2,700	\$7,350	
Townhouse I (50 gallon) Cluster W	5 EA	\$930.00	\$4,650	\$540.00	\$2,700	\$7,350	
Townhouse J (50 gallon) Cluster W	5 EA	\$930.00	\$4,650	\$540.00	\$2,700	\$7,350	
Townhouse K (50 gallon) Cluster W	5 EA	\$930.00	\$4,650	\$540.00	\$2,700	\$7,350	
Townhouse L (50 gallon) Cluster W	5 EA	\$930.00	\$4,650	\$540.00	\$2,700	\$7,350	
Domestic water piping, above slab, copper type L, 2" diameter (20 If per water piece of equipment	1,340 LF	\$36.60	\$49,044	\$23.10	\$30,954	\$79,998	
Domestic water piping fiberglass insulation with all service jacket, 1" thickness for copper piping, 2" diameter	1,340 LF	\$3.80	\$5,092	\$9.50	\$12,730	\$17,822	
Direct digital control of domestic water heaters(est 4 pts each)	7 EA	\$1,600.00	\$11,200	\$2,400.00	\$16,800	\$28,000	
TOTAL DOMESTIC WATER HEATING EQU	IPMENT		\$235,126		\$105,124	\$340.250	

HOT WATER HEAT EXCHANGERS AND CAMPUS DISTRIBUTION

Pathfinder DH (779 mbh) Cluster W	1 EA	\$11,685.00	\$11,685	\$2,160.00	\$2,160	\$13,845
-----------------------------------	------	-------------	----------	------------	---------	----------

SUNY OSWEGO

Construction Services & Serveriting RAMBOL

		MATERI	AL	LABO	OR	
DESCRIPTION	QUANTITY	UNIT PRICE	TOTAL	UNIT PRICE	TOTAL	TOTAL
Seneca Hall (2559 mbh) Cluster W	2 EA	\$30,708.00	\$61,416	\$3,600.00	\$7,200	\$68,616
Cayuga Hall (1786 mbh) Cluster W	2 EA	\$21,432.00	\$42,864	\$2,880.00	\$5,760	\$48,624
Onondaga Hall (2569 mbh) Cluster W	2 EA	\$30,828.00	\$61,656	\$3,600.00	\$7,200	\$68,856
Littlepage DH (583 mbh) Cluster W	1 EA	\$8,745.00	\$8,745	\$2,160.00	\$2,160	\$10,905
Oneida Hall (1723 mbh) Cluster W	2 EA	\$20,676.00	\$41,352	\$2,880.00	\$5,760	\$47,112
Townhouse A (119 mbh) Cluster W	1 EA	\$1,785.00	\$1,785	\$1,440.00	\$1,440	\$3,225
Townhouse B (94 mbh) Cluster W	1 EA	\$1,410.00	\$1,410	\$1,440.00	\$1,440	\$2,850
Townhouse C (147 mbh) Cluster W	1 EA	\$2,205.00	\$2,205	\$1,440.00	\$1,440	\$3,645
Townhouse D (147 mbh) Cluster W	1 EA	\$2,205.00	\$2,205	\$1,440.00	\$1,440	\$3,645
Townhouse E (185 mbh) Cluster W	1 EA	\$2,775.00	\$2,775	\$1,440.00	\$1,440	\$4,215
Townhouse F (213 mbh) Cluster W	1 EA	\$3,195.00	\$3,195	\$1,440.00	\$1,440	\$4,635
Townhouse G (111 mbh) Cluster W	1 EA	\$1,665.00	\$1,665	\$1,440.00	\$1,440	\$3,105
Townhouse H (140 mbh) Cluster W	1 EA	\$2,100.00	\$2,100	\$1,440.00	\$1,440	\$3,540
Townhouse I (172 mbh) Cluster W	1 EA	\$2,580.00	\$2,580	\$1,440.00	\$1,440	\$4,020
Townhouse J (172 mbh) Cluster W	1 EA	\$2,580.00	\$2,580	\$1,440.00	\$1,440	\$4,020
Townhouse K (228 mbh) Cluster W	1 EA	\$420.00	\$420	\$1,440.00	\$1,440	\$1,860
Townhouse L (172 mbh) Cluster W	1 EA	\$2,580.00	\$2,580	\$1,440.00	\$1,440	\$4,020
Pumps, end suction base mounted, 725 gpm, 143 ft hd, 40 hp, including VFDs and accessories Cluster W	2 EA	\$37,625.00	\$75,250	\$9,000.00	\$18,000	\$93,250
Direct digital control of heat exchangers (est 8 pts each)	22 EA	\$3,200.00	\$70,400	\$4,800.00	\$105,600	\$176,000
Direct digital control of pumps (est 5 pts each)	2 EA	\$2,000.00	\$4,000	\$3,000.00	\$6,000	\$10,000
Isolation valves, automatic	88 EA	\$745.00	\$65,560	\$570.00	\$50,160	\$115,720
Flow meters, ultrasonic	18 EA	\$1,500.00	\$27,000	\$760.00	\$13,680	\$40,680
Temperature transmitters	176 EA	\$150.00	\$26,400	\$95.00	\$16,720	\$43,120
Differential pressure switch	22 EA	\$875.00	\$19,250	\$190.00	\$4,180	\$23,430
Heating hot water piping, welded black steel, schedule 40, on yoke & roll hanger assemblies, 10' OC, (80 If per HX)						
- 2-1/2" diameter	1,040 LF	\$32.00	\$33,275	\$56.30	\$58,552	\$91,827
- 3" diameter	640 LF	\$33.90	\$21,696	\$61.50	\$39,360	\$61,056
Heating hot water fiberglass pipe insulation with all service jacket, 1-1/2" thickness for iron piping						
- 2-1/2" diameter	1,040 LF	\$6.90	\$7,176	\$10.60	\$11,024	\$18,200

		MATER	AL	LAB	OR	
DESCRIPTION	QUANTITY	UNIT PRICE	TOTAL	UNIT PRICE	TOTAL	TOTAL
- 3" diameter	640 LF	\$7.30	\$4,672	\$11.20	\$7,168	\$11,840
Buried hydronic piping, schedule 10, welded black steel, factory applied polyurethane foam with exterior HDPE jacket including integral leak detection cable						
- 3" diameter Cluster W	124 LF	\$39.80	\$4,935	\$81.60	\$10,118	\$15,054
- 4" diameter Cluster W	1,984 LF	\$47.30	\$93,843	\$92.40	\$183,322	\$277,165
- 5" diameter Cluster W	44 LF	\$56.30	\$2,477	\$100.50	\$4,422	\$6,899
- 6" diameter Cluster W	2,102 LF	\$62.80	\$132,006	\$106.50	\$223,863	\$355,869
- 8" diameter Cluster W	702 LF	\$108.00	\$75,816	\$123.10	\$86,416	\$162,232
Site utilities earthwork including excavation, select backfill and disposal on site (6' wide by 4' deep trench), single trench for chilled and hot water	2,203 CY	\$48.80	\$107,506	\$24.00	\$52,872	\$160,378
TOTAL HOT WATER HEAT EXCHANGERS	AND CAMPUS DIS		\$1,024,480		\$938,977	\$1,963,458
CHILLED WATER HEAT EXCHANGERS AND) CAMPUS DISTRI	BUTION				
Pathfinder DH (728 mbh) Cluster W	1 EA	\$10,920.00	\$10,920	\$2,160.00	\$2,160	\$13,080

Pathfinder DH (728 mbh) Cluster W	1 EA	\$10,920.00	\$10,920	\$2,160.00	\$2,160	\$13,080
Seneca Hall (232 mbh) Cluster W	2 EA	\$3,480.00	\$6,960	\$1,440.00	\$2,880	\$9,840
Cayuga Hall (160 mbh) Cluster W	2 EA	\$2,400.00	\$4,800	\$1,440.00	\$2,880	\$7,680
Onondaga Hall (232 mbh) Cluster W	2 EA	\$3,480.00	\$6,960	\$1,440.00	\$2,880	\$9,840
Littlepage DH (605 mbh) Cluster W	1 EA	\$9,075.00	\$9,075	\$2,160.00	\$2,160	\$11,235
Oneida Hall (160 mbh) Cluster W	2 EA	\$2,400.00	\$4,800	\$1,440.00	\$2,880	\$7,680
Townhouse A (180 mbh) Cluster W	1 EA	\$2,130.00	\$2,130	\$1,440.00	\$1,440	\$3,570
Townhouse B (142 mbh) Cluster W	1 EA	\$2,130.00	\$2,130	\$1,440.00	\$1,440	\$3,570
Townhouse C (221 mbh) Cluster W	1 EA	\$3,315.00	\$3,315	\$1,440.00	\$1,440	\$4,755
Townhouse D (221 mbh) Cluster W	1 EA	\$3,315.00	\$3,315	\$1,440.00	\$1,440	\$4,755
Townhouse E (279 mbh) Cluster W	1 EA	\$4,185.00	\$4,185	\$1,440.00	\$1,440	\$5,625
Townhouse F (320 mbh) Cluster W	1 EA	\$4,800.00	\$4,800	\$2,160.00	\$2,160	\$6,960
Townhouse G (146 mbh) Cluster W	1 EA	\$2,190.00	\$2,190	\$1,440.00	\$1,440	\$3,630
Townhouse H (185 mbh) Cluster W	1 EA	\$2,775.00	\$2,775	\$1,440.00	\$1,440	\$4,215
Townhouse I (227 mbh) Cluster W	1 EA	\$3,405.00	\$3,405	\$1,440.00	\$1,440	\$4,845
Townhouse J (228 mbh) Cluster W	1 EA	\$3,420.00	\$3,420	\$1,440.00	\$1,440	\$4,860
Townhouse K (301 mbh) Cluster W	1 EA	\$4,515.00	\$4,515	\$1,440.00	\$1,440	\$5,955

CLUSTER	W DETAIL
---------	----------

		MATER	IAL	LAB	OR	
DESCRIPTION	QUANTITY	UNIT PRICE	TOTAL	UNIT PRICE	TOTAL	TOTAL
Townhouse L (227 mbh) Cluster W	1 EA	\$3,405.00	\$3,405	\$1,440.00	\$1,440	\$4,845
Direct digital control of heat exchangers (est 8 pts each)	22 EA	\$3,200.00	\$70,400	\$4,800.00	\$105,600	\$176,000
Isolation valves, automatic	88 EA	\$745.00	\$65,560	\$570.00	\$50,160	\$115,720
Flow meters, ultrasonic	18 EA	\$1,500.00	\$27,000	\$760.00	\$13,680	\$40,680
Temperature transmitters	176 EA	\$150.00	\$26,400	\$95.00	\$16,720	\$43,120
Differential pressure switch	22 EA	\$875.00	\$19,250	\$190.00	\$4,180	\$23,430
Chilled water piping, welded black steel, schedule 40, on yoke & roll hanger assemblies, 10' OC, (80 lf per HX)						
- 2-1/2" diameter	1,600 LF	\$32.00	\$51,192	\$56.30	\$90,080	\$141,272
- 3" diameter	80 LF	\$33.90	\$2,712	\$61.50	\$4,920	\$7,632
- 4" diameter	80 LF	\$48.40	\$3,872	\$72.00	\$5,760	\$9,632
Chilled water fiberglass pipe insulation with all service jacket, 1-1/2" thickness for iron piping						
- 2-1/2" diameter	1,600 LF	\$6.90	\$11,040	\$10.60	\$16,960	\$28,000
- 3" diameter	80 LF	\$7.30	\$584	\$11.20	\$896	\$1,480
- 4" diameter	80 LF	\$8.30	\$664	\$13.50	\$1,080	\$1,744
TOTAL CHILLED WATER HEAT EXCHANGE	RS AND CAMPUS		\$361,774		\$343,876	\$705,650
GEOTHERMAL WELLFIELD						
Wellfield piping, includes vertical piping within the wellfield and distribution connecting each well, 107 bore holes, 500' depth	1 LS	\$2,160,000	\$2,160.000	\$1.440.000	\$1,440,000	\$3 600 000
Direct digital control of wellfield (est 100 pts each)	1 LS	\$40,000.00	\$40,000	\$60,000.00	\$60,000	\$100,000
Water to water heat pumps, serving the geothermal wellfield, 2138 mbh	2 EA	\$196,000.00	\$392,000	\$25,920.00	\$51,840	\$443,840
Direct digital control of WWHP (est 10 pts each)	2 EA	\$4,000.00	\$8,000	\$6,000.00	\$12,000	\$20,000
Electrical service upgrade, 5kV, including MCC, transformers and panels	1 LS	\$200,000.00	\$200,000	\$300,000.00	\$300,000	\$500,000
4" concrete slab, vapor barrier, 6x6 6/6 welded wire mesh, 6" stone base, bulkheads and edge forms, finish, cure and protect	200 SF	\$5.50	\$1,100	\$6.10	\$1,220	\$2,320

		MATERIAL		LABOR			
DESCRIPTION	QUANTITY	UNIT PRICE	TOTAL	UNIT PRICE	TOTAL	TOTAL	
Wellfield water piping, welded black steel, schedule 40, on yoke & roll hanger assemblies, 10' OC, (from wellfield to HP)							
- 12" diameter	480 LF	\$193.10	\$92,688	\$153.50	\$73,680	\$166,368	
Site utilities earthwork including excavation, select backfill and disposal on site (6' wide by 4' deep trench)	213 CY	\$48.80	\$10,394	\$25.00	\$5,325	\$15,719	
Pumps, end suction base mounted, 900 gpm, 50 ft hd, 20 hp, including VFDs and accessories	3 EA	\$27,280.00	\$81,840	\$5,400.00	\$16,200	\$98,040	
Direct digital control of pumps (est 5 pts each)	3 EA	\$2,000.00	\$6,000	\$3,000.00	\$9,000	\$15,000	
TOTAL GEOTHERMAL WELLFIELD			\$2,992,022		\$1,969,265	\$4,961,287	
HEATING THERMAL ENERGY TANKS							
Thermal energy storage tank, serving heating hot water system, 72000 gallons	1 EA	\$226,800.00	\$226,800	\$97,200.00	\$97,200	\$324,000	
Direct digital control of tanks (est 14 pts each)	1 EA	\$5,600.00	\$5,600	\$8,400.00	\$8,400	\$14,000	
36" concrete slab material foundation, vapor barrier, 6x6 6/6 welded wire mesh, 6" stone base, forms, finish, cure and protect	1,600 SF	\$38.30	\$61,280	\$33.00	\$52,800	\$114,080	
Foundation support for the concrete pad	1 LS	\$30,000.00	\$30,000	\$20,000.00	\$20,000	\$50,000	
Shoring for excavation	565 SF	\$20.00	\$11,300	\$24.70	\$13,956	\$25,256	
Earthwork including excavation, select backfill and disposal on site for tank pad (half tank buried)	296 CY	\$48.80	\$14,445	\$25.00	\$7,400	\$21,845	
Foundation support for the concrete pad	1 LS	\$30,000.00	\$30,000	\$20,000.00	\$20,000	\$50,000	
Pumps, end suction base mounted, 450 gpm, 60 ft hd, 15 hp, including VFDs and accessories	2 EA	\$23,150.00	\$46,300	\$5,400.00	\$10,800	\$57,100	
Direct digital control of pumps (est 5 pts each)	2 EA	\$2,000.00	\$4,000	\$3,000.00	\$6,000	\$10,000	
Buried hydronic piping, schedule 10, welded black steel, factory applied polyurethane foam with exterior HDPE jacket including integral leak detection cable							
- 12" diameter	200 LF	\$195.20	\$39,040	\$195.60	\$39,120	\$78,160	
Earthwork including excavation, select backfill and disposal on site for pipe	178 CY	\$48.80	\$8,686	\$25.00	\$4,450	\$13,136	

	C	LUSTER W DETAIL				
		MATER	IAL	LABOR		
DESCRIPTION	QUANTITY	UNIT PRICE	TOTAL	UNIT PRICE	TOTAL	TOTAL
Nitrogen generator, 20 cfm	1 EA	\$20,000.00	\$20,000	\$3,800.00	\$3,800	\$23,800
TOTAL HEATING THERMAL ENERGY TANKS	5		\$497,451		\$283,926	\$781,377
DRY COOLER BOREFIELD BALANCING						
Dry cooler (386 tons)	1 EA	\$86,850.00	\$86,850	\$10,800.00	\$10,800	\$97,650
Direct digital control of dry coolers (est 15 pts each)	1 EA	\$6,000.00	\$6,000	\$9,000.00	\$9,000	\$15,000
Pumps, end suction base mounted, 450 gpm, 60 ft hd, 15 hp, including VFDs and accessories	2 EA	\$23,150.00	\$46,300	\$5,400.00	\$10,800	\$57,100
Direct digital control of pumps (est 5 pts each)	2 EA	\$2,000.00	\$4,000	\$3,000.00	\$6,000	\$10,000
Buried hydronic piping, schedule 10, welded black steel, factory applied polyurethane foam with exterior HDPE jacket including integral leak detection cable						
- 12" diameter	200 LF	\$195.20	\$39,040	\$195.60	\$39,120	\$78,160
Earthwork including excavation, select backfill and disposal on site for pipe	178 CY	\$48.80	\$8,686	\$25.00	\$4,450	\$13,136
TOTAL DRY COOLER BOREFIELD BALANCI	NG		\$190,876		\$80,170	\$271,046
PEAKING GAS BOILERS						
Boiler, natural gas, 3700 mbh, serving the hot water system	2 EA	\$74,000.00	\$148,000	\$6,480.00	\$12,960	\$160,960
Direct digital control of boilers (est 15 pts each)	2 EA	\$6,000.00	\$12,000	\$9,000.00	\$18,000	\$30,000
Heating hot water system components	1 LS	\$5,000.00	\$5,000	\$10,000.00	\$10,000	\$15,000
4" concrete slab, vapor barrier, 6x6 6/6 welded wire mesh, 6" stone base, bulkheads and edge forms, finish, cure and protect	200 SF	\$5.50	\$1,100	\$6.20	\$1,240	\$2,340
Boiler flue and vent	2 EA	\$3,000.00	\$6,000	\$2,880.00	\$5.760	\$11.760
Natural gas piping, above slab, welded black steel, schedule 40, 10" diameter	200 LF	\$166.30	\$33,260	\$122.90	\$24,580	\$57,840
Natural gas distribution piping, below grade, polyethylene yellow PE2406, stick 10" diameter, including earthwork	10 LF	\$106.20	\$1,062	\$41.60	\$416	\$1,478

		MATER	IAL	LAE	BOR	
DESCRIPTION	QUANTITY	UNIT PRICE	TOTAL	UNIT PRICE	TOTAL	TOTAL
Natural gas piping system accessories Heating hot water piping, welded black steel, schedule 40, on voke & roll banger	1 LS	\$10,000.00	\$10,000	\$15,000.00	\$15,000	\$25,000
- 4" diameter	200 LF	\$48.40	\$9,680	\$72.00	\$14,400	\$24,080
with all service jacket, 1-1/2" thickness for iron piping - 4" diameter	200 LF	\$8.30	\$1.660	\$13.50	\$2.700	\$4,360
TOTAL PEAKING GAS BOILERS			\$227,762	¢10.00	\$105,056	\$332,818

PEAKING ELECTRIC BOILERS - ADD ALTERNATE

Boiler, natural gas, 1700 mbh, serving the hot water system	-2 EA	\$74,000.00	(\$148,000)	\$6,480.00	(\$12,960)	(\$160,960)
Direct digital control of boilers (est 15 pts each)	-2 EA	\$6,000.00	(\$12,000)	\$9,000.00	(\$18,000)	(\$30,000)
Heating hot water system components	-1 LS	\$5,000.00	(\$5,000)	\$10,000.00	(\$10,000)	(\$15,000)
4" concrete slab, vapor barrier, 6x6 6/6 welded wire mesh, 6" stone base, bulkheads and edge forms, finish, cure and protect	-200 SF	\$5.50	(\$1,100)	\$6.20	(\$1,240)	(\$2,340)
Boiler flue and vent	-2 EA	\$3,000.00	(\$6,000)	\$2,880.00	(\$5,760)	(\$11,760)
Natural gas piping, above slab, welded black steel, schedule 40, 10" diameter	-200 LF	\$166.30	(\$33,260)	\$122.90	(\$24,580)	(\$57,840)
Natural gas distribution piping, below grade, polyethylene yellow PE2406, stick 10" diameter, including earthwork	-10 LF	\$106.20	(\$1,062)	\$41.60	(\$416)	(\$1,478)
Natural gas piping system accessories	-1 LS	\$10,000.00	(\$10,000)	\$15,000.00	(\$15,000)	(\$25,000)
Heating hot water piping, welded black steel, schedule 40, on yoke & roll hanger assemblies, 10' OC, (100 lf per boiler)						
- 4" diameter	-200 LF	\$48.40	(\$9,680)	\$72.00	(\$14,400)	(\$24,080)
Heating hot water fiberglass pipe insulation with all service jacket, 1-1/2" thickness for iron piping						
- 4" diameter	-200 LF	\$8.30	(\$1,660)	\$13.50	(\$2,700)	(\$4,360)
Boiler, electric, 3700 mbh, serving the hot water system	2 EA	\$111,000.00	\$222,000	\$6,000.00	\$12,000	\$234,000
Direct digital control of boilers (est 15 pts each)	2 EA	\$6,000.00	\$12,000	\$9,000.00	\$18,000	\$30,000

		MATER	IAL	LAE	BOR	
DESCRIPTION	QUANTITY	UNIT PRICE	TOTAL	UNIT PRICE	TOTAL	TOTAL
Heating hot water system components	1 LS	\$5,000.00	\$5,000	\$10,000.00	\$10,000	\$15,000
4" concrete slab, vapor barrier, 6x6 6/6 welded wire mesh, 6" stone base, bulkheads and edge forms, finish, cure and protect	200 SF	\$5.50	\$1,100	\$6.20	\$1,240	\$2,340
Heating hot water piping, welded black steel, schedule 40, on yoke & roll hanger assemblies, 10' OC, (100 lf per boiler)						
- 4" diameter	200 LF	\$48.40	\$9,680	\$72.00	\$14,400	\$24,080
Heating hot water fiberglass pipe insulation with all service jacket, 1-1/2" thickness for iron piping						
- 4" diameter	200 LF	\$8.30	\$1,660	\$13.50	\$2,700	\$4,360
TOTAL PEAKING ELECTRIC BOILERS - ADD	ALTERNATE		\$23,678		(\$46,716)	(\$23,038)

ELECTRICAL UPGRADES SUMMARY

		TOTAL	TOTAL	TOTAL	% OF
SUMMARY		MATERIAL	LABOR	COST	TOTAL
CAMPUS ELECTRICAL INFRASTRUCTURE NATURAL GAS PEAKING BOILER SCENAR	UPGRADES - NO	\$7,011,250	\$2,190,750	\$9,202,000	57.04%
SUBTOTAL - ELECTRICAL UPGRADES S	UMMAR			\$9,202,000	100.00%
GENERAL CONDITIONS	15.0%			\$1,380,300	8.56%
OVERHEAD AND PROFIT	10.0%			\$1,058,230	6.56%
DESIGN CONTINGENCY	20.0%			\$2,328,106	14.43%
BID CONTINGENCY	5.0%			\$698,432	4.33%
PHASING	10.0%			\$1,466,707	9.09%
TOTAL - ELECTRICAL UPGRADES SUM	IARY		-	\$16,133,775	100.00%
				<i>••••</i> ,•••,•••	
CAMPUS ELECTRICAL INFRASTRUCTURE PEAKING ELECTRIC BOILERS - ADD ALTE	UPGRADES - RNATE	\$9.818.750	\$2,739,150	\$12,557,900	32.92%
GENERAL CONDITIONS	15.0%			\$1,883,685	4.94%
OVERHEAD AND PROFIT	10.0%			\$1,444,159	3.79%
DESIGN CONTINGENCY	20.0%			\$3,177,149	8.33%
BID CONTINGENCY	5.0%			\$953,145	2.50%
PHASING	10.0%			\$2,001,604	5.25%
TOTAL - ELECTRICAL UPGRADES - ADD	ALTERNATE		_	\$22,017,640	57.71%

		MATER	IAL	LAB	OR	
DESCRIPTION	QUANTITY	UNIT PRICE	TOTAL	UNIT PRICE	TOTAL	TOTAL
SUBSTATION 1 UPGRADES	UP GIVADES					
34.5 kV overhead electrical distribution service feeder	1,000 LF	\$115	\$115,000	\$50	\$50,000	\$165,000
Utility pole including cross arms, insulators, network protectors, earthwork, etc (assume [1] pole / 100 LF)	10 EA	\$12,500.00	\$125,000	\$7,500.00	\$75,000	\$200,000
Below grade and conduit risers including trench excavation, concrete encasement, and backfill	1 ALLOW	\$18,750.00	\$18,750	\$18,750.00	\$18,750	\$37,500
34.5 kV outdoor unit substation including concrete pad and grounding	1 EA	\$1,250,000.00	\$1,250,000	\$50,000.00	\$50,000	\$1,300,000
H-frame with air switches, NYPA metering, surge arrestors, and lightning protection	1 ALLOW	\$75,000.00	\$75,000	\$12,500.00	\$12,500	\$87,500
7.5 / 10 / 12.5 MVA transformer including concrete pad and grounding - 34.5 kV > 13.2 kV	2 EA	\$150,000.00	\$300,000	\$16,800.00	\$33,600	\$333,600
2000 amp 15 kV switchgear with main breaker, feeder breakers, and tie-breaker including concrete pad and grounding	2 EA	\$350,000.00	\$700,000	\$25,000.00	\$50,000	\$750,000
Below grade feeder duct bank including [2] 6" conduits, [3] #500 15 kV MV-105, concrete encasement, excavation, and backfill						
- Lee Hall	2,000 LF	\$250.00	\$500,000	\$125.00	\$250,000	\$750,000
- Mackin Hall	1,000 LF	\$250.00	\$250,000	\$125.00	\$125,000	\$375,000
- Littlepage Hall	7,000 LF	\$250.00	\$1,750,000	\$125.00	\$875,000	\$2,625,000
- Riggs Hall	3,000 LF	\$250.00	\$750,000	\$125.00	\$375,000	\$1,125,000
Medium voltage cable terminations and testing	1 LS	\$15,000.00	\$15,000	\$27,500.00	\$27,500	\$42,500
Site restoration	1 ALLOW	\$50,000.00	\$50,000	\$50,000.00	\$50,000	\$100,000
Miscellaneous electrical (shutdowns, switchovers, temp power, etc)	1 EA	\$12,500.00	\$12,500	\$12,500.00	\$12,500	\$25,000
BUILDING SERVICE UPGRADES						
LEE HALL						
7500 kVA transformer including primary and secondary feeders, concrete pad, and grounding	1 EA	\$100,000.00	\$100,000	\$15,000.00	\$15,000	\$115,000
5 kV switchgear including concrete pad and grounding	1 EA	\$250,000.00	\$250,000	\$27,300.00	\$27,300	\$277,300
300 kVA replacement transformer including removals, primary and secondary feeders, concrete pad, and grounding	1 EA	\$50,000.00	\$50,000	\$12,500.00	\$12,500	\$62,500

ELECTRICAL	UPGRADES	DETAIL
------------	----------	--------

		MATERI	AL	LAB	OR	
DESCRIPTION	QUANTITY	UNIT PRICE	TOTAL	UNIT PRICE	TOTAL	TOTAL
MACKIN HALL						
1500 kVA replacement transformer including removals, primary and secondary feeders, concrete pad, and grounding	1 EA	\$75,000.00	\$75,000	\$22,500.00	\$22,500	\$97,500
2000 amp 480v replacement switchboard including removals, primary and secondary feeders, concrete pad, and grounding	1 EA	\$150,000.00	\$150,000	\$16,800.00	\$16,800	\$166,800
LITTLEPAGE HALL						
2500 kVA replacement transformer including removals, primary and secondary feeders, concrete pad, and grounding	1 EA	\$175,000.00	\$175,000	\$31,500.00	\$31,500	\$206,500
3000 amp 480v replacement switchboard including removals, primary and secondary feeders, concrete pad, and grounding	1 EA	\$225,000.00	\$225,000	\$21,000.00	\$21,000	\$246,000
RIGGS HALL						
1500 kVA replacement transformer including removals, primary and secondary feeders, concrete pad, and grounding	1 EA	\$75,000.00	\$75,000	\$22,500.00	\$22,500	\$97,500
2000 amp 480v replacement switchboard including removals, primary and secondary feeders, concrete pad, and grounding	1 EA	\$0.00	\$0	\$16,800.00	\$16,800	\$16,800
TOTAL CAMPUS ELECTRICAL INFRASTRUC	URE UPGRADES		\$7,011,250		\$2,190,750	\$9,202,000

CAMPUS ELECTRICAL INFRASTRUCTURE UPGRADES - ADD ALTERNATE

SUBSTATION 1 UPGRADES						
115 kV overhead electrical distribution service feeder	1,000 LF	\$135	\$135,000	\$50	\$50,000	\$185,000
Below grade and conduit risers including trench excavation, concrete encasement, and backfill	1 ALLOW	\$18,750.00	\$18,750	\$18,750.00	\$18,750	\$37,500
115 kV outdoor unit substation including concrete pad and grounding	1 EA	\$1,500,000.00	\$1,500,000	\$75,000.00	\$75,000	\$1,575,000
3-gang operated 115 kV disconnect switches, [2] class circuit switchers, surge arrestors, metering, and structures	1 ALLOW	\$200,000.00	\$200,000	\$50,000.00	\$50,000	\$250,000
15 / 20 / 25 MVA transformer including concrete pad and grounding - 115 kV > 13.2 kV	2 EA	\$225,000.00	\$450,000	\$21,000.00	\$42,000	\$492,000
2000 amp 15 kV switchgear with main breaker, feeder breakers, and tie-breaker including concrete pad and grounding	2 EA	\$350,000.00	\$700,000	\$25,000.00	\$50,000	\$750,000

ELECTRICAL UPGRADES	DETAIL
---------------------	--------

	MATERIAL		IAL	LAB	OR	
DESCRIPTION	QUANTITY	UNIT PRICE	TOTAL	UNIT PRICE	TOTAL	TOTAL
Below grade feeder duct bank including [2] 6" conduits, [3] #500 15 kV MV-105, concrete encasement, excavation, and backfill						
- Lee Hall - [2] sets	4,000 LF	\$250.00	\$1,000,000	\$125.00	\$500,000	\$1,500,000
- Mackin Hall	1,000 LF	\$250.00	\$250,000	\$125.00	\$125,000	\$375,000
- Littlepage Hall	7,000 LF	\$250.00	\$1,750,000	\$125.00	\$875,000	\$2,625,000
- Riggs Hall	3,000 LF	\$250.00	\$750,000	\$125.00	\$375,000	\$1,125,000
Medium voltage cable terminations and testing	1 LS	\$15,000.00	\$15,000	\$27,500.00	\$27,500	\$42,500
Site restoration	1 ALLOW	\$50,000.00	\$50,000	\$50,000.00	\$50,000	\$100,000
Miscellaneous electrical (shutdowns, switchovers, temp power, etc)	1 EA	\$12,500.00	\$12,500	\$12,500.00	\$12,500	\$25,000
SUBSTATION 2 UPGRADES						
Extend fencing at substation location	1 ALLOW	\$12,500	\$12,500	\$12,500	\$12,500	\$25,000
2500 / 3125 kVA replacement transformer including removals, primary and secondary feeders, concrete pad, and grounding	1 EA	\$200,000.00	\$200,000	\$27,300.00	\$27,300	\$227,300
Below grade feeder duct bank including [2] 6" conduits, [3] #500 15 kV MV-105, concrete encasement, excavation, and backfill - Laker Hall	1,000 LF	\$250.00	\$250,000	\$125.00	\$125,000	\$375,000
BUILDING SERVICE UPGRADES						
LEE HALL						
7500 kVA transformer including primary and secondary feeders, concrete pad, and grounding	1 EA	\$100,000.00	\$100,000	\$15,000.00	\$15,000	\$115,000
5 kV switchgear including concrete pad and grounding	1 EA	\$250,000.00	\$250,000	\$27,300.00	\$27,300	\$277,300
300 kVA replacement transformer including removals, primary and secondary feeders, concrete pad, and grounding	1 EA	\$50,000.00	\$50,000	\$12,500.00	\$12,500	\$62,500
MACKIN HALL						
2500 kVA replacement transformer including removals, primary and secondary feeders, concrete pad, and grounding	1 EA	\$175,000.00	\$175,000	\$31,500.00	\$31,500	\$206,500
4000 amp 480v replacement switchboard including removals, primary and secondary feeders, concrete pad, and grounding	1 EA	\$325,000.00	\$325,000	\$33,600.00	\$33,600	\$358,600
LITTLEPAGE HALL						
3750 kVA replacement transformer including removals, primary and secondary feeders, concrete pad, and grounding	1 EA	\$225,000.00	\$225,000	\$35,700.00	\$35,700	\$260,700

ELECTRICAL UPGRADES DETAIL

		MATER	AL	LAB	OR	
DESCRIPTION	QUANTITY	UNIT PRICE	TOTAL	UNIT PRICE	TOTAL	TOTAL
5000 amp 480v replacement switchboard including removals, primary and secondary feeders, concrete pad, and grounding	1 EA	\$400,000.00	\$400,000	\$37,800.00	\$37,800	\$437,800
RIGGS HALL						
2500 kVA replacement transformer including removals, primary and secondary feeders, concrete pad, and grounding	1 EA	\$175,000.00	\$175,000	\$31,500.00	\$31,500	\$206,500
4000 amp 480v replacement switchboard including removals, primary and secondary feeders, concrete pad, and grounding	1 EA	\$325,000.00	\$325,000	\$33,600.00	\$33,600	\$358,600
LAKER HALL						
2500 kVA replacement transformer including removals, primary and secondary feeders, concrete pad, and grounding	1 EA	\$175,000.00	\$175,000	\$31,500.00	\$31,500	\$206,500
4000 amp 480v replacement switchboard including removals, primary and secondary feeders, concrete pad, and grounding	1 EA	\$325,000.00	\$325,000	\$33,600.00	\$33,600	\$358,600
TOTAL CAMPUS ELECTRICAL INFRASTRUC	TURE UPGRADE	S - ADD ALTERNA	\$9,818,750		\$2,739,150	\$12,557,900